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Abstract—We consider Gaussian multiple-input multiple-output
(MIMO) channels with discrete input alphabets. We propose a non-
diagonal precoder based on the X-Codes in [1] to increase the mu-
tual information. The MIMO channel is transformed into a set
of parallel subchannels using singular value decomposition (SVD)
and X-Codes are then used to pair the subchannels. X-Codes are
fully characterized by the pairings and a 2� 2 real rotation matrix
for each pair (parameterized with a single angle). This precoding
structure enables us to express the total mutual information as a
sum of the mutual information of all the pairs. The problem of
finding the optimal precoder with the above structure, which max-
imizes the total mutual information, is solved by: i) optimizing the
rotation angle and the power allocation within each pair and ii)
finding the optimal pairing and power allocation among the pairs.
It is shown that the mutual information achieved with the proposed
pairing scheme is very close to that achieved with the optimal pre-
coder by Cruz et al., and is significantly better than Mercury/wa-
terfilling strategy by Lozano et al. Our approach greatly simpli-
fies both the precoder optimization and the detection complexity,
making it suitable for practical applications.

Index Terms—Condition number, multiple-input mul-
tiple-output (MIMO), mutual information, orthogonal frequency
division multiplexing (OFDM), precoding, singular value decom-
position (SVD).

I. INTRODUCTION

M ANY modern communication channels are modeled
as a Gaussian multiple-input multiple-output (MIMO)

channel. Examples include multitone digital subscriber line
(DSL), orthogonal frequency division multiplexing (OFDM),
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and multiple transmit-receive antenna systems. It is known that
the capacity of the Gaussian MIMO channel is achieved by
beamforming a Gaussian input alphabet along the right singular
vectors of the MIMO channel. The received vector is projected
along the left singular vectors, resulting in a set of parallel
Gaussian subchannels. Optimal power allocation between the
subchannels is achieved by waterfilling [2]. In practice, the
input alphabet is not Gaussian and is generally chosen from a
finite signal set.

We distinguish between two kinds of MIMO channels: i) di-
agonal (or parallel) channels and ii) nondiagonal channels.

For a diagonal MIMO channel with discrete input alphabets,
assuming only power allocation on each subchannel (i.e., a diag-
onal precoder), Mercury/waterfilling was shown to be optimal
by Lozano et al. in [3]. With discrete input alphabets, Cruz et al.
later proved in [4] that the optimal precoder is, however, non-
diagonal, i.e., precoding needs to be performed across all the
subchannels.

For a general nondiagonal Gaussian MIMO channel, it was
also shown in [4] that the optimal precoder is nondiagonal. Such
an optimal precoder is given by a fixed point equation, which re-
quires a high complexity numeric evaluation. Since the precoder
jointly codes all the inputs, joint decoding is also required at
the receiver. Thus, the decoding complexity can be very high,
specially for large , as in the case of DSL and OFDM appli-
cations. This motivates our quest for a practical low complexity
precoding scheme achieving near optimal capacity.

In this paper, we consider a general MIMO channel and a non-
diagonal precoder based on X-Codes [1]. The MIMO channel
is transformed into a set of parallel subchannels using singular
value decomposition (SVD) and X-Codes are then used to pair
the subchannels. X-Codes are fully characterized by the pair-
ings and the 2-dimensional real rotation matrices for each pair.
These rotation matrices are parameterized with a single angle.
This precoding structure enables us to express the total mutual
information as a sum of the mutual information of all the pairs.

The problem of finding the optimal precoder with the above
structure, which maximizes the total mutual information, can
be split into two tractable problems: i) optimizing the rotation
angle and the power allocation within each pair and ii) finding
the optimal pairing and power allocation among the pairs. It is
shown by simulation that the mutual information achieved with
the proposed pairing scheme is very close to that achieved with
the optimal precoder in [4], and is significantly better than the
Mercury/waterfilling strategy in [3]. Our approach greatly sim-
plifies both the precoder optimization and the detection com-
plexity, making it suitable for practical applications.

0018-9448/$26.00 © 2011 IEEE
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Fig. 1. Plot of the cumulative density function of the coded symbols when joint coding is performed across� subchannels. Input alphabet � is BPSK.

The rest of the paper is organized as follows. Section II intro-
duces the system model and SVD precoding. In Section III, we
provide a brief review of the optimal precoding with discrete
inputs in [4] and the relevant MIMO capacity. In Section IV,
we present the proposed precoding scheme using X-Codes
with discrete inputs and the relevant capacity expressions. In
Section V, we consider the first problem, which is to find the
optimal rotation angle and power allocation within a given pair.
This problem is equivalent to optimizing the mutual informa-
tion for a Gaussian MIMO channel with two subchannels. In
Section VI, using the results from Section V, we attempt to
optimize the mutual information for a Gaussian MIMO channel
with subchannels, where . Finally, in Section VII we
discuss the application of our precoding scheme to OFDM
systems. Conclusions are drawn in Section VIII.

Notations: The field of complex numbers is denoted by and
let be the set of positive real numbers. Superscripts and
denote transposition and Hermitian transposition, respectively.
The identity matrix is denoted by , and the zero matrix
is denoted by . The is the expectation operator, denotes
the Euclidean norm of a vector, and the Frobenius norm
of a matrix. Finally, we let denote the trace of a matrix.

II. SYSTEM MODEL AND PRECODING WITH GAUSSIAN INPUTS

We consider a MIMO channel, where the channel
state information (CSI) is known perfectly at both transmitter
and receiver. Let be the vector of input
symbols to the channel, and let , ,

, be a full rank channel coefficient matrix, with
representing the complex channel gain between the th input

and the th output. The vector of channel output symbols is
given by

(1)

where is an uncorrelated Gaussian noise vector, such that
, and is the total transmitted power. The

power constraint is given by

(2)

The maximum multiplexing gain of this channel is
. Let be the vector of

information symbols to be sent through the MIMO channel,
with , . Then the vector can be
precoded using a matrix , resulting in .

The capacity of the deterministic Gaussian MIMO channel is
then achieved by solving

Problem 1:

(3)

where is the mutual information between and ,
and , are the covariance matrices
of and , respectively. The inequality in (3) follows from the
data processing inequality [2].

Let us consider the SVD of the channel , where
, , , ,

and with .
Telatar showed in [6] that the Gaussian MIMO capacity

, is achieved when is Gaussian distributed and
is diagonal. Diagonal can be achieved

by using the optimal precoder matrix , where
is the diagonal power al-

location matrix such that . Furthermore, ,
, are i.i.d. Gaussian (i.e., no coding is required

across the input symbols ). With this, the second line of (3)
is actually an equality. Also, projecting the received vector
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along the columns of is information lossless and transforms
the nondiagonal MIMO channel into an equivalent diagonal
channel with noninterfering subchannels. The equivalent
diagonal system model is then given by

(4)

where is the equivalent noise vector, having the same statis-
tics as . The total mutual information is now given by

(5)

Note that now the mutual information is a function of only the
power allocation matrix , with the constraint .
Optimal power allocation is achieved through waterfilling be-
tween the parallel channels of the equivalent system in (4)[2].

III. OPTIMAL PRECODING WITH DISCRETE INPUTS

In real systems, discrete input alphabets are used. Sub-
sequently, we assume that the th information symbol is
given by , where is a finite signal set. Let

be the overall input alphabet. The
capacity of the Gaussian MIMO channel with discrete input
alphabet is defined by the following problem.

Problem 2:

(6)

Note that there is no maximization over the pdf of , since we
fix . The optimal precoder , which solves Problem
2, is given by the following fixed point equation given in [4]:

(7)

where is the minimum mean-square error (MMSE) matrix of
given by

(8)

The optimal precoder is derived using the relation between
MMSE and mutual information [7]. We observe that, with
discrete input alphabets, it is no longer optimal to beamform
along the column vectors of and then use waterfilling on
the parallel subchannels. Even when is diagonal (parallel
noninterfering subchannels), the optimal precoder is non
diagonal, and can be computed numerically (using a gradient
based method) as discussed in [4]. However, the complexity of
computing is prohibitively high for practical applications,
especially when is large. This problem can be further aggra-
vated if the channel changes frequently.

We propose a suboptimal precoding scheme based on
X-Codes [1], which achieves close to the optimal capacity

, at low encoding and decoding complexities. In the
proposed precoding scheme, the MIMO channel is first trans-
formed into a set of parallel channels by precoding along the

right singular vectors of (i.e., columns of ) and projecting
the received vector along the left singular vectors of (i.e.,
columns of ). The subchannels are then grouped into pairs of
subchannels, with joint coding/decoding within each pair.

As we shall see later in Section VI, simply pairing subchan-
nels can result in significant increase in the mutual informa-
tion between and . Here we provide some insights and rea-
soning as to why this is so. It is known that the optimal capacity
achieving input distribution (Problem 1) is Gaussian [6]. By
jointly coding over groups of subchannels (pairing is a spe-
cial case with ), each coded output symbol can be made to
have zero mean, finite variance, and a probability density func-
tion (pdf) similar to the Gaussian distribution for the same vari-
ance. However, it is not so simple to quantify the closeness of
the discrete pdf of the coded output symbols to the continuous
Gaussian pdf. For the purpose of illustration, in Fig. 1, we com-
pare the cumulative density function (cdf) of a real Gaussian
random variable with mean 0 and variance 1, with the cdf of
a coded output symbol when joint coding is performed across

subchannels. Joint coding is performed using a real
orthogonal matrix as the linear code generator matrix. For the
purpose of illustration we have used algebraic rotation
matrices which generate full diversity code [5]. We also note that

corresponds to the case of no coding. The input infor-
mation symbols are assumed to be BPSK. It is observed from
the figure that, with increasing the cdf of the coded output
symbols approaches the Gaussian cdf A simple way of quanti-
fying the closeness is in terms of the maximum absolute differ-
ence between the Gaussian cdf and the cdf of the coded output
symbol. With such a measure of closeness, we observe that the
maximum absolute difference for , 2, 4, 8 is 0.34, 0.17,
0.11, and 0.02, respectively. Therefore it seems that most of the
reduction in the maximum absolute difference is when is in-
creased from 1 to 2 (i.e., by simply coding across a pair of sub-
channels). Also, further increase in beyond , results
in smaller reduction in the maximum absolute difference. This
observation makes us believe that most of the increase in mutual
information can be obtained by coding across only a pair of sub-
channels. Later in Section VI, we shall see that, indeed, coding
across a pair of subchannels results in significant increase in
mutual information when compared to the scenario where no
coding is performed across subchannels.

IV. PRECODING WITH X-CODES

X-Codes are based on a pairing of subchannels
.

For a given , there are possible pair-
ings. Let denote the set of all possible pairings. For example,
with , we have

X-Codes are generated by a real orthogonal
matrix, denoted by . When precoding with X-Codes,
the precoder matrix is given by , where

is the diagonal power
allocation matrix such that . The th pair consists
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Fig. 2. Plot of � versus � for � � � parallel channels with � � �, 1.5, 2, 4, 8 and � � �. Input alphabet is 16-QAM.

of subchannels and . For the th pair, the information sym-
bols and are jointly coded using a 2 2 real orthogonal
matrix given by

(9)

The angle can be chosen to maximize the mutual information
for the th pair. Each is a submatrix of the code generator
matrix as shown

(10)

It was shown in [1] that, for achieving the best diversity gain,
an optimal pairing is one in which the th subchannel is paired
with the th subchannel. For example, with this pairing
and , the X-Code generator matrix is given by

The special case with , , results in no
coding across subchannels (i.e., a diagonal precoder).

Given the generator matrix , the subchannel gains , and
the power allocation matrix , the mutual information between

and is given by

(11)

where the received vector pdf is given by

(12)

and when (i.e., ), it is equivalently given by

(13)

where .
We next define the capacity of the MIMO Gaussian channel

when precoding with . In the following, we assume that
, so that .1 Note that,

when , the receiver processing becomes
information lossy, and .

We introduce the following definitions. For a given pairing ,
let , , ,

and . Due to the pairing
structure of the mutual information can be
expressed as the sum of mutual information of all the pairs
as follows:

(14)

Having fixed the precoder structure to , we can
formulate the following:

Problem 3:

(15)

1It is to be noted that, this assumption is made only when precoding with
X-Codes, and therefore Problems 1 and 2 do not assume � � � .
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Fig. 3. Plot of � versus � for � � � parallel channels with � � ���, 2, 4, 8 and � � �. Input alphabet is 16-QAM.

Fig. 4. Mutual Information of X-Codes versus power allocation fraction � for � � � parallel channels with � � �, 1.5, 2, 4, 8, � � � and � � �� ��. Input
alphabet is 16-QAM.

It is clear that the solution of the above problem is still a formi-
dable task, although it is simpler than Problem 2. In fact, instead
of the variables of , we now deal with variables for
power allocation in , variables for the angles defining ,
and the pairing . In the following, we will show how to
efficiently solve Problem 3 by splitting it into two simpler prob-
lems.

Power allocation can be divided into power allocation among
the pairs, followed by power allocation between the two
subchannels of each pair.2 Let be a

2We draw the attention of the reader to the distinction between the usage of the
words “among” and “between.” In this paper, we use “among” when referring
to more than 2 entities. The word “between” is used when there are exactly 2
entities involved.



MOHAMMED et al.: PAIRING SUBCHANNELS TO INCREASE MIMO CAPACITY 4161

Fig. 5. Mutual information of X-Codes versus rotation angle � for � � � parallel channels with � � �, 1.5, 2, 4, 8, � � � and � � �� ��. Input alphabet is
16-QAM.

diagonal matrix, where with being the
power allocated to the th pair. The power allocation within
each pair can be simply expressed in terms of the fraction

of the power assigned to the first subchannel of the pair.
The mutual information achieved by the th pair is then given
by

(16)

where is given by

(17)

where and is given by (9).
The capacity of the discrete input MIMO Gaussian channel

when precoding with X-Codes can be expressed as
Problem 4:

(18)

where , the capacity of the th pair in the pairing
, is achieved by solving

Problem 5:

(19)

In other words, we have split Problem 3 into two different
simpler problems. First, given a pairing and power alloca-
tion among the pairs , we can solve Problem 5 for each

. Problem 4 uses the solution to Problem 5 to

find the optimal pairing and the optimal power allocation
among the pairs. For small , the optimal pairing and power
allocation among the pairs can always be computed numerically
and by brute force enumeration of all possible pairings. This is,
however, prohibitively complex for large , and we shall discuss
heuristic approaches in Section VI.

We will show in the following that, although suboptimal, pre-
coding with X-Codes will provide a close to optimal capacity
with the additional benefit that the detection complexity at the
receiver is highly reduced, since there is coupling only between
pairs of subchannels, as compared to the case of full-coupling
for the optimal precoder in [4].

In Section V, we solve Problem 5, which is equivalent to
finding the optimal rotation angle and power allocation for a
Gaussian MIMO channel with only subchannels.

V. GAUSSIAN MIMO CHANNELS WITH

With , there is only one pair and only one possible
pairing. Therefore, we drop the subscript in Problem 5 and we
find in Problem 3. The processed received vector

is given by

(20)

where is the equivalent noise vector with the same
statistics as . Let be the overall channel power
gain and be the condition number of the channel.
Then (20) can be rewritten as

(21)

where and
. The equivalent channel
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Fig. 6. Mutual information versus � for X-Codes for different ��, � � � parallel channels, � � �, � � �, and 4-QAM input alphabet.

now has a normalized gain of , and its sub-

channel gains and are dependent only upon . Our
goal is, therefore, to find the optimal rotation angle and the
fractional power allocation , which maximize the mutual
information of the equivalent channel with condition number
and gain . The total available transmit power is now .

It is difficult to get analytic expressions for the optimal and
, and therefore we can use numerical techniques to evaluate

them and store them in lookup tables to be used at run time. For a
given application scenario, given the distribution of , we decide
upon a few discrete values of which are representative of the
actual values observed in real channels. For each such quantized
value of , we numerically compute a table of the optimal values

and as a function of . These tables are constructed
offline. During the process of communication, the transmitter
knows the value of and from channel measurements. It then
finds the lookup table with the closest value of to the measured
one. The optimal values and are then found by indexing
the appropriate entry in the table with equal to .

In Fig. 2, we graphically plot the optimal power fraction to
be allocated to the stronger subchannel in the pair, as a function
of . The input alphabet is 16-QAM and , 1.5, 2, 4, 8. For

, both subchannels have equal gains, and therefore, as ex-
pected, the optimal power allocation is to divide power equally
between the two subchannels. However with increasing , the
power allocation becomes more asymmetrical. For a fixed ,
a higher fraction of the total power is allocated to the stronger
subchannel with increasing .

For a fixed , it is observed that at low it is optimal to
allocate all power to the stronger subchannel. In contrast, at
high , it is the weaker subchannel which gets most of the
power. In the high regime, these results are in contrast with

the waterfilling scheme, where almost all subchannels are allo-
cated equal power. However, a similar observation has also been
made for the Mercury/waterfilling scheme [3]. We next present
an intuitive explanation for the fact that, at high , it is the
weaker subchannel which is allocated a higher fraction of the
total power.

The mutual information with a finite input set of cardinality
is limited to bits and the mutual information curve

when plotted w.r.t. flattens out as . Therefore, at
high there is little incentive to allocate further power to a
strong subchannel since its mutual information is already very
close to bits, and being in the “flat” region of the mu-
tual information curve results in very little increase in mutual
information for a given increase in . A weak subchannel on
the other hand, has a mutual information far from bits
and an appreciable increase in mutual information for a given
increase in is possible. Therefore, in terms of the increase
in mutual information at high , for a similar increase in ,
a weak subchannel would benefit more when compared to a
strong subchannel.

In Fig. 3, the optimal rotation angle is plotted as a function
of . The input alphabet is 16-QAM and , 2, 4, 8. For

the mutual information is independent of for all values
of . For , 2, the optimal rotation angle is almost
invariant to . For larger , the optimal rotation angle varies
with and approximately ranges between 30–40 for all
values of interest.

Fig. 4 shows the variation of the mutual information with the
power fraction for . The power is fixed at 17 dB and
the input alphabet is 16-QAM. We observe that for all values of

, the mutual information is a concave function of . We also
observe that the sensitivity of the mutual information to varia-
tion in increases with increasing . However, for all , the mu-
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Fig. 7. Mutual information versus � for � � � parallel channels with � � � and � � �, for 4-QAM and 16-QAM.

tual information is fairly stable (has a “plateau”) around the op-
timal power fraction. This is good for practical implementation,
since this implies that an error in choosing the correct power al-
location would result in a very small loss in the achieved mutual
information.

In Fig. 5, we plot the variation of the mutual information w.r.t.
the rotation angle . The power is fixed at 17 dB and the
input alphabet is 16-QAM. For , the mutual information
is obviously constant with . With increasing , mutual infor-
mation is observed to be increasingly sensitive to . However,
when compared with Fig. 4, it can also be seen that the mutual
information appears to be more sensitive to the power allocation
fraction , than to .

In Fig. 6, we plot the mutual information of X-Codes for dif-
ferent rotation angles with and . For each rota-
tion angle, the power allocation is optimized numerically. We
observe that, the mutual information is quite sensitive to the ro-
tation angle except in the range 30–40 .

We next present some simulation results to show that indeed
our simple precoding scheme can significantly increase the mu-
tual information, compared to the case of no precoding across
subchannels (i.e., Mercury/waterfilling). For the sake of com-
parison, we also present the mutual information achieved by the
waterfilling scheme with discrete input alphabets.

We restrict the discrete input alphabets , , 2, to be
square -QAM alphabets consisting of two -PAM alpha-
bets in quadrature. Mutual information is evaluated by solving
Problem 5 (i.e., numerically maximizing w.r.t. the rotation angle
and power allocation).

In Fig. 7, we plot the maximal mutual information versus
, for a system with two subchannels, and .

Mutual information is plotted for 4- and 16-QAM signal sets.

It is observed that for a given achievable mutual information,
coding across subchannels is more power efficient. For example,
with 4-QAM and an achievable mutual information of 3 bits,
X-Codes require only 0.8 dB more transmit power when com-
pared to the ideal Gaussian signalling with waterfilling. This gap
increases to 1.9 dB for Mercury/waterfilling and 2.8 dB for the
waterfilling scheme with 4-QAM as the input alphabet. A sim-
ilar trend is observed with 16-QAM as the input alphabet. The
proposed precoder clearly performs better, since the mutual in-
formation is optimized w.r.t. the rotation angle and power allo-
cation, while Mercury/waterfilling, as a special case of X-Code,
only optimizes power allocation and fixes .

In Fig. 8, we compare the mutual information achieved by
X-Codes and the Mercury/waterfilling strategy for and

, 2, 4. The input alphabet is 4-QAM. It is observed that
both the schemes have the same mutual information when

. However with increasing , the mutual information of Mer-
cury/waterfilling strategy is observed to degrade significantly at
high , whereas the performance of X-Codes does not vary
as much. The degradation of mutual information for the Mer-
cury/waterfilling strategy is explained as follows. For the Mer-
cury/waterfilling strategy, with increasing , all the available
power is allocated to the stronger channel till a certain transmit
power threshold. However, since finite signal sets are used, mu-
tual information is bounded from above until the transmit power
exceeds this threshold. This also explains the reason for the in-
termediate change of slope in the mutual information curve with

(see the rightmost curve in Fig. 8). On the other hand, due
to coding across subchannels, this problem does not arise when
precoding with X-Codes. Therefore, in terms of achievable mu-
tual information, rotation coding is observed to be more robust
to ill-conditioned channels.
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Fig. 8. Mutual information versus � for � � � parallel channels with varying � � �, 2, 4, � � � and 4-QAM input alphabet.

For low values of , mutual information of both the schemes
are similar, and improves with increasing . This is due to the
fact that, at low , mutual information increases linearly with

, and, therefore, all power is assigned to the stronger channel.
With increasing , the stronger channel has an increasing frac-
tion of the total channel gain, which results in increased mutual
information.

In Fig. 9, the mutual information with X-Codes is plotted
for , 2, 4, 8 and with 16-QAM as the input alphabet.
It is observed that at low values of , a higher value of is
favorable. However at high , with 16-QAM input alphabets,
the performance degrades with increasing . This degradation
is more significant compared to the degradation observed with
4-QAM input alphabets. Therefore it can be concluded that the
mutual information is more sensitive to with 16-QAM input
alphabets as compared to 4-QAM.

VI. GAUSSIAN MIMO CHANNELS WITH

We now consider the problem of finding the optimal pairing
and power allocation among the pairs for different Gaussian
MIMO channels with even and . We first observe that
mutual information is indeed sensitive to the chosen pairing,
and this therefore justifies the criticality of computing the op-
timal pairing. This is illustrated through Fig. 10, for with
a diagonal channel and 16-QAM.
Optimal power allocation between the two pairs is computed
numerically. It is observed that the pairing per-
forms significantly better than the pairing .

In Fig. 11, we compare the mutual information achieved with
optimal precoding [4], to that achieved by the proposed precoder

with 4-QAM input alphabet. The 4 4 full channel matrix (non-
diagonal channel) is given by [4, eq. (42)] (Gigabit DSL). For
X-Codes, the optimal pairing is and the optimal
power allocation between the pairs is computed numerically. It
is observed that X-Codes perform very close to the optimal pre-
coding scheme. Specifically, for an achievable mutual informa-
tion of 6 bits, compared to the optimal precoder [4], X-Codes
need only 0.4 dB extra power whereas 2.3 dB extra power is re-
quired with Mercury/waterfilling.

Another interesting application is in wireless MIMO channels
with perfect channel state information at both the transmitter
and receiver. The channel coefficients are modeled as i.i.d com-
plex normal random variables with unit variance.

In Fig. 12, we plot the ergodic capacity (i.e., the mutual infor-
mation averaged over channel realizations) for a 4 4 wireless
MIMO channel. For X-Codes, the best pairing and power allo-
cation between pairs are chosen numerically using the optimal

and power fraction tables created offline. It is observed that
at high , simple rotation based coding using X-Codes im-
proves the mutual information significantly, when compared to
Mercury/waterfilling. For example, for a target mutual informa-
tion of 12 bits, X-Codes perform 1.2 dB away from the ideal
Gaussian signalling scheme. This gap from the Gaussian sig-
nalling scheme increases to 3.1 dB for the Mercury/waterfilling
scheme and to 4.4 dB for the waterfilling scheme with 16-QAM
alphabets.

In this application scenario the low complexity of our pre-
coding scheme becomes an essential feature, since the precoder
can be computed on the fly using the look-up tables for each
channel realization.
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Fig. 9. Mutual information with X-Codes versus � for � � � parallel channels with varying � � �, 2, 4, 8, � � � and 16-QAM input alphabet.

Fig. 10. Mutual information versus � with two different pairings for a � � � diagonal channel and 16-QAM input alphabet.

VII. APPLICATION TO OFDM

In OFDM applications, is large and Problem 4 becomes too
complex to solve, since we can no more find the optimal pairing
by enumeration.

It was observed in Section V, that for , a larger value
of the condition number leads to a higher mutual informa-

tion at low values of (low SNR). Therefore, we conjec-
ture that pairing the th subchannel with the th sub-
channel could have mutual information very close to optimal,
since this pairing scheme attempts to maximize the minimum

among all pairs. We shall call this scheme the “conjectured”
pairing scheme, and the X-Code scheme, which pairs the th
with the th subchannel, the “X-pairing” scheme. Note
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Fig. 11. Mutual information versus � for the Gigabit DSL channel given by (42) in [4].

Fig. 12. 4� 4 Wireless MIMO: Ergodic capacity vs. finite input precoding schemes.

that the “X-pairing” scheme was proposed in [1] as a scheme
which achieved the optimal diversity gain when precoding with
X-Codes.

Given a pairing of subchannels, it is also difficult to com-
pute the optimal power allocation among the pairs, . How-
ever, it was observed that for channels with large , taking to
be the waterfilling power allocation among the pairs (with

as the equivalent channel gain of the th
pair) results in good performance.

Apart from the “conjectured” and the “X-pairing” schemes,
we propose a pairing scheme which is based on the job assign-
ment problem. The problem consists in matching different
workers to different jobs that have to be completed. Consider
the cost matrix , whose th entry , is the cost
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Fig. 13. Mutual information versus per subcarrier SNR for an OFDM system with 32 carriers. X-Codes versus Mercury/waterfilling.

involved when the th worker is assigned to the th job, ,
. The solution to the job assignment problem gives the

optimal assignment of worker to jobs (with each worker getting
assigned to exactly one job), such that the total cost of getting
all the jobs completed is minimized. We call this as the mini-
mization job assignment problem. Another form of the job as-
signment problem is where the total cost of getting all the jobs
completed must be maximized, and we shall refer to this as the
maximization job assignment problem. It is easy to see, that a
maximization job assignment problem could be posed in terms
of an equivalent minimization job assignment problem and vice
versa.

The job assignment problem is efficiently solved using the
Hungarian algorithm [8]. In this paper, we pose our problem
of finding a good approximation to the optimal pairing as a
job assignment problem and solve it using the Hungarian algo-
rithm. We shall therefore refer to this pairing as the “Hungarian”
pairing scheme. To find a good approximation to the optimal
pairing, we split the subchannels into two groups: i) Group-I:
subchannels 1 to , with the th subchannel in the role of the
th job ; ii) Group-II: subchannels to
, with the th subchannel in the role of the th worker

. Therefore, there are workers and jobs.
For a given SNR , we initially assume uniform power

allocation among the pairs and therefore assign a power of
to each pair. The value of is evaluated by finding

the optimal mutual information achieved by an equivalent
channel with the th and the th subchannels as

its two subchannels. This can be obtained by first choosing a
table (see Section V) with the closest value of to the given

, and then indexing the appropriate entry into the
table with . The Hungarian
algorithm then finds the pairing with the highest mutual in-

formation. Furthermore, the computational complexity of the
Hungarian algorithm is , which is practically tractable.
Power allocation among the pairs is then achieved through
the waterfilling scheme.

To study the sensitivity of the mutual information to the
pairing of subchannels, we also consider a “Random” pairing
scheme. In the “Random” pairing scheme, we first choose a
large number of random pairings. For each chosen
random pairing we evaluate the mutual information (through
Monte Carlo simulations) with waterfilling power allocation
among the pairs. Finally the average mutual information
is computed. This gives us insight into the mean value of the
mutual information w.r.t. pairing. It would also help us in
assessing if the heuristic pairing schemes discussed above are
worth pursuing.

We next illustrate the mutual information achieved by
these heuristic schemes for an OFDM system with
subchannels and 16-QAM. The channel impulse response is

. For the “conjectured” and the
“X-pairing” schemes also, power allocation is achieved through
waterfilling among the 16 pairs.

In Fig. 13 the total mutual information is plotted as a func-
tion of the SNR per sub carrier. It is observed that the proposed
precoding scheme performs much better than the Mercury/wa-
terfilling scheme. The proposed precoder with the “Hungarian”
pairing scheme performs within 1.1 dB of the Gaussian sig-
nalling scheme for an achievable total mutual information of 96
bits (i.e., a rate of ). The proposed precoder with
the “Hungarian” pairing scheme performs about 1.6 dB better
than the Mercury/waterfilling scheme. The “X-pairing” scheme
performs better than the Mercury/waterfilling and worse than
the “Hungarian” pairing scheme. Even at a lower rate of 1/2
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Fig. 14. Mutual information versus per subcarrier SNR for an OFDM system with 32 carriers. Comparison of heuristic pairing schemes.

(i.e., a total mutual information of 64 bits), the proposed pre-
coder with the “Hungarian” pairing scheme performs about 0.7
dB better than the Mercury/waterfilling scheme.

In Fig. 14, we compare the mutual information achieved by
the various heuristic pairing schemes. It is observed that the
“conjectured” pairing scheme performs very close to the “Hun-
garian” pairing scheme except at very high SNR. For example,
even for a high mutual information of 96 bits, the “Hungarian”
pairing scheme performs better than the “conjectured” pairing
scheme by only about 0.2 dB. However at very high rates (like
7/8 and above), the “Hungarian” pairing scheme is observed to
perform better than the “conjectured” pairing scheme by about
0.7 dB. Therefore for low to medium rates, it would be better
to use the “conjectured” pairing since it has the same perfor-
mance at a lower computational complexity. The mutual infor-
mation achieved by the “Random” pairing scheme is observed
to be strictly inferior than the “conjectured” pairing scheme at
all values of SNR, and at low SNR it is even worse than the Mer-
cury/waterfilling strategy. This, therefore implies that the total
mutual information is indeed sensitive to the chosen pairing.
Further, till a rate of 1/2 (i.e., a mutual information of 64 bits) it
appears that any extra optimization effort would not result in sig-
nificant performance improvement for the “conjectured” pairing
scheme, since it is already very close to the ideal Gaussian sig-
nalling schemes. However at higher rate and SNR it may still
be possible to improve the mutual information by further op-
timizing the selection of pairing scheme and power allocation
among the pairs. This is however a difficult problem that re-
quires further investigation.

VIII. CONCLUSIONS

In this paper, we proposed a low complexity precoding
scheme based on the pairing of subchannels, which achieves

near optimal capacity for Gaussian MIMO channels with
discrete inputs. The low complexity feature relates to both the
evaluation of the optimal precoder matrix and the detection at
the receiver. This makes the proposed scheme suitable for prac-
tical applications, even when the channels are time varying and
the precoder needs to be computed for each channel realization.

The simple precoder structure, inspired by the X-Codes, en-
abled us to split the precoder optimization problem into two sim-
pler problems. First, for a given pairing and power allocation
among the pairs, we need to find the optimal power fraction al-
location and rotation angle for each pair. Given the solution to
the first problem, the second problem is then to find the optimal
pairing and power allocation among the pairs.

For large , typical of OFDM systems, we also discussed dif-
ferent heuristic approaches for optimizing the pairing of sub-
channels.

The proposed precoder was shown to perform better than the
Mercury/waterfilling strategy for both diagonal and nondiag-
onal MIMO channels. Future work will focus on finding close to
optimal pairings, and close to optimal power allocation strate-
gies among the pairs.
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