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Computing the Voronoi Cell of a Lattice:
The Diamond-Cutting Algorithm

Emanuele Viterbo and Ezio Bigliéri, Fellow, IEEE

Abstract—Numerical evaluation of some typical lattice param-
eters such as density, thickness, dimensionless second moment
(quantizing constant), etc., are considered. Computational com-
plexity grows exponentially with the dimension of the lattices and
all known results rely on the very regular structure of some
of these. In this paper we present a general algorithm which
enables computation of all the common parameters for any given
lattice by means of a complete description of its Voronoi cell.
Using this algorithm, we have computed previously unknown
values of the quantizing constants of some particularly interesting
lattices. These results can be used to evaluate the performance
of lattice quantizers and lattice signal constellations for the
Gaussian channel. As an application we evaluate a tight upper
bound for the error probability of a lattice constellation used for
transmission over the additive white Gaussian noise channel.

Index Terms— Lattice, Voronoi region, computational geome-
try, packing, covering, quantizing constant, lattice constellation,
error probability, quantization.

1. INTRODUCTION

HE COMPLETE geometric structure of a lattice can

be found from the description of its Voronoi cell. The
knowledge of the Voronoi cell solves at once the prob-
lem. of the computation of relevant lattice parameters such
as packing radius, covering radius, kissing number, center
density, thickness, normalized second moment (quantizing
constant). The error probability of a lattice constellation,
used for transmission over the additive white Gaussian noise
channel, can also be effectively evaluated by using some of
the above parameters.

The Voronoi cell of certain highly symmetric lattices can

. be determined analytically. According to [1] the Voronoi
cell is completely known for the following lattices: A,,, A},
D,,D;,(n > 2) Eg¢,E§,E7,E},Eg =2 Eg, Craig’s lattice
A?), and the 24-dimensional Leech lattice.! No result is
available for an arbitrary lattice.

In this paper we propose an algorithm which computes the
Voronoi cell of a full-rank arbitrary lattice. The exact know!-
edge of the Voronoi cell (i.e., knowledge of the coordinates of
its vertices, edges, etc.) enables one to compute all the lattice
parameters within any degree of accuracy. Theoretically, this
algorithm evaluates a closed-form solution to all the above
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!'The normalized second moment is computed by Monte Carlo integration
using some efficient decoding algorithm of the Leech lattice.

lattice problems. In practice, due to finite-precision arithmetics,
round-off errors limit the accuracy of the calculations, but
comparison with known (closed-form) results indicates that
they do not propagate. Hence, the accuracy of the results can
be set a priori within the range of the computer floating-point
precision.

Using this algorithm we have computed some previously
unknown values (Table VI) of the quantizing constants for
some particularly interesting lattices. As these lattices do not
improve upon the best known lattice quantizers, the conjecture
about the optimal lattice quantizers being the duals of the
densest lattices [12], [1, pﬁ 62], is not disproved.

Due to the exponentially increasing memory requirements
we were able to apply the algorithm up to dimensions between
6 and 8 depending on the lattice type. Many of the lattices
used in practice as signal constellations are low-dimensional:
consequently, they are within the reach of our algorithm.

In the following we assume the reader is familiar with the
basic definitions in lattice theory and in most cases we adopt
the notations of [1]. Section I reviews the basic geometric
definitions needed to describe the diamond-cutting algorithm
(Section III). The name of this algorithm comes from its
resemblance to the procedure for cutting a raw diamond into
a brilliant. In Section IV we show how to compute all the
lattice parameters from the Voronoi cell. Finally, Section V
summarizes all the results obtained with the diamond-cutting
algorithm. Of special interest is Table VI, where we find the
previously unknown quantizing constants for the two locally
optimal lattice coverings in R* found by Dickson [16] and for
a five-dimensional extreme lattice covering, which belongs to
the class introduced by Barnes and Trenerry in [17].

II. POLYTOPES AND VORONOI REGIONS

In the following we denote by R? the d-dimensional
Euclidean space, while p = (pi1,pe,---,pq) represents a
vector or a point of R%. Let [|p|| denote the Euclidean norm of
p and {p,q) the standard dot product between vectors p and ¢
in R?. With the notation ap (o a real number) we indicate a
vector multiplied component-wise by a.

Definition 1: For0< k < d,ak-flatin R is the affine hull
(i.e., the set of linear combinations with coefficients adding up
to one) of k + 1 linearly independent points.

A 0-flat is a poinz, a 1-flat is called a line, a 2-flat is called a
plane, and a (d — 1)-flat, d > 3, is called a hyper-plane. There
is only one d-flat which corresponds to R and for convenience
we define the empty set as the (—1)-flat. Equivalently, a k-flat
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Fig. 1. Example of two-dimensional arrangement of four lines.

can be defined as the intersection of d — k hyper-planes whose
normal vectors are linearly independent. .

Definition 2: Given a finite set H of hyper-planes in R* we
call arrangement A( H) of H the dissection of R? in connected
pieces of various dimensions.

The two-dimensional arrangement of Fig. 1 has six inter-
section points, eight segments, eight half-lines, three bounded
regions, and eight unbounded regions. v

Definition 3: A (convex) polytope P is the bounded region
defined by the intersection of a finite number of closed half-
spaces. More specifically, we call P a k-polytope if it has
dimension k, that is, if k is the smallest integer number such
that P is contained in a k-flat.

In other words, we can say that a polytope is a bounded
region delimited by a finite number. of hyper-planes. The min-
imum number of hyper-planes needed to define a k-polytope
is k + 1, since this must be bounded. Any bounded region of
an arrangement is a polytope, thus it is possible to adapt to
polytopes the-algorithms designed for arrangements. _

Definition 4: For 0-< k < d, a k-face of P is the set of
points of P contained in a k-flat.

We generally speak of faces of P when £k is not specified.
The O-faces are called vertices of P, the 1-faces, edges of P,
and the (d— 1)-faces, facets of P. For convenience we identify
P with the d-face and the empty set with the (—1)-face.

To give a complete description of a polytope we must know
all the relations among its faces. For —1 < k < d—1 a k-face
f and a (k+1)-face g are incident upon each other if f belongs
to the boundary of g; in this case, f is called a subface of g and
ga superface of f. The d-face represents the whole polytope
and is the only superface of all the facets. The (—1)-face has
no subfaces and is the only subface of all the vertices.

Definition 5: Let f be a k-face (k > 1) of a polytope and
let fi, fo, -+, fm(m > 2) be the subfaces of f. The point

p(f) = %Zp(ﬂ) )

is called the centroid of f. When f is a vertex, then p(f) = f.
The centroid lies always inside f since f is convex. It

is important to remark that, in general, this point does not .

coincide with barycenter (or center of gravity) of the face.?
The centroid is used to evaluate the Voronoi region while the
barycenter is needed when computing its volume and second-
order moment. The relation between these two points will be
given in (8). ‘

2We verified that for all the lattices in Tables I-VI except for Diy,, Digy,

BTy, Igy, and Aéz) the centroid and the barycenter of all the k-faces of the
Voronoi cell coincide.”

€3 €2
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Fig. 2. Example of the incidence graph of the triangle P.

v(v)

AUXILIARY
INFORMATION

v(-1)

Fig. 3. Data structure of a node. Each node contains the auxiliary informa-
tion and the pointers to the heads of the superface and subface lists. Each
element of the list contains a pointer to a node and a pointer to ‘the next
element in the list.

The incidence graph I(P) of P is an undirected graph
defined as follows: for each k-face f (k = —1,0,1,---,d)
of P, I(P) has a node v(f); if f and ¢ are incident upon -
each other then »(f) and v(g) are connected by an arc..
The incidence graph of a polytope is completed by a node
representing the whole Buclidean space R? which is connected
to the d-face (Fig. 2). .

In the implementation of the diamond-cutting algorithm,
each node v(f) of an incidence graph is a record that con- -
tains some auxiliary information about the face and two lists.
containing pointers to the subfaces and the superfaces of f
(Fig. 3). The auxiliary information stored in a node consists
of the coordinates of the centroid p(f) of f, a component
capable of reflecting one of seven colors, the volume of £, the
second-order moment of f, the square distance of f from the
origin, and a node number.

After these geometric preliminaries we come to the precise
definition of Voronoi regions.

Definition 6: Given a discrete set of points & in R? the
Voronoi region of a point 8; € ¥ is the closed convex set

V(s;) ={z € R : |z — 5] < {lz — ;]| for all 7 # 5}.

In the following we consider sets of points which form
lattices. The Voronoi regions of all the lattice points are
congruent due to the translation -symmetry of the lattice.
Hence, we can talk of the Voronoi cell (or region)® V of a

30Other names from various fields for the Voronoi cell are- Dirichlet

cell, Brillouin zone, Wigner-Seitz cell, Wirk—ungsbereich (domain of action),
Wabenzelle (honeycomb), nearest neighbor region, decision region.
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lattice A as the Voronoi region around the origin
- v= {z € R*: ||z|| < ||z — ul| for all nonzero u € A}.

If w # 0 € A, then the equation ||z|| = ||z — u|| defines a
hyper-plane halfway between 0 and u ({z, u) = ||u||*/2), and
llz|l < ||z—u]| a half-space. V is an intersection of half-spaces,
so it could be a polytope (we must still check if it is bounded).
The points p of the lattice for which the hyper-plane between
0 and p contains a facet of V are called the Voronoi-relevant
points and the hyper-planes, Voronoi-relevant hyper-planes. If
p is Voronoi-relevant also —p is Voronoi-relevant, so V is
symmetric under central (sign) inversion. We say that V is an
0-symmetric convex body: Since V cannot contain lattice points
# 0, we are under the hypothesis of Minkowski’s fundamental
theorem [2, p. 25], which implies that V is bounded. Thus we
can conclude that V is a 0-symmetric polytope.

Referring to [6] and [7] we also say that V is a parallelo-
hedron, i.e., a prototile of a lattice tiling. The Voronoi cell V
is a space-filling parallelohedron with the additional property
of being face-to-face, meaning that the intersection of any two
distinct tiles is either empty or it is a common k-face for some
k = 0,1,---,d — 1. Minkowski proved that the maximum
number of facets of a d-parallelohedron is 2(2¢ — 1) [5, pp.
88-96 and pp. 164-169]. ,

Finding the Voronoi region of a lattice is equivalent to
determining the Voronoi-relevant points and constructing the
polytope bounded by the Voronoi relevant hyper-planes. The
Voronoi-relevant points can be found by searching among all
the points of the lattice which lie within a sufficiently large
bounded region around the origin.

II. THE DIAMOND-CUTTING ALGORITHM

This algorithm computes the incidence graph of the Voronoi
- region V of a lattice. From the incidence graph it is possible
to extract all the desired lattice parameters as we shall see in
the following section. Let us consider a lattice A defined by an
arbitrary basis {v1,--,v4}. Given a point p we will denote
with h(p) the hyper-plane passing through the point p and
normal to the vector p. The distance of h(p) from the origin
is equal to ||p||. We can now come to the formal description
of the algorithm. ' '

Preparation Given the lattice basis {v1,---,v4} construct
the parallelotope Q defined by the hyper-
planes

h(:&:%’vi), fori=1,...,d.

Q contains the Voronoi cell. The correspond-
ing incidence graph I(Q) has 3% nodes. Fi-
nally, set V := Q.

Cutting Consider all hyper-planes
A A
h(‘gl"ul + 72'02 + .- :\Q—Jﬂd)

with )\; integers, which cut V' and update
I(V) by introducing the nodes corresponding
to the new faces and erasing the ones cor-
responding to the faces which are left out.
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For this operation we have adapted Edels-

brunner’s algorithm for the incrementation of
- arrangements [3].

Compute "vol (V), the - volume of V. If

vol (V) > det(A)'/? go on cutting, else end

the algorithm and output the incidence graph

Ww). ’ '

We now describe each step of this algorithm in greater
detail. :

Finish

A. Preparation

We first construct the incidence graph of a hypercube with
edge length 2 centered at the origin. The p(f) vectors of all the
k-faces (k = 0,1,---,d) of this hypercube have components
in the set {—1, 0, +1}. In particular, vertices only have —1 or
+1 components, edges have one component equal to 0 and the
remaining equal to —1 or 41, and k-faces have k& components
equal to 0 and d — k equal to ~1 or +1. It is now simple
to see that a d-dimensional hypercube has 24~%(f) k-faces
(k = 0,1,---d) for a total of 3¢ faces.

In order to identify the subfaces of a given k-face f it is
enough to replace each of the 0 components, in turn, with —1
and +1. In this way we find 2k subfaces. For the superfaces
of f we replace each of the nonzero components, in turn, with
a 0, so that we find exactly d — k superfaces. For convenience,
these component vectors are considered as base three: (digits
0, 1, 2) numbers and then converted to decimal representation.
The number is then used as the node number which uniquely
identifies a k-face of Q. An example of this is shown in Figs. 4
and 5.

The parallelotope Q, which is only a slanted and stretched
hypercube, has the same incidence graph, except for the p(f)
vectors. We only need to calculate the vertices coordinates of
the parallelotope then, using (1), we recursively obtain all the
p(f) vectors of all the faces. The vertices 2™ m=1,...,2¢
of Q are found at the intersection of d hyper-planes

: A(m)
<’01,z(m)> = ——(12—”’01}]2
AT
(m _ 2 2
(v2,2™) = 9 [[ o2l ©)
(m)
[ (va,z™) = = —|va|?

where )\gm), i =1,---,d take on the values —1 and +1 of the
corresponding components of the mth vertex in the hypercube.
The solution of all these linear systems is found by inverting
once for all the generator matrix of the lattice and multiplying
it by the vector of the known terms.

B. Cutting

The raw diamond is now ready to be cut. Given a hyper-
plane h(p) cutting V (i.e., such that h(p)(\V # 0) we
construct the incidence graph of the two parts of the dissected
polytope: the main body and the chip. The main body will
always contain the origin since the cutting plane does not
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7 4
6 3
8 5

Fig. 4. Incidence graph of a square (“+” stands for +1 and “—” for —1).
25 7 16
19 1 10
22 4 13
\&3
24 r-"' 15
18 < 9
2 &V 12
26 8 17
20 -
2 11
23 5 14
Fig. 5. Node numbers of a cube.

include the origin. This operation is performed by using the
color conventions and procedures 7.3-§ degeribed in [3, ch.
7]. Next, the incidence graph is purged of all the nodes
representing the chip to obtain the new Z(V).

A key operation in this procedure is to determine whether a
given point x lays on, above, or below the cutting hyper-plane.
In particular we have

{p,z) < |lp|> =« is on the side of the main body
p.2)=lpl> = €hlp)
(p,z) > ||p|* « is on the side of the chip. 3)

This operation uses a fixed tolerance value (e.g., 107%), given
as an input, to resolve the three cases.

Another critical procedure is the search for the coordinates
of the new vertices. These are given by the intersections
between h(p) and the edges of V. A bisection method is used.
Starting - from a vertex above and a vertex below h(p) we
compute the midpoint until such a point is found to lie on -
h(p). In this case, the tolerance should be further reduced
in order to overcome some ill-conditioned cases which may
be encountered when the incidence angle of the edge with
the hyper-plane is very small. When this occurs, the midpoint
may be very close to the hyper-plane but still quite far from
the true intersection point.

C. Finish

Each cut reduces the volume of the polytope. When this is
equal to det (A)'/2, the volume of the fundamental parallelo-
tope, we have obtained the Voronoi fegion of the lattice. In
the practical algorithm, the volume is calculated after all the
cuts are performed, so the above condition is used to check
the consistency of the initial choice of the cutting hyper-planes
and the final accuracy of the results.

The way to select all the possible cutting hyper-planes is to -
consider all the lattice points within a given radius C from the
origin by using the algorithm proposed in [4]. A safe choice
for such radius would be twice the distance from the origin of
the furthest vertex of the initial parallelotope Q. In general, a
less conservative choice will work especially when the lattice
basis is not reduced [5], [6]. If the covering radius is already
known, then this is also a safe value for C/2. Whenever C is
too small the volume of V will not reach the value det (A)Y/?,
meaning that C should be increased. ' :

IV. CALCULATING THE LATTICE PARAMETERS

We now see how to evaluate all the lattice parametersy once .
the incidence graph Z()) of the Voronoi cell is found.

A. Packing

To calculate the packing radius p we must. find the facet
closest to the origin. For this it is sufficient to scan the auxiliary
information of the nodes pointed by the subface list of the node
v(V). At the same time the kissing number T is found (i.e.,

‘the number of facets at the packing radius distance from the

origin).

The packing density A is the ratio between the volume of
the greatest sphere centered at the origin and contained in V
and the volume of V. This sphere has its radius equal to the
packing radius. The center density § is equal to the packing
density divided by the volume of the unit sphere.

B. Covering

To calculate the covering radius R we must find the vertex
of ¥V with maximum distance from the origin. So it is sufficient
to scan the nodes pointed by the superface list of the node
v(-1).

The thickness © of a covering of A is the ratio between the
smallest sphere centered at the origin and containing )} and the
volume of V. This sphere has its radius equal to the covering
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radius. The normalized thickness § is equal to the thickness
divided by the volume of the unit sphere.

C. Quantization Parameters

The volume of V is also given by

vol (V) = / dz
Y, .

and is equal to the volume of the fundamental parallelotope
of A. The second-order moment of V about 0 is defined by

V) = /V 2| da

In [1, ch, 21], vol (V) and U(V) are given in terms of the
volume Vy_1 (i) and of the second-order moment of the facets
Ug—1(t) about the foot of the perpendicular from 0, where ¢
runs over the set of facets of V. Let hgd_l) be the distance of
the facets of V from the origin. Then

@

(&)

(d-1)

vol V) = Z s y

7

Va-1(%)

(d-1

)
vm =Y %';5 [0V, (6) + Uaa (3)].

These equations cannot be used in our algorithm. In fact, the
recursive generalization of these equations, which yield the
volume and the second-order moment of a k-face in terms
of volume and second-order moment of its subfaces, requires
an additional hypothesis which is not satisfied in general for
arbitrary lattices. In order to clarify this problem, let cgk) be
the orthogonal projection of the origin 0 on the sth k-face for
kE=2-..,d— 1. We have hgd'l) = Hcgd_l)ﬂ, where 7 runs
over the set of the facets (subfaces) of V. If we consider the
mth k-face, then we define

k-1 k k—1
B0 (m) = e - )|
where ¢ runs over the set of all the subfaces of the mth k-
face. Due to the orthogonality conditions we have the simple

recursion

B (m)? = (e — (e
The general recursions for k = 1,---,d, are

(k=1)(,
=Y @LT(__)VH(Z')

[

Vi(m)

h(k— )(m)

Ustm) =2 =0

[h(k 1)(m)sz—1(i) + Uk—l(i)]

()

with the initial conditions Vj (vertices) = 1 and U (vertices)
= 0.

For the validity of these equations it is crucial to assume that
the projections ¥ of the origin on all the faces falls within
them. This is certainly true only for the facets (k = d — 1) of
V which belong to the Voronoi-relevant hyper-planes and are
cut by the normal vector connecting 0 to the corresponding
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Voronoi-relevant point. But in general it is not true for an
arbitrary lattice.

We have verified that for all the lattices considered in
Section V (6) give the correct results because these lattices
are in a sense “special” (highly symmetric). As an example we
give the generator matrix of an “arbitrary” lattice for which
(6) cannot be applied

21 0 0 0
11 22 0 0O
0 3 23 0
10 10 10 13

Equations that may be used to calculate recursively vol (V)
and U (V) for an arbitrary lattice are derived in the following.

Theorem: With the above notations, let g,, be the mth
k-face with barycenter ¢(g,,), fi one of its subfaces
with barycenter ¢(f;). Setting Vy(vertices) = -1 and
Uy (vertices) = 0, for k = 2,---d we have

o B
Vem) = 30 v

—(H—(Z@[b(k D(m)?Vim1(8) + U (8)] (1)

U k (m) =
where az(»k_l)(m) is the distance of ¢(g,») from the ith (k—1)-
face f;, bgkﬂl)(m) is the distance between ¢(g.,) and ¢(f;),
Uk(m) is the second-order moment of the g, about its
barycenter g(g.,), and Ui_1(¢) is the second-order moment
of f; about its barycenter g(f;). '
Proof: In this case we always have ¢(gm) € gm and
the face g,, can be decomposed into generalized pyramids
of vertex ¢(gm) and basis f;. The proof then follows from
elementary calculus by slicing each generalized pyramid into
slabs parallel to f;. O
For the use of (7) in the DCA we need to relate the centroid
p(f) to the barycenter ¢(f) of a face f. This is accomplished
recursively using the following equation:

dq(fi) + p(gm
Q(gm = m)z d)+1 )Vk(Pi)7 k=2,---,d
®
where V(P ) is the volume of the generalized pyramid of

vertex p(gm) and base f;.*

The dimensionless second moment or quantizing constant
of a lattice A represents the mean-squared quantization errors
per point assuming a uniform input distribution to a lattice
quantizer

1 UW)
GA)=GV)= =-——5-

( ) (V) d VOl (V)1+2/d
This value is independent of the scale and the dimension of
the space and depends only on the shape of V. For each
dimension d, it is lower-bounded by the quantizing constant

4 An alternative approach, suggested by one of the reviewers, is the insertion
into (6) of a “—” sign for the terms where the projection of the origin lies
outside the face.
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of a d-dimensional sphere with the same volume of V and
radius 7.
r(¢+1)7°
Gy >
(d+2)x

We also recall that G(A) is the figure of merit for shaping,
when a Voronoi cell is used as a constellation bounding region

[81.

" D. Error Probability

An upper bound to the error probability P(e) of a finite
constellation carved from a lattice and used for transmission
over the additive white Gaussian noise channel can be derived
as follows. We assume that all the points are transmitted with
equal probability and the lattice constellation is sufficiently
large to neglect edge effects. Due to the geometric uniformity
of the lattice [9] it is enough to consider the probability of
decoding a point different from 0, when 0 is transmitted. Let
be the received vector when 0 is transmitted. The components
of z are Gaussian distributed random variables, with zero mean
and variance o2. The exact value of P(e) is then formally
written as

P(e) = Pz V) = ﬁ /V exp (—|[2]12/20%) da.

Now let p; be the Voronoi-relevant points around 0. Using the
union bound with all the Voronoi-relevant hyper-planes only,
we obtain the upper bound [1, p. 70], [11]

P(e) < P(U {{z,p;) > ||Pz”2/2}>

<ZP($pl>||Pl|| /2) = Z f“(“f’f”f)
©

Bound (9) may be compared with another upper bound
given by

d p

Ple)< P(z&S,) =1 —P<§,%>/F(g) (10)

where S, is a d-dimensional sphere of radius p, the packing-

radius of the lattice, and
T
I(a,z) z/ t* et dt
0

is the incomplete gamma function.
A -well-known lower bound [10], is given by

d 73

Ple)> Plz ¢ Sn) =1 T(E’ T;)/F(g> an

where S, is a d-dimensional sphere with volume equal to
vol (V) and radius rg. '

TABLE 1
LATTICES Ap,

5 0 GO) | Na] M| No| Ns| Na| Ns| No | Ne] Total
75 | 0.288676 | 0.384900 | 0.080188 | 6 [ 2
A3 | 0176777 | 0.500000 | 0078746 | 4| 24| 12 ) 50
A, | 0.111803 | 0.643990 | 0.078020 | 30| 70| 60| 20 1180
As | 0.072170 | 1.125016 | 0.077648 | 62 | 180 | 210 | 120 | 30 602
A | 0.047246 | 1.004147 | 0.077466 | 126 | 434 | 630 | 490 | 2i0| 42 1932
A7 | 0.031250 | 4.000000 | 0.077396 | 254 | 1008 | 1736 | 1680 | 080 | 336 | 56 6050
7 | 0.020833 | 8.128842 | 0.077391 | 510 | 2286 | 4536 | 5208 | 9780 | 1764 | 504 | 72 | 18660

vol(V) | Facet profile (%, T) Vertices profile (R-

Az | 1.732043 | 0499999 0.666664 [}

As | 1.999991 | 0.499999 12 0.749997 3

0.999999 6

Ag | 2236056 | 0.499999 20 | 0.799997 0

1.199999 2

A5 | 2449449 | 0.499999 30| 0.833330 2

1.333325 30

1.499999 20

As | 2645751 | 0.506000 42 | 0.857143 4

1.428571 42

1.714286 7

A7 | 2.828427 | 0.500000 56| 0.875000 186 |

1.500000 56

1.875000 112

2.000000 70

Ag | 3.000000 | 0.500600 72 | 0.888889 18

. 1.555556 72

2.000000 168

2.222222 . 252

V. RESULTS

In this section we show some of the results obtained with
the Diamond-Cutting Algorithm. The algorithm was imple-
mented in standard C and was run on different computers:
PC 486, VAX 6000-530, and different UNIX workstations.
The best performance in terms of speed was obtained on the
workstations. v :

The major difficulties arise when dlmensmn increases. In
fact, the amount of memory required may become very high.
Using double-precision arithmetic it was estimated that the
system needs to allocate, on average, 170 bytes for each node
of the incidence graph. The total memory needed to store the
final Voronoi cell can be estimated by looking at the total
number of nodes (last column of tables). We specify “final”
because during the cutting step the incidence graph of the chip
as well as that of the main body must be created. For example,
in the case of F7 the total memory occupied by -the Voronoi
cell was about 9 MB, while during the cutting operation the
peak size of the allocated memory was about 17 MB.

The program receives as input the space dimension, the
full-rank lattice generator matrix, and the tolerance parameter
which is used to resolve the position of a point with respect to
a hyper-plane. This last parameter must be consistent with
the accuracy to which the generator matrix is given and
approximately determines the final accuracy of the computed
parameters. The values in Tables I-VI were obtained with a
tolerance value of 1075, We report the results with six decimal
digits to show the numerical stability of the algorithm with
respect to this parameter.

In all cases where the lattices are defined by their Gram
matrix A, Cholesky decomposition was applied to A4, giving
A = LLT, with L lower triangular. The matrix L can then
be used as a generator matrix of the lattice. If the lattices are
defined by a nonfull-rank generator matrix, the Gram ‘matrix
is calculated first.

Each lattice appears in two tables. The first one shows all
the lattice parameters which are independent of the particular
scaling factor, as well as the number Ny of k-faces of the
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TABLE II TABLE VI
DuaL LATTICES Aj, SOME NEW VALUES
_ 25 0380 GV) | Mo| M| Na] Na| Na] Ns| Total 5 7 SO [ W M [ M M W [Toul]
A7 10288676 ] 0.384900 | 0.080188] 61 6 12 Cs | 0.165779 | 0386206 | 0.078670 | 24| 36| 14 [
: 0.162380 [ 0.340385 | 0.078543 | 241 361 14 74 Diag | 0.113027 | 0.300822 | 0.076993 | 120 | 240 | 150 | 30 540
0089444 | 0.357770 | 0.077560 | 120 240] 1501 30 540 Diyy | 0076078 | 0.381728 | 0.077465 | 120 | 240 | 150 | 30 540
A7 [ 0048526 [ 0.403566 | 0076922 | 720 | 1800 [ 1660 | 540 62 [ 4682 | BT, | 0.035124 | 0.423672 | 0.076278 | 720 | 1800 | 1560 | 540 | 62 687 |
A; | 0.076033 | 0493608 | 0.076490 | 5040 | 15120 | 16800 | 8400 | 1806 | 126 | 47292 TooTo01g08 | 13m0t [ oeamd| | | e | 51112 5]
- ”"3021003 (F]ﬂ:;; g;‘;ﬁe(p’,fg Xeégg:%iroﬁle (ﬁ’g Tsss | 0.018042 | 0.846806 | 0.082839 | 114 | 468 | 600 | 288 | 44 1514
AR 5 - ~ 0
A3 [ 3.999995 | 0.750000 5| 1200907 24 o] Fecet profle (p,, 1) { Vertices profle (J7)
0.999991 6 0.707107 4 | 1.060660 16
A7 | 11.18038 [ 1.000012 0| 2.000000 120 1000000 2
- 1490904 20 Diay | 9311157 | 0.499998
A3 | 3600000 | 1.250000 12 | 2.916667 720 - 04,(?;365 ‘2 0?52%1653(2 ?,8
2.000000 30 0.348671 6 .
2.250000 20 M7 1 5 138604 1
D, .138604 X 246 K
Ag | 129.6418 | 1.500000 14 | 4.000000 5040 4 | 5138 B 00‘}?751980 : 11430-{;553:: gg
2.500000 42 0.897196 12
3.000000 70 1.000956 P
1271960 6
BT | 170.8081 | 2.047607 2 1.375344 60
2.638084 10 | 5543807 720
TABLE III 3.047608 10
LATTICES Dy, *3.547607 20
4776172 20
5 7 C) I W] Ml M| M| Nal Wa] Ne] N:] Totl Tosa | 9707850 | 0.400907 6| 2.833313 )
D; [ 0-250000 | 0.500000 | 0083333 4| 4 3 0.999999 6
D3 | 0.176777 | 0.500000 | 0.078746 | 14 24 12 50 Issy | 9.797875 | 0.499998 6| 1.999988 48
Dy | 0.125000 | 0.500000 | 0.076603 | 24 961 96 24 240 0.999999 18 | 2.333330 66
D, [ 0.088388 | 0.873464 | 0.075786 | 42| 240 | 400| 240 40 2002 1499996 20
Dy | 0062500 | 1.687501 | 0.075591 | 76 | 576 | 1200 | 1120] 480 60 312
D7 | 0.044194 | 3.544893 | 0.075686 | 142 | 1344 | 3360 | 3920 | 2520 | 840 84 12219
Dg | 0.031250 | 8.000000 | 0.075914 | 272 | 3072 | 8960 | 12544 [ 10080 | 4928 | 1344 | 112 | 41312
vol(V) | Facet profile (g2, 7) | Vertices profile (&: TABLE VII
.__g: e 13 4-30(‘)’5’&‘(’]‘(’) 2 EXACT VALUES OF CENTER DENSITY, NORMALIZED THICKNESS, AND
’ ’ 4.000000 s QUANTIZING CONSTANT FOR THE LATTICES USED FOR COMPARISON
D, | 3200001 | 2.000000 24 | 4.000000 P (a is the integer part of (n + 1)/2 and the values of J,,
D] 6400000} 2000000 407 coomoo0 %0 are given in [1, p. 473). The first values of J, are 1/12, 5/18,
Ds | 127.9999 | 2.060000 50 4000000 12 ] 19/32, 389/375, 1045/648, 78077/33614 forn = 1,---,7)
6.000000 64 i
Dy | 256.0000 | 2.000000 84 | 4.000000 u] A 8 4 G
: 7.000000 198 z" 27 w13 1/12
Dg [ 512.00600 | 2.000000 112 [ 4.000000 16 j _ _ a7 -
8.000000 256 Ay (122) | 272+ D)7V e G (i‘n’ + T )
. ~/2 +2)\"/? I
\ A2 | sieE VAT (3 AT
TABLE IV Di(n23)| o2 1/2(n=3) = (& + =)
DuaL LArTICES D} n?/22-(41) (n > 4)
3 [ [€) Nl M Na Na| Na] Ns| Ne| Total D;(n>5) 9-(n~1) n™2 (n even) 5y = 0.0756254 (n = 5)
D3 | 0250000 | 0500000 | 0083333 | 4| 4 8 1y jgan-t so2t? _ _
D 06T | O ST | L 76 (n —172/2207 (n odd) | sy~ = 00761203 (n = 6)
D4 [0.125000 | 0500000 | 0076603 | 24| 96| 96| 24 740 4@ - = 0.05390492 | LA — 0.64479070 3503 _ — 0.07505723
D: | 0.062500 | 0.474610 | 0075625 | 240 | 720 | 720 | 280 42 2002 s R 7 Tonapvr = 007505
D3 [ 0.031250 | 0.843750 | 0075120 | 160 | 1440 | 2880 | 2160 | 636 | 76 7352 I 183 9 37/ S 0.0743467
D | 0.015625 | 0.966967 | 0.074859 | 2340 | 10080 | 17920 | 15120 | 6328 | 1428 | 147 | 53258 s 183 weare = 007
vol(V) { Facet profile (p?, 7) | Vertices profile {R*} E; 3-5/2 28.3-72 M=04O742437
D5 | 2000000 | 0500000 4 [ 1.000000 4 204120
D} | X005 ['0.749952 S TT3amoT % By 1/16 g7/2 .94 i3 = 0.0732306
Dj 18.000000 LOlOOOOO 24 | 2.000000 24 E; 37/2.9-10 7712 9-10 ZAM=0A0731165
D% 16.00000 | 1.000000 10 | 2.250001 70 | 322550
1249999 32
Dg | 32.00000 | 1.000000 12 | 3.000000 160
1500000 64
% | 63.99999 | 1.000000 14 | 3.250000 2240 . . .
’ 1750000 128 the determinant of the generator matrix of the lattice to check
the accuracy of the computations. The facets profile gives the
TABLE V number of facets for each square distance. Here we find the
OTHER LATTICES squared packmg rad1us' and the kissing number (in boldface).
The vertices profile gives the number of vertices for each
[ [ G(V) No N Ny N3 Ny ] Ns [ Ne| Total | ; ”
A [ 0.053005 | 0.644791 | 0.075057 | 708 | 4368 | 6944 | 4452 | 1176 | 98 17836 square distance and here we find the square covering radius
3 il bttt Mot ]
Es_| 0072169 _}Mﬁiﬂﬂﬂ;_ﬂ_ 72 5868 H
E; ] 0.064150 | 0513201 | 0.074244 | 720 | 6480 | T0800 | 6480 | 1566 | 126 26177 | (in boldface).
E,_| 0.062500 | 2.922836 | 0.073231 | 632 E 16128 | 20160 | 10080 | 2016 | 126 | 53930 . :
£7 | 0.045669 | 0.886223 0.07326 576 | 10680 | 40320 | 50400 [ 23688 | 4284 | 182 | 129530 Flnally’ Table VII glVeS the exact Values Of 67 0’ and G for
vol(V) | Facet profile (4", 7) | Vertices profile (?) | the lattices used for testing the accuracy of the algorithm.
A7 13520261 | 0.990999 42 | 2.000001 336 . . .
¢ 1500000 56 | nossT1s 462 Figs. 6-8 show the bounds (9)-(11) for different six-
Es 1.732037 | 0.499998 72 | 1.333333 54 1 1 3 1
A e d1men§10na1 lattltfes. Cl.lrves of P(e) are plotted as a function
0500000 72 of a signal-to-noise ratio defined as
By 16.00000 | 1.000000 126 | 1.750000 576
3.000000 56 i
E7 0.707107 | 0.375000 56 0.875000 576
’ 0500000 126 R/ vol (V)

Voronoi cell. The second one gives the parameters which
depend on the scaling factor but are still independent of the

lattice basis. The column with vol (V) can be compared with

SNRgp = IQlog 152
G(A) decreases from Zg, to Ag, to Eg, and to E, which
indicates that the shape of the Voronoi cell becomes more and
more spherical. This is reflected in a smaller gap between the
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1.0e+01.
Upp. Bound(9) ——
Ugp. Botiid 10) =+
1.0e+00 e e o ~.Dgﬁﬁdf xf a
""" ja'\.\\ \\
1.0e-01 £
1.0e-02 g 2
_ UL .
o 1.0e03 R
z N
2 X .
\ Y
1.0e-04 = = 5
‘\_ \\ \Y
1.0e-05 3 X %
I i \
1.0e-06 % X
. \ Y
1.0e-07, \.‘\ e
, b \
1.0e-08 E AN
0.0 2.0 40 6.0 8.0 100 120 140 16.0 180
SRN dB
Fig. 6. Upper and lower bounds to point error probability for Ze.
upper bound (10) and the lower bound (11). The improved 200 00
union bound (9) comes also very close to the lower bound. 6 2 0 0 0
We now list the generator or Gram matrices of the lattices D*- 0 0 2 . 00
which were tested with the diamond-cutting algorithm. The "

row vectors of the generator matrices form the lattice basis.
Sometimes a scaled version of the lattices was considered.

b O
o
-
=N
[l =]

A. Reference Lattices

. 2 . i Lo
For all the lattices in this subsection the Voronoi region is .Lattlce Aé ) (Gll'am matrix): This self-dual lattice is ob-
known, so the values of the parameters were used to test the tained by using Craig’s construction [1, p. 223]. Its normalized
accuracy of the program. » . second moment was computed by Coulson in [12].
Lattices A,, and A}, (Gram matrices) see [1, pp. 108-117]:

9 -1 0 --- 0 0 6 -4 1 0 0 1\
1 9 _1 0 0 -4 6 -4 1 0 -0
0 -1 2 0 0 A@). 1 —4 6 —4 1 0
At | . . : STl 0 1 -4 6 -4 1
; : : 6 0 1 -4 6 —4
00 .0 2 -1 i 0 0 1 -4 6
o 06 0 - -1 2 }
n -1 -1 ... -1 -1 :
1 n -1 -1 -1 Lattices £ and I/ (Gram matrices) see [1, pp. 125-127]
-1 =1 " pn 1 -1 and [14]:
Ar: . .
-1 -1 -1 n -1 2 -1 0 0 0 0
-1 -1 -1 .- -1 n _ -1 2 -1 0 0 0
‘ gl 0 -1 2 -1 0 -1
Lattices- D, and D} (Generator matrices) see [1, pp. 6 0 0 -1 2 —-1 0
117-120]: 10 0 0 -1 2 0
0 0 -1 6 0 2
-2.-2 0 --- 0 0 9 1 o0 0o 0 0
(2) *g _g 8 8 -1 2 -1 0 -1 0
D, “ ) o 0 -1 2 -1 0 -1
: 6 0 0 =1 2 0 .0
0 0 2 -2 0 0 -1 0 0 4/3 1
0 0 0 -~ 2 -2 0 0 -1 0 1 2
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1.0e+00 ¢ e
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1.0e-02

© 1.0e-03
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Fig. 7. Upper and lower bounds to point error probability for Ase.
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Uipp. Bound
Ui Bt

L) M

1.0e+00

i TR E]
Low. 1)y =

1.0e-01

. 1.0e-02
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. 1.0e-03

P(e)

1.0e-04

1.0e-05

1.0e-06

1.0e-07

1.0e-08

0.0 20 40 6.0

Fig. 8. Upper and lower bounds to point error probability for Eg.

8.0

SRN dB

100 12.0 16.0 180

Lattices F; (Generator matrix) F% (Gram matrix) see B. New Values

(1, pp. 124-125] and [15]:
2 0 0

E7:

OO = O 0O
O == O ON
—_ o NO Q@
= O N OO
o O oo 0O

|
—_0 O O N P

0
0
0
0
0
1
0
0
0
-1
2
-1
0
0

OO OO N
O OO NRFEO

The following lattices were considered because they exhibit
some interesting feature.

Lattice C5 (Gram matrix): This lattice was recently proven
to be the densest three-dimensional lattice which is geometri-
cally similar to its dual. It is also the thinnest geometrically
self-dual covering lattice [1, p. xix]

142 1 1
Cs: 1. 1+\/§ 1—\/§
1 1-v2 1+v2

Lattice Dis, and Diy (Gram matrices): These two
lattices, found by Dickson, together with A} are the three
locally optimal lattice coverings in R* [6]. The values of G(A),
reported in Table VI, answer the question posed in [1, p. 62]:
“What is G(A) for Dickson’s four-dimensional lattices (. ..),
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Fig. 9. Upper and lower bounds to point error probability for Ef.

or for the Barnes—Trennery lattices (...)?”

2 a -1 -1
. a 2 -1 -1
Diai | L1 1 9 1_4

-1 -1 1-a 2

3—y —1 -1
R T T | -1
Digw: | 7 2+28 -8B

-1 -1 -6 2+28

where o = (5 — v/13)/2 and 8 & 0.544, v & 0.499 are roots
of certain polynomials.

Lattices BT, (Gram matrices): This family of extreme
lattice coverings was given by Barnes and Trenerry in [17].
These lattices exhibit a normalized thickness which is slightly
larger than the one of the family of best known lattice
coverings Ay . This property prompted the question in [1, p.
62] and for n = 5 we find that these lattices do not improve
over the best known lattice quantizer.

For n > 5 the Gram matrix is given by

0 0 0 0
0 n—1 -1 -1
BT, |0 -1 n-1 -1
0 -1 -1 mn-1
n n—2 -2 -2
n— 2 n -2 -2
_|__n -2 -2
4 4In—2

-2

where I,,_5 is the (n - 2)-dimensional identity matrix and £,
is the positive root of

3(n—3)z? + (n® — 8n — 6)z — 4n(n+ 1) = 0.

Lattices Is5, and Iss; (Gram matrices): This is a pair of
five-dimensional iso-spectral lattices (i.e., inequivalent lattices
with the same theta series); see [1, p. xxi].

135,1: 1851,:

NN DN
oSN O NO
NONOO
> 00 O NN
O W= N D DN
NN O = N
NN O N~
[ =P e )
00 B DN D
OO»JA_»JkL\DL\D

VL CQNCLUSION

In this paper we have presented an algorithm which com-
putes the Voronoi cell of an arbitrary lattice. The knowledge of
the Voronoi cell enables one to exactly compute all the relevant
lattice parameters. Using the diamond-cutting algorithm we
have found some previously unknown values of the quantizing
constants of some important lattices.

Most of the computational problems related to lattices are
either known or conjectured to be NP-hard [1, p. 40, [18].
The principal limitation in the application of the DCA is the
exponentially increasing memory requirement. It is enough
to recall that the number of nodes required to describe the
fundamental parallelotope is already 3¢. The final number of
nodes for the Voronoi cell greatly varies between different
lattices in the same dimension. With 32-MB RAM we have
reached dimensions between 6 and 8 according to the lattice
type. Although we were not able to. compute the Voronoi
region of the Gosset lattice Fg due to the memory limitation
of our computer, we believe that this problem is within reach
of the proposed algorithm. The possibility of reducing the
memory requirements appears remote especially if we want
to preserve the geperality of the algorithm.
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