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Corollary 4.3: For each possible value �, there exists a unique addi-
tive dual codeH of the extended 1-perfect additive non- 4-linear code
and all these codes H are pairwise nonequivalent, except for � = 0
and � = 1, where the codes H coincide with the binary dual of the
extended Hamming code.
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Algebraic Lattice Constellations:
Bounds on Performance
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Abstract—In this work, we give a bound on performance of any full-di-
versity lattice constellation constructed from algebraic number fields. We
show that most of the already available constructions are almost optimal in
the sense that any further improvement of the minimum product distance
would lead to a negligible coding gain. Furthermore, we discuss construc-
tions, minimum product distance, and bounds for full-diversity complex
rotated [ ] -lattices for any dimension , which avoid the need of com-
ponent interleaving.

Index Terms—Algebraic number theory, cyclotomic fields, modulation
diversity, Odlyzko bound, rotated lattice constellations.

I. INTRODUCTION

Lattice constellations with high modulation diversity have been ex-
tensively studied as an alternative approach for transmission over the
single-antenna Rayleigh-fading channel. The original idea was to intro-
duce bandwidth-efficient modulations with intrinsic diversity order and
good minimum product distance to achieve substantial coding gains.
In [3], [4], [1], [2], it is shown that lattice constellations constructed

using algebraic number theory provide the desired properties. The first
examples using totally real algebraic number fields were given in [3],
while complex algebraic number fields were used in [4], [9]. Initially,
no restriction on the shape of the lattice constellation was imposed,
which resulted in either a complex bit labeling procedure or loss in
the average energy. Further investigations were addressed to finding
rotated ZZZn-lattices to avoid the above problems [9], [5]. In [2], several
families of full-diversity rotatedZZZn-lattices from totally real algebraic
number fields were given and analyzed for all dimensions (see also
[16]). Some full-diversity complexZZZ[i]n-lattices are known forn = 2r

[9]. A comprehensive review of this topic can be found in [15].
The main contribution of this work is to give a bound on the min-

imum product distance of any lattice constellation constructed from
algebraic number fields, and to compare this bound to known construc-
tions. We show that most of the already available constructions, built
from totally real number fields, are within a few tenths of a decibel
from the lower bound. Moreover, we discuss constructions, minimum
product distance and bounds for full-diversity complex ZZZ[i]n-lattices
for any n.
The correspondence is organized as follows: elementary definitions

of algebraic number theory are provided in Section II. In Section III,
we recall the notion of ideal lattices and in Section IV, we compute a
bound on theminimum product distance of signal constellations carved
from such lattices. With the aid of this bound, we are able to establish
the ultimate coding gains achievable by such constellations. In Section
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V, we generalize our framework to complex ideal lattices, and compute
the minimum product distance of complex constructions. Explicit con-
structions are given in Section VI. We finally discuss the performance
of complex ZZZ[i]n-lattices in Section VII.

II. PRELIMINARY DEFINITIONS ON NUMBER FIELDS

LetK be a number field, i.e., an extension of finite degree ofQQQ. Let
n be the degree of K .

Definition 2.1: We call the embeddings ofK the set of field homo-
morphisms f�i : K ! CCC; i = 1; . . . ; nj�(x) = x; 8x 2 QQQg. The
signature (r1; r2) ofK is defined by the number of real (r1) and com-
plex (2r2) embeddings such that n = r1 + 2r2. If all the embeddings
ofK are real (resp., complex), we say thatK is totally real (resp., to-
tally complex).

Definition 2.2: LetK = QQQ(�) be an extension ofQQQ of degree n. If
the minimal polynomial of � overQQQ has all its roots inK , we say that
K is a Galois extension of QQQ. The set

Gal(K=QQQ) = f� : K ! Kj�(x) = x; 8x 2 QQQg

of field automorphisms fixingQQQ, is a group under composition, called
the Galois group of K over QQQ.

Note that when K is a Galois extension, the set of its embeddings
coincides with its Galois group. In the following, we will restrict our-
selves to Galois extensions, so that we will use interchangeably the
terms “embeddings” or “Galois group.”

Definition 2.3: Let x 2 K and Gal(K=QQQ) = f�igni=1. The trace
of x over QQQ is defined as

TrK=QQQ(x) =

n

i=1

�i(x)

while the norm of x is

NK=QQQ(x) =

n

i=1

�i(x):

If the field extension is clear from the context, we may write, respec-
tively, Tr(x) and N(x).

Definition 2.4: Let OK = fx 2 K j 9 a monic polynomial f 2
ZZZ[X] such that f(x) = 0g. The set OK is called the ring of integers
of K .

It can be shown that OK has a basis f!1; . . . ; !ng over ZZZ , where
n is the degree of K . In other words, every element x 2 OK can be
uniquely written as x = n

i=1 �i!i; �i 2 ZZZ .

Definition 2.5: A ZZZ-basis of OK is called an integral basis of K
(or OK ).

Definition 2.6: Let f!1; . . . ; !ng be a ZZZ-basis of OK . The integer
dK = det(TrK=QQQ(!i!j)

n
i;j=1) is called the discriminant ofK .

Definition 2.7: An ideal I of a commutative ring R is an addi-
tive subgroup of R which is stable under multiplication by R, i.e.,
xI � I for all x 2 R. An ideal I is principal if it is of the form
I = (a) = fax; x 2 Rg for some a 2 I .

When R is not clear from the context we write I = (a)R.
If an ideal I is not principal, then it is generated by several elements

of the ring R. If I is generated by two elements a and b, we use the
notation I = (a; b) = fax + by : x; y 2 Rg.

Definition 2.8: Let I be an ideal of OK . Its norm is defined by
N(I) = jOK=Ij. It directly follows that if I = (a)OK is principal,
then N(I) = jN(a)j.

III. ZZZn-IDEAL LATTICES AND PRODUCT DISTANCE

The theory of ideal lattices gives a general framework for algebraic
lattice constructions. We first start by recalling this notion in the case
of totally real algebraic number fields. Totally complex number fields
will be discussed in Section V.

Definition 3.1: LetK be a totally real number field of degree n. An
ideal lattice is a lattice � = (I; q�), where I is an ideal of OK and

q� : I � I ! ZZZ; q�(x; y) = TrK=QQQ(�xy); 8x; y 2 I (1)

where � 2 K is totally positive (i.e., �i(�) > 0;8i).
We recall that the diversity L of a lattice in RRRn is the minimum

Hamming distance between any two distinct points of the lattice. In
the case of algebraic lattices,L is related to the signature of the number
field K by the formula L = r1 + r2 [4]. A lattice built over a totally
real number field as in Definition 3.1 has thus maximal diversity order
L = n. The constructions in [3], [4], [9], [5] fall in the case of ideal
lattices with � = 1. The general case was extensively applied in [2] to
construct new full-diversity constellations with goodminimum product
distance.
If f!1; . . . ; !ng is aZZZ-basis of I , the generator matrixR of an ideal

lattice � = fxxx = ���R j��� 2 ZZZng is given by

R =

p
�1�1(!1)

p
�2�2(!1) . . .

p
�n�n(!1)

...
... . . .

...p
�1�1(!n)

p
�2�2(!n) . . .

p
�n�n(!n)

(2)

where �i = �i(�); i = 1; . . . ; n (see Definition 2.1). One easily
verifies that the Gram matrix RRT coincides with the trace form
(Tr(�!i!j))

n
i;j=1, where T denotes the transposition. For the

ZZZn-lattice, the corresponding lattice generator matrix given in (2)
becomes an orthogonal matrix (R�1 = RT ) and we talk about
“rotated” ZZZn-lattices.
The following proposition, whose proof can be found in [1], will be

useful in the following.

Proposition 3.1: Let I be an ideal of OK , and � = (I; q�) be an
ideal lattice. Then

jdet(�)j = N(�)N(I)2jdK j: (3)

Once diversity of the signal constellation is fixed, the asymptotic
coding gain is determined by the minimum product distance [4].

Definition 3.2: The minimum product distance of a lattice constel-
lation � is given by

dp;min(�) = min
xxx6=yyy2�

n

i=1

jxi � yij = min
06=x2�

n

i=1

jxij: (4)

The minimum product distance of an ideal lattice can be computed
explicitly.

Theorem 3.1: Let I be an ideal of OK . The minimum product dis-
tance of a lattice constellation carved from an ideal lattice� = (I; q�),
with normalized determinant det(�) = 1, is

dp;min(�) =
1

dK
min(I); where min(I) = min

06=x2I

N(x)

N(I) :
(5)
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In the case where I is principal [2], this simplifies to

dp;min(�) =
1

dK
: (6)

Proof: Let

xxx =

n

i=1

�i
p
�1�1(!i); . . . ;

n

i=1

�i
p
�n�n(!i) ; �i 2 ZZZ

be a lattice point and x = n
i=1 �i!i 2 I . We have

dp;min(�) = min
06=xxx2�

n

j=1

n

i=1

�i
p
�j�j(!i)

= N(�) min
06=x2I

jN(x)j : (7)

We conclude using Proposition 3.1 that

dp;min(�) =
det(�)

N(I)pdK
min
06=x2I

jN(x)j = 1

dK
min(I): (8)

When considering nonprincipal rings of integers (i.e., where not all
ideals are principal), the dp;min gives rise to the quantitymin(I)which
is hard to evaluate in general. However, the following heuristic can be
suggested. When dealing with nonprincipal ideals, it is interesting to
compare the proportion of these with respect to the principal ideals.
This is measured by a quantity called the class number [18], denoted by
h(K). For example, if h(K) = 1, that means the ring of integers ofK
is principal. What is known (from an argument coming from class field
theory [12]) is that the discriminant of the number field K increases
with its class number h(K). This would suggest that

dp;min(�(IK)) =
1

dK
min(I) < 1

dK
= dp;min(�(IK ))

whereK andK0 are two totally real number fields of same degree, and
K 0 is principal whileK is not. Though onemay argue thatmin(I)may
increase as well as the discriminant, numerical computations show that
min(I) seems to increase much less than the discriminant, at least in
the case where the ZZZn-lattice is built. Here is an illustration in dimen-
sion 2 (the examples have been computed with the algorithm described
in [13], [12]).

Example 3.1: Consider the number field

K1 = QQQ[X]=(X2 �X � 3292)

with discriminant dK = 13169 and class number h(K1) = 4. Let �
denote a root ofX2 �X � 3292. The ZZZ2-lattice can be built over the
nonprincipal ideal I = (13� �;�56), with � = 1643=10324496 +
(25=41297984)�. We compute N(I) = 56, while for x = a(13 �
�) � 56b 2 I , we have N(x) = 3136b2 � 1400ab � 3136a2. The
norm reaches its minimum for a = �1 and b = 1. We get

min(I) = 1400=56 = 25:

The minimum product distance is dp;min = 25=
p
13169 = 0:217853.

Example 3.2: Consider the number fieldK2 = QQQ[X]=(X2�X �
9870), with discriminant dK = 39481 and class number h(K2) = 2.
Let � denote a root ofX2�X�9870. TheZZZ2-lattice can be built over
the nonprincipal ideal I = (71� �; 70), with

� = 281=2763670+ (141=193456900)�:

TABLE I
VALUES OF dp;min WITH RESPECT TO h(K)

Fig. 1. Number fields in Construction II.

We computeN(I) = 70, while for x = a(71��)+70b 2 I , we have
N(x) = 4900b2+9870ab� 4900a2. The norm reaches its minimum
for a = 0 and b = 1. We get

min(I) = 4900=70 = 70:

The minimum product distance is dp;min = 70=
p
39481 = 0:352292.

In Table I, we compare the values of dp;min obtained in the preceding
examples to the best one obtained over a principal ring of integers [2],
namely, considering the quadratic fieldQQQ(

p
5). It is clear that the latter

construction yields a much better dp;min. This discussion leads us to
the conjecture that the nonprincipal case is actually not bringing any
improvement. In the following, we will thus focus our attention to the
case when � is built over a principal ideal I .

IV. BOUNDS ON PERFORMANCE

For high signal-to-noise ratio (SNR) and a given dimension n, op-
timal lattice constellations � achieve the maximum minimum product
distance. As dp;min(�) = 1=

p
dK (by Theorem 3.1), maximizing

dp;min is obviously equivalent to minimizing the field discriminant.
This has already been observed in [3], [4], though rotated ZZZn-lattice
codes were not obtained on totally real number fields with minimal dis-
criminant. The correspondingZZZn-lattice codes were found later in [13]
for dimensions up to 7. For n � 8, several families of rotated ZZZn-lat-
tice codes [2] result in the best known performance. But no proof of
optimality was given. The reason is that for dimensions n � 8, finding
totally real fields with minimal, or only “small” discriminant is a hard
question (see, for example, [6]). Fortunately, a lower bound on number
field discriminants (due to Odlyzko [11]) is available. We use it here to
find an upper bound on the minimum product distance. Asymptotically
for n ! 1, we have the following bound:

d
1=n
K = (4�1+C)r =n(4�eC)2r =n �O(n�2=3)

� (60:8395 . . .)r =n(22:3816 . . .)2r =n �O(n�2=3) = Cn

(9)

whereC = 0:577215 . . . is Euler’s constant. The asymptotic behavior
is only reached for very large values of n. The explicit computation of
Odlyzko’s lower bound for small values of n is rather involved, how-
ever, numerical tables for n � 100 are readily available, for example
in PARI [17].
We can see that the normalized minimum product distance is upper-

bounded by

dp;min
1=n(�) =

1

dK

1=n

� 1p
Cn
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Fig. 2. Comparison of discriminants among the known constructions (Constructions I–III), the most recent one, Krüskemper’s construction (Construction IV),
and Odlyzko’s bounds.

where we consider the normalized minimum product distance
dp;min

1=n in order to compare lattice constellations of different
dimensions. Note that dp;min

1=n may be interpreted as the geometric
mean distance of the difference between the components of two
codewords at the minimum product distance.

It is important to notice that Odlyzko’s bounds are not tight, that is,
they do not imply that there exists a number field whose discriminant
would reach the bound. Furthermore, even if such a number field would
exist, that does not imply that theZZZn-lattice can be obtained. Thus, we
are considering a worst case analysis.

A. Known Constructions of ZZZn-Lattices Are Good Enough

We compare here the dp;min obtained in the constructions given in
[2], [14], [13] with Odlyzko’s bound.

• Construction I: The cyclotomic case for dimensions n =
(p � 1)=2 with p prime [2].
Let p be an odd prime, and �p be a primitive pth root of unity.

TheZZZn-lattice is built over the ring of integers ofK = QQQ(�p+
��1p ), with � = (1 � �p)(1 � ��1p ). The minimum product
distance is given by dp;min = p�(p�1)=6.

• Construction II: The cyclic case for prime dimensions
[14], [2].
We consider K a cyclic extension of QQQ of odd prime degree

n. K is embedded into a cyclotomic fieldQQQ(�p), where �p is a
primitive pth root of unity (see Fig. 1).
The ZZZn-lattice is constructed using � = 1 and the idealA of

K such that its square is the inverse different, i.e.,

A
2 = D�1K=QQQ: (10)

The minimum product distance of these lattices is dp;min =
p�(n�1)=2.

• Construction III: The mixed case [2].
Constellations in other dimensions are derived from the com-

positum of two (or more) fields involved in Constructions I and
II. In terms of lattice generator matrices, we consider the tensor
product of matrices from Constructions I and II. The expression
of dp;min in this case can be found in [2].

TABLE II
SOME VALUES OF , IN DECIBELS, RELATIVE TO THE BOUND

• Construction IV: Krüskemper’s method [13].
Using Krüskemper’s method, we obtain the optimal rotated

ZZZn-lattice over the number field with minimum discriminant in
all dimensions from 2 up to 7.We also useKrüskemper’smethod
to build lattices over number fields with small (though not min-
imal) discriminant in dimensions 7; 13; 17; and 19, where the
other available constructions appeared to yield a poor dp;min.

We recall from [4] that the asymptotic coding gain between two ro-
tated lattice constellations with the same dimension and maximal di-
versity is given by

 = 10 log10
dp;min(1)

dp;min(2)

1=n

[dB] (11)

where dp;min(i); i = 1; 2 is the minimum product distance of each
constellation.
In Fig. 2, we compare the discriminants found in [2], [14], [13] to

Odlyzko’s bounds. We observe that they are close to the bounds, ex-
cept for dimensions 7; 13; 17; 19; and 25. Though the discriminants
are notin the continuity of the others, we show that even in the worst
cases they are good enough in the sense that any improvement would
bring a negligeable coding gain. We compute the achievable coding
gain obtained by using a number field whose discriminant would reach
Odlyzko’s bound, relatively to the given constructions. We observe
in Table II that the maximal gain would be at most 0.25 dB in the
worst case when a full diversity ZZZn-lattice could be constructed from
a number field achieving Odlyzko’s bound.
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V. FRAMEWORK FOR COMPLEX LATTICE CONSTRUCTIONS

Following [7], we call complex lattice a ZZZ[i]-lattice

�c = fxxx = ���M : ��� 2 ZZZ[i]ng (12)

whereM is the lattice generatormatrix andMMH is theGrammatrix,
whereH denotes the transpose conjugate. We are interested in the case
whereM is a complex unitary matrix yielding “rotated” versions of the
ZZZ[i]n-lattice.

Complex algebraic lattices can be obtained using the relative canon-
ical embedding of a number field and may be applied to the case where
the complex Rayleigh-fading channel is considered [9]. This frame-
work enables to precisely describe the design parameters in terms of
the algebraic structure, similarly to the case of real algebraic lattices.

Let L be a Galois extension of degree n over QQQ(i). We denote by
Gal(L=QQQ(i)) = f�1; . . . ; �ng the Galois group of L over QQQ(i) and
define the relative canonical embedding of L into CCCn as

� : L! CCCn

�(x) = (�1(x); . . . ; �n(x)): (13)

LetOL be the ring of integers of L. SinceZZZ[i] is principal, there exists
a ZZZ[i]-basis BL = f!1; . . . ; !ng. Similarly to the real case, the gen-
erator matrix of the complex algebraic lattice �c(OL) is obtained by
applying the relative canonical embedding to the basis of OL

M =

�1(!1) . . . �n(!1)
...

...
�1(!n) . . . �n(!n)

: (14)

The complex diversity of such lattices is still the minimumHamming
distance between any two complex vectors, i.e., by linearity

min
06=xxx2�

#fxi 6= 0g

with x = (x1; . . . ; xn); xi 2 CCC .

Proposition 5.1: The complex diversity of�c(OL) is equal to n and
we say the lattice has full complex diversity.

Proof: Letxxx = (x1; . . . ; xn); xi 2 CCC , be a lattice point different
from the origin. Suppose there exists an xj = 0 for some j = 1; . . . ; n
then we get

0 = xj =

n

i=1

�i�j(!i) = �j

n

i=1

�i!i ; �i 2 ZZZ[i]: (15)

This implies n
i=1 �i!i = 0, a contradiction since f!jgnj=1 is a basis

of OL.

We now generalize the definition of ideal lattices to the complex
case.

Definition 5.1: Let L=QQQ(i) be a Galois extension of degree n over
QQQ(i). A complex ideal lattice is a ZZZ[i]-lattice �c = (I; q), where I is
an OL-ideal and

q : I � I ! ZZZ[i]; q(x; y) = TrL=QQQ(i)(x�y); 8x; y 2 I (16)

where � denotes the complex conjugation.

Fig. 3. The compositum of a totally real fieldK andQQQ(i): relative degrees
are shown on the branches.

When considering complex ideal lattices, the Gram matrix MMH

must be an Hermitian trace form.

Lemma 5.1: The matrix M defined, as in (14), by embedding the
basis BI = (�1; . . . ; �n) of the ideal I � OL

M =

�1(�1) . . . �n(�1)
...

...
�1(�n) . . . �n(�n)

(17)

is the generator matrix of a complex ideal lattice if and only if the
complex conjugation commutes with all the other embeddings.

Proof: We have

MMH =

�1(�1) . . . �n(�1)
...

...
�1(�n) . . . �n(�n)

�1(�1) . . . �1(�n)
...

...
�n(�1) . . . �n(�n)

=

n
i=1 �i(�1)�i(�1) . . . n

i=1 �i(�1)�i(�n)
...

...
n
i=1 �i(�n)�i(�1) . . . n

i=1 �i(�n)�i(�n)

(18)

while the matrix of an Hermitian trace form is given by

n
i=1 �i(�1�1) . . . n

i=1 �i(�1�n)
...

...
n
i=1 �i(�n�1) . . . n

i=1 �i(�n�n)

(19)

so (18) and (19) coincide if and only if the complex conjugation com-
mutes with all �i.

If L is a totally complex field containing a totally real field K such
that [L : K] = 2 (we say that L is a complex multiplication field—CM
field), then it can be shown that the complex conjugation commutes
with all �i (see, for example, [10, Ch. 1]).
A simple way to construct a CM field is to consider the compositum

ofQQQ(i) and a totally real number fieldK as illustrated in Fig. 3. In the
following we restrict ourselves to these CM fields.
The definition of minimum product distance can be derived from

Definition 3.2 as follows.

Definition 5.2: Let xxx = (x1; . . . ; xn) 2 �c; xi 2 CCC , we define the
complex minimum product distance as

dp;min(�
c) = min

06=xxx2�

n

i=1

jxij: (20)

We show now that the complex minimum product distance of
complex ideal lattices is related to the relative discriminant. Let
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L = KQQQ(i) (see Fig. 3) be the compositum of a totally real number
field K and QQQ(i).

Proposition 5.2: Let �c = (I; q) be a complex ideal lattice over
ZZZ[i], where I = (�)OL is a principal ideal of OL;

q: I � I ! ZZZ[i]

(x; y) 7! cTrL=QQQ(i)(x�y) (21)

and c is a normalization factor. Then

j det(�c)j = c
n
NL=QQQ(i)(�)

2 jdL=QQQ(i)j (22)

where dL=QQQ(i) denotes the relative discriminant of L overQQQ(i).
Proof: Let f!jgnj=1 be a ZZZ[i]-basis of OL and f�!jgnj=1 be a

ZZZ[i]-basis of I . By definition

j det(���c)j = det cTrL=QQQ(i)(�!j ��!k) :

Notice that TrL=QQQ(i)(�!j�!k)
n
j;k=1 is a matrix of the form

MAAHMH whereM is the matrix defined in (14) and

A = diag(�1(�); . . . ; �n(�)):

Thus,

j det(�c)j=c
njNL=QQQ(i)(�)j � j det(TrL=QQQ(i)(!j!k)j NL=QQQ(i)(�) :

Since det(MMH) = det(M) det(MH) = det(M)det(M), we
have

det(TrL=QQQ(i)(!j!k)) = dL=QQQ(i) (23)

which concludes the proof.

Theorem 5.1: Let �c denote a complex ideal lattice as described in
Proposition 5.2, with j det(�c)j = 1, we have

dp;min(�
c) =

1

dL=QQQ(i)

: (24)

Proof: Let f!igni=1 be a ZZZ-basis of OL, and

x =

n

i=1

�i!i; �i 2 ZZZ:

Then

dp;min(�
c) = min

06=xxx2�

n

j=1

p
c

n

i=1

�i�j(�!i)

=
p
cn min

06=x2O
NL=QQQ(i) �

n

i=1

�i!i

=
p
cn NL=QQQ(i)(�) :

We conclude using Proposition 5.2

dp;min(�
c) =

p
cn

j det(�c)j
jdL=QQQ(i)j

1p
cn

=
1

jdL=QQQ(i)j
: (25)

Corollary 5.1: IfK has an odd discriminant dK , then

dp;min(�
c) =

1p
dK

:

Proof: If dK is odd, it satisfies (dK ; dQQQ(i)) = 1, since dQQQ(i) =
�4. Thus, a ZZZ[i]-basis of L is given by the ZZZ-basis of K [20, p. 48],
and dL=QQQ(i) = dK .

VI. COMPLEX CONSTRUCTIONS

This section discusses various constructions of complex lattices. We
first recall a known construction over cyclotomic fields, in order to
compute its minimum product distance, before introducing two new
types of constructions.

A. Cyclotomic Fields QQQ(�2 )

Complex lattice constructions from cyclotomic fields were found in
[9], [8]. Here, we show that these lattices may be seen as ideal lattices,
which allows to evaluate the complex minimum product distance in
terms of field discriminants.
It is well-known [20, p. 65] that ZZZ[�] is the ring of integers

of L = QQQ(�), where � = �2 and that a ZZZ-basis is given by
f1; �; �2; . . . ; �2 �1g.

Propositon 6.1: A ZZZ[i]-basis of ZZZ[�] is given by
f1; �; �2; . . . ; �2 �1g.

Proof: Let x be in ZZZ[�]. Since f1; �; �2; . . . ; �2 �1g is a
ZZZ-basis and �2 = i, we have

x =

2 �1

k=0

ak�
k
; ak 2 ZZZ

=

2 �1

k=0

ak�
k +

2 �1

k=2

ak�
k

=

2 �1

k=0

ak�
k +

2 �1

l=0

i~al�
l
; ~al = al+2 2 ZZZ

=

2 �1

k=0

(ak + i~ak)�
k
:

The set f1; �; �2; . . . ; �2 �1g is a system of generators, and the co-
efficients bk = ak + i~ak are in ZZZ[i] for all k = 0; . . . ; 2r�2 � 1.
What is left to prove is the unicity of the representation of x. Suppose
there exists another way of writing x, then this will lead to two ways
of writing x in a ZZZ-basis of ZZZ[�], which is a contradiction.

Proposition 6.2: Consider the ideal lattice �c = (OL; q) where
L = QQQ(�) is of degree n = 2r�2 overQQQ(i) and

q(x; y) =
1

2r�2
TrL=QQQ(i)(x�y); for all x; y 2 OL:

Then �c is isomorphic to the ZZZ[i]n-lattice.
Proof: See [9].

Let us now consider the product distance. As

QQQ(�) = QQQ(� + �
�1)QQQ(i)

we apply Theorem 5.1.

Proposition 6.3: The relative discriminant dQQQ(�)=QQQ(i) satisfies

dQQQ(�)=QQQ(i) = (2r�2)2 : (26)

Proof: The relative discriminant jdQQQ(�)=QQQ(i)j is given by
jNQQQ(�)=QQQ(i)(f

0(�))j [18, p. 49], where f is the minimal polyno-

mial of QQQ(�) over QQQ(i) and � = �2 . As f(x) = x2 + i;

f 0(�) = 2r�2i��1. Thus,

NQQQ(�)=QQQ(i)(f
0(�)) = (2r�2i)2 NQQQ(�)=QQQ(i)(�

�1); (27)

and we conclude by taking the absolute value.
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Theminimumproduct distance of the above ideal lattice is then given
by Theorem 5.1

dp;min(�
c) = (2r�2)�2 : (28)

B. Complex Constructions From Real Ones

We show a simple method to derive unitary complex matrices (i.e.,
rotated ZZZ [i]n-lattices) from known constructions of rotated ZZZn-lat-
tices from totally real number fields. Then we compute their minimum
product distance.

Consider the extension tower as described in Fig. 3, whereK is a to-
tally real number field, and L denotes the compositum ofK andQQQ(i).
We are interested in the extension L=QQQ(i). A ZZZ[i]-basis is easily de-
rived.

Lemma 6.1:
a) SupposeK has an odd discriminant (so that dK and dQQQ(i) are co-

prime). LetBK = f�jgnj=1 be aZZZ-basis ofK . ThenBK is aZZZ[i]-basis
of L.

b) Let BL = f!jgnj=1 be aZZZ[i]-basis of L. Then fi!jgnj=1 is a also
a ZZZ[i]-basis of L.

Proof:

a) Let x be in L. Since (dK ; dQQQ(i)) = 1, a ZZZ-basis of L is given
by f�1; . . . ; �n; i�1; . . . ; i�ng [20, p. 48]. Thus,

x =

n

j=1

aj�j +

n

j=1

ibj�j aj ; bj 2 ZZZ; 8j

=

n

j=1

(aj + ibj)�j :

b) This is trivial since i is a unit of ZZZ[i].

The preceding lemma clearly extends to a basis of any ideal of OL,
which may be used to construct an ideal lattice as explained in the
following proposition.

Proposition 6.4: Let BI = f!j = i�jgnj=1 be a ZZZ[i]-basis of an
ideal I � OL. We have

TrL=QQQ(i)(!j!k) = TrK=QQQ(�j�k): (29)

Proof: We have

TrL=QQQ(i)(!j!k) = TrL=QQQ(i)(i�ji�k)

= TrL=QQQ(i)(�j�k)

= TrK=QQQ(�j�k)

where the last equality holds since Gal(L=QQQ(i)) = Gal(K=QQQ) [20,
p. 47].

This construction always yields a purely imaginary lattice generator
matrix. In practice, the same rotation may be obtained by directly ap-
plying the real generator matrix of �, obtained from the field K , to a
complex vector in ZZZ[i]n. However, our point of view enables to eval-
uate the complex minimum product distance from Corollary 5.1

dp;min(�
c) = dp;min(�): (30)

The following example shows how to build a ZZZ[i]n-lattice using a
ZZZn-lattice.

Example 6.1: Let K = QQQ(�7 + ��17 ) and � = 2 � (�7 + ��17 ).
A ZZZ3-lattice is built using the ideal IK = (�)OK of ZZZ[�7 + ��17 ] as
follows [2]. A ZZZ-basis of the ideal IK is given by

f�(�37 + ��37 ); �(�37 + ��37 + �27 + ��27 );��g = f�ig3i=1:

By direct computation we have

1

7
TrK=QQQ(�i�j) = �ij ; i; j = 1; 2; 3:

The lattice generator matrix of�(IK) can be used to define aZZZ[i]3-lat-
tice �c(IL), where L = QQQ(�7 + ��17 ; i) and IL = (�)OL. Using
Proposition 6.4, the lattice generator matrix of �c(IL) becomes

0:327985277i �0:736976229i �0:591009048i
�0:736976229i �0:591009048i 0:327985277i

�0:591009048i 0:327985277i �0:736976229i
:

Since dK = 49, the complex minimum product distance of this lattice
is given by

dp;min(�
c) = 1=7:

C. Some Other Constructions

The previous method gives lattice generator matrices that are purely
imaginary. One may ask if fully complex coefficients could be ob-
tained. We discuss this question in some particular cases.
As in the previous section, we work with the compositum field L =

KQQQ(i) (see Fig. 3). Instead of starting from the realZZZn-lattice fromK ,
we attempt to directly construct the ZZZ[i]n-lattice on a particular ideal
I of OL. Our approach is as follows.

• Consider the ramification inL=QQQ. The prime factorization of the
discriminant dL=QQQ = pri contains the primes which ramify
[18, p. 88], i.e., (pi)OL = j

e
ij where ei > 1 [18, p. 86].

We recall that a prime ideal ij is said to be above pi.
• Considering real lattices, we know that

vol(�(OL)) = jdL=QQQj:

We look for a sublattice�(I) of�(OL), which could be a scaled
version of ZZZ2n, i.e., �(I) = (

p
cZZZ)2n for some integer c.

• Since �(I) is a sublattice of �(OL)

vol(�(OL)) = jdL=QQQj

must divide vol(�(I)) = cn, i.e., pri divides c2n.
• This gives a necessary condition for the choice of I . In terms of

norm of the ideal I [18, p. 69],we need

N(I) = jOL=Ij = vol(�(I))
vol(�(OL))

=
cn

pri
: (31)

• In order to satisfy (31), we must find an ideal of the form

I =
s

ij (32)

with norm p
n�r =2
i .

From Corollary 5.1, the minimum product distance remains

dp;min(�
c) =

1p
dK

: (33)
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1) Dimension 2: Let � = �5 + ��15 and L = QQQ(i; �). The Galois
group Gal(L=QQQ(i)) is of order 2, generated by �, that acts on � as
follows: �(�) = �1 � �. We have

(5)OL = 2
1

2
2 = (1� i�)2(1� i�(�))2

so that N( 1) = N( 2) = 5.
We take the principal ideal I = 1 = (�)OL with � = 1 � i�,

which satisfies (31). AZZZ[i]-basis of I is f�; ��g. Using the change of
basis given by the matrix

1 0

1 1

we get for (�)OL the new ZZZ[i]-basis f�ig2i=1 = f1� i�; 1� i+ �g.
Then it is a straightforward computation, to show that

1

5
TrL=QQQ(�i ��j) = �ij ; i; j = 1; 2:

For example

TrL=QQQ(i)((1� i�)(1� i�)) = TrL=QQQ(i)(1 + �2)

= TrL=QQQ(i)(2� �)

= TrQQQ(�)=QQQ(2)� TrQQQ(�)=QQQ(�) = 5:

The generator matrix of the lattice is given by

�1 �(�1)

�2 �(�2)
=

1� i� (1 + i) + i�

(1� i) + � �i� �

=
0:44721� 0:27639i 0:44721 + 0:72360i

0:72360� 0:44721i �0:27639� 0:44721i

The lattice generator matrix is fully complex as opposed to the one
obtained with the method of Section VI-B using K = QQQ(�) and � =
2 � �. Its minimum product distance is

dp;min(�
c) =

1p
5
:

2) Dimension 3: In Example 6.1 we found a purely imaginary gen-
erator matrix for dimension 3, using K = QQQ(�); � = �7 + ��17 . We
have

(7)OK = 3 = (2� �)3

so that NK=QQQ( ) = 7. The prime above 7 in L = QQQ(i; �) is (2� �)
and has norm 7. So if we consider (2 � �) as an element of L, it has
norm 49. No other ideal with this norm can be found hence we can only
find the ZZZ[i]n-lattice with a purely imaginary matrix of Example 6.1.

3) Dimension 4: Let � = �15 + ��115 and L = QQQ(�; i). Consider
the ideal (�) = ((1� 3i) + i�2) of OL. A ZZZ[i]-basis of (�) is given
by f��ig3i=0. Using the change of basis given by the following matrix:

1 0 0 0

0 1 0 0

0 �3 0 1

�1 �3 1 1

TABLE III
COMPARISON OF dp;min FOR CONSTRUCTIONS IN SECTION VI-A and VI-C

one gets a new ZZZ[i]-basis f�ig4i=1 = f(1�3i)+i�2; (1 � 3i)�+i�3;
�i + (�3 + 4i)� + (1� i)�3; (�1 + i) � 3� + �2 + �3g. Then by
straightforward computation we find

1

15
TrL=QQQ(�i ��j) = �ij ; i; j = 1; 2; 3; 4:

Using (17) and the basis f�ig4i=1 we find the lattice generator matrix
shown at the bottom of the page. Its minimum product distance is

dp;min(�
c) =

1p
1125

:

VII. PERFORMANCE OF COMPLEX LATTICES

Performance of ideal ZZZ[i]-lattices depends, as in the real case, on
both diversity (which is already maximal) and minimum product dis-
tance, which has to be maximized.
As shown in Theorem 5.1, theminimumproduct distance of complex

lattices depends on a relative discriminant dL=QQQ(i). For example, some
numerical values of the dp;min for constructions given in the previous
section are available in Table III.
In order to compute in general a relative discriminant, we use a tran-

sitivity formula [20]

dL=QQQ = dnQQQ(i)=QQQNQQQ(i)=QQQ dL=QQQ(i) (34)

where n is the degree of L over QQQ(i). Since NQQQ(i)=QQQ(dL=QQQ(i)) =
jdL=QQQ(i)j2, we get

dL=QQQ(i) = 2�n jdL=QQQj (35)

where L is a totally complex number field.
We already noticed in Corollary 5.1 that when dK is odd, then the

relative discriminant is nothing else than dK itself, i.e., dL=QQQ(i) = dK .
As in Section IV, we can use Odlyzko’s bounds to give a lower

bound on totally complex number field discriminants. Knowing that
jdL=QQQj1=2n � C2n, we consequently get a bound on the relative dis-
criminant

jdL=QQQ(i)j1=n � C2n=2: (36)

In Fig. 4, we compare Odlyzko’s bound for jdL=QQQ(i)j1=n to known
values of dK and relative discriminants obtained from cyclotomic con-
structions. One easily notices that the bound for jdL=QQQ(i)j1=n grows
very slowly. This can be explained by the fact that discriminants of to-
tally complex number fields are much smaller than the ones of totally
real number fields. The large gap from the bound can be explained by

0:2582� 0:3122i 0:3455� 0:4178i �0:4178 + 0:5051i �0:2136 + 0:2582i

0:2582 + 0:0873i 0:4718 + 0:1596i 0:1596 + 0:054i 0:7633 + 0:2582i

0:2582 + 0:2136i �0:5051� 0:4178i �0:4178� 0:3455i 0:3122 + 0:2582i

0:2582� 0:7633i �0:054 + 0:1596i 0:1596� 0:4718i �0:0873 + 0:2582i

:
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Fig. 4. Comparison of discriminants among the known constructions and Odlyzko’s bounds.

the fact that the family of number fields L necessary to produce com-
plex ideal lattices is limited to CM fields which have a high discrimi-
nant. On the other hand, Odlyzko’s bound is valid for arbitrary number
fields.

VIII. CONCLUSION

Previous work has exhibited several families of ZZZn-lattices built
from totally real algebraic number fields. This correspondence has
shown that the known constructions are indeed good enough, in the
sense that no significant coding gain can be further achieved. The
case of complex lattices was then considered and some full-diversity
ZZZ[i]n-lattices constructions were compared to Odlyzko’s bound. In
this case, the lower bound is not tight due to the important require-
ments imposed by the structure of ideal lattices which, nevertheless,
enables to easily evaluate their complex minimum product distance.

As a final remark, we suggest that the use of totally real lattices
should be preferred due to their greater design flexibility although it
may require the use of I/Q component interleaving to split the complex
fading coefficients.
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