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Good Lattice Constellations for Both
Rayleigh Fading and Gaussian Channels

Joseph Boutros, Emanuele Viterbo, Catherine Rastello, and Jean-Claude Belfiore, Member, IEEE

Abstract— Recent work on lattices matched to the Rayleigh
fading channel has shown how to construct good signal constel-
lations with high spectral efficiency. In this paper we present a
new family of lattice constellations, based on complex algebraic
number fields, which have good performance on Rayleigh fading
channels. Some of these lattices also present a reasonable packing
density and thus may be used at the same time over a Gaussian
channel. Conversely, we show that particular versions of the
best lattice packings (Di, Es, Es, Ki2,A16,A2), constructed
from totally complex algebraic cyclotomic fields, present better
performance over the Rayleigh fading channel. The practical
interest in such signal constellations rises from the need to
transmit information at high rates over both terrestrial and
satellite links. '

Index Terms— Lattices, number fields, fading channels, code
diversity. :

This paper is dedicated to the memory of Catherine Rastello
who left us in April 1995.

I. INTRODUCTION

HE interest in trellis-coded modulation (TCM) for fading

channels dates back to 1988, when Divsalar and Simon
[1] fixed design rules and performance evaluation criteria.
Following the ideas in [1], Schlegel and Costello [2] found
new 8-PSK trellis codes for the Rayleigh channel. These codes
exhibit higher diversity than Ungerboeck’s 8-PSK codes, only
when the trellis exceeds 64 states.

An alternative method to gain diversity is the use of
multidimensional 8-PSK trellis codes proposed by Pietrobon
et al. [3]. Although these schemes were designed for the
Gaussian channel they show reasonable diversity when the
number of states exceeds 16.

All the above TCM schemes have a spectral efficiency of
two bits per symbol. The spectral efficiency can be increased
by using Ungerboeck’s [4] multidimensional QAM trellis
codes, but their inherent diversity is very bad due to uncoded
bits, which induce parallel transitions in the trellis [11.

Signal constellations having lattice structure. are commonly
accepted as good means for transmission with high spectral
efficiency. The problem of finding good signal constellations
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for the Gaussian channel can be restated in terms ‘of lattice
sphere packings. Good lattice constellations for the Gaussian
channel can be carved from lattices with high sphere packing
density [6]. The linear and highly symmetrical structure of
lattices usually simplifies the decoding task.

For the Rayleigh fading channel the basic ideas remain
the same. The problem is to construct signal constellations
with minimum average energy for a desired error rate, given
the spectral efficiency. A very interesting approach has been
recently proposed [8], [9], which makes use of some results
of algebraic number theory. Using totally real algebraic num-
ber fields, some good lattice constellations matched to the
Rayleigh fading chanpel, up to dimension eight, are found.
The effectiveness of these constellations lies in their high
degree of diversity, which is actually the maximum possible.
By diversity we mean the number of different values in the
components of any two distinct points of the constellation.

The signal constellations for the Gaussian channel are
usually very bad when used over the Rayleigh fading channel
since they have small diversity. On the other hand, the signal
constellations in [9] matched to the Rayleigh fading channel
are usually very bad when used over the Gaussian channel
since the sphere packing density of these lattices is low. In
this paper we search for lattice constellations which have good
performance on both Gaussian and Rayleigh fading channel.
The same constellations may be used for the Ricean channel
which stands between the Gaussian and the Rayleigh channels.

The practical interest in such signal constellations rises
from the need to transmit information over both terrestrial
and satellite links. The same modulation/demodulation device
can be used to communicate over the terrestrial link (between a
mobile and a base station) and over the satellite link (between a
mobile and a satellite). Lattice constellations matched to fading
channels can also be applied in wireless local area networks
(over the indoor channel) and asynchronous digital subscriber
lines (over the phone line) [24]-[26]. The cable channel,
combined with a multicarrier modulator and an_interleaver,
acts as a flat fading channel.

The paper outline is as follows. In Section II we show the
system model and give the basic definitions. In Section III
we analyze the error probability bounds to find an effective
approach to the search for good constellations. The final target
of this work is to find good constellations for the Gaussian
and the Rayleigh fading channels; we will present two dif-
ferent approaches. The first (Sections VI and V), considers
some constellations constructed for the fading channel and
trades some of their diversity for a higher asymptotic gain

0018-9448/96$05.00 © 1996 IEEE



BOUTROS et al.: GOOD LATTICE CONSTELLATIONS FOR BOTH RAYLEIGH FADING AND GAUSSIAN CHANNELS 503

Data Bits x
MAPPER

INTERLEAVER

Decoded
Bits £ T

~——— (MAPPER)™* ML DETECTION DEINTERLEAVER

Fig. 1. The transmission system.

over the Gaussian channel. These constellations are obtained
using some results in algebraic number theory, which will
be presented in the various subsections. The second approach
(Section VI) goes in the opposite direction: starting from good
constellations for the Gaussian channel we try modifying them
to increase their diversity. In this section we will need some
further results in algebraic number theory related to ideals
and their factorization. Section VII will illustrate the decoding

algorithm used with these lattice constellations together with

practical results. Finally, in Section VIII we discuss the
two different approaches to establish which one is the most
effective.

II. SYSTEM MODEL AND TERMINOLOGY

The baseband transmission system is shown in Fig. 1. The
mapper associates an m-uple of input bits to a signal point
z = (£1,%2,*+-,%,) in the n-dimensional Euclidean space
R". Let M = 2™ be the total number of signal points in the
constellation. An interleaver precedes the channel in the sys-
tem model. It interleaves the real components of the secuence
of mapped points. The constellation points are transmitted
either over an additive white Gaussian noise (AWGN) channel,
giving r = z + n or over an independent Rayleigh fading
channel (RFC) giving r = a * £ + n, where 7 is the received
point, » = (n1,n9,- -+, n,) is a noise vector, whose real com-
ponents n; are zero-mean, Ny variance Gaussian distributed
independent random variables, & = (a1, a2, - ay) are the
random fading coefficients with unit second moment, and *
represents the componentwise product. Signal demodulation
is assumed to be coherent, so that the fading coefficients can
be modeled after phase elimination, as real random variables
with a Rayleigh distribution. The independence of the fading
samples represents the situation where the components of
the transmitted points are perfectly interleaved. We note that
in the case of totally complex lattices (Sections IV-C and
VI), interleaving can be done symbol by symbol instead of
componentwise. '

The M transmitted signals x are chosen from a finite
constellation S which is carved from a lattice A. In particular,
the points of the constellation are chosen among the firs:. shells
of the lattice, so that the signal set approaches the optimal
spherical shape. Each point is labeled with an m-bit binary
label. The spectral efficiency will be measured in number of

bits per two dimensions

2m

77:n

and the signal-to-noise ratio per bit is given by

Ep

SNR = N
where FE, is the narrowband average energy per bit and
Ny /2 is the narrowband noise power spectral density. Let
E = EJ[||z||*] be the average baseband energy per point of
the constellation. The equality Ey = 0.5 x E/m = E/(n % n)
is very useful to relate the SNR to the constellation’s second
moment.

After de-interleaving the components of the received points, .
the maximum-likelihood detection criterion imposes the min-
imization of the following metric:

m(zlr) =Y i — =il ¢y
i=1
for AWGN channel and
n
m(zlr,a) = Y |ri — cizsf? @
' =1

for Rayleigh fading channel with perfect side information.
Using this criterion we obtain the decoded point £ from which
the decoded bits. are extracted.

III. SEARCHING FOR OPTIMAL LATTICE CONSTELLATIONS

To address the search for good constellations we need an
estimate of the error probability of the above system.

Since a lattice is geometrically uniform we may simply
write P,(A) = P.(A|z) for any transmitted point € A. For
convenience, z is usually taken to be the all zero vector 0.
We now apply the union bound which gives an upper bound
to the point error probability

P(S)<P.(A) <) Pz —y) 3)
y#z :

where P(z — y) is the pairwise error probability, the
probability that the received point is “closer” to y than to
x. according to the metric defined in (1) or (2), when z is

* transmitted. The first inequality takes into account the edge

effects of the finite constellation S compared to the infinite
lattice A.
For the AWGN channel, (3) simply becomes [6, ch. 3]

T de min/2
P.(A) L 5 erfc <—~— N ) )]

where 7 is the kissing number and dgmin is the minimum
Euclidean distance of the lattice. The error probability per
point of a cubic constellation can be easily upper-bounded
(see Appendix I) with a function of the signal-to-noise ratio
given by '

3n By .

P.(9) < % erfc (
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where

_ dE’ min
v(A) = vol (A)2/n

is the fundamental gain of A. We recall that v(Z") = 1(Z"
is the n-dimensional integer grid lattice), so that y(A) is the
asymptotic gain of A over Z™. For spherical constellations the
total gain should also take into account the shape gain.

For the Rayleigh fading channel, the standard Chernoff
bound technique [1] or the direct computation using the
Gaussian tail function approximation (see Appendix II), give
an estimate of the pairwise error probability

©

Pz —y) <= H (7
- =1 1 + __y1‘)__
8Ny
and for large signal-to-noise ratios '
T — < = —_—
Fe=vss wg, M
8Ny
1 1
== l ®

2(nE
b (1)
> | dp (z,9)?

where 'd}(,l)(:c,y) is the (normalized) [-product distance of z
from y when these two points differ in [ components

Il @i - )2

(1) 2 _ T FY;
dp (.'v,y) (E/n)l .

Asymptotically, (3) is dominated by the term 1/(E3/No)E
where L is the minimum number of different components
of any two distinct constellation points. L is the so-called
diversity of the signal constellation.

In general, rearranging (3) we obtain

1< K;
< =
P.(A) < 3 l_g

= (15
8 Ny

K= ZAd;”/(dz(al))2- Agp
ag)

®)

(10)

where

is the number of points y at [-product distance dz(,l) from x
and with [ different components, L < [ < n. The series in
K can be interpreted as a theta series of the lattice [6], when
the product distance is considered instead of the Euclidean
distance:

In- (10) we find all the ingredients to obtain a low error
probability at a given signal-to-noise ratio Ey/Ny. In order of
relevance we have to

1) maximize the diversity L = min(l);

2) minimize the average energy per constellation point E;

3) minimize K; and especially take care of

Apmin = min(dj(DL)(z, y))

and 7, = A 4()» the kissing number for the L-product
distance. .
The terms in (10) clearly become less important when [
increases, but the values of A e and dp (z,y) should be taken
into account for nonasymptotxc considerations.
In fact, the asymptotic coding gain of a system-2 over a
reference system-1, having the same spectral efficiency and
the same diversity L is given by

o (5"

with the definitions given above. In general, the asymptotié
coding gain may not be defined for systems with different
diversities Ly and Ly; in such cases the coding gain varies

an

~ with the signal-to-noise ratio.

In the sequel of this paper, we limit our search for optimal
constellations, with high diversity and low energy, to the class
of lattices constructed from algebraic number fields.

IV. LATTICES FROM ALGEBRAIC NUMBER. FIELDS

In the following, we will assume that the reader is familiar
with the basic definitions on lattices (see [6]) and we show
the way to construct lattices from algebraic number fields.
We will present only the strictly relevant definitions and
results in algebraic number theory, which lead to the lattice
construction. The exposition is self-coritained and is based on
simple examples, but the interested reader may consult any
book on algebraic number theory to quench their thirst for rigor
(e.g., [13]-[15]). The basic ideas and definitions of Section IV
are as follows:

* " The number field K and its ring of integers Ok ,

* The primitive element 6 such that K = Q(6) and its

minimal polynomial pg(z).

* The integral basis (wy,ws, -

Z[wl,w2,~--,wn]. E
¢ The n Q-isomorphisms ¢; defined by ¢;(9) = 8; the ith
root of pg(z) and the canonical embedding o: K — R™.

* The two special cases of totally real lattices (6,’s totally

real) and totally complex lattices (6;’s totally complex).

Lwy) of K giving O ‘=

A. Algebraic Number Fields

Let Z be the ring of rational integers and let K be a field
containing @, the field of rational numbers. Algebraic number
theory studies the properties of such fields in relation to the
solution of algebraic equations.

Definition 1: Let a be an element of K, we say that « is
an algebraic number if it is a root of a monic polynomial
with coefficients in Q. Such polynomial with lowest degree
is called the minimal polynomial of o and denoted u,(z).
If all the elements of K are algebraic we say that K ‘is an
algebralc extension of Q.

* Example I: Let us consider the field K = {a + by/2 with
a,b € @}. It is simple to see that K is.a field containing ¢
and that any a € K is a root of the polynomial p, (z) =
z? — 2a + a® — 2b% with rational coefficients. We conclude
that K is an algebraic extension of Q.
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Definition 2: We say that o € K is an algebraic integer
if it is a root of a monic polynomial with coefficients in Z.
The set of algebraic integers of K is a ring called the ring of
integers of K and is indicated with Og.

Example 1 (Continued): In our example, all the algebraic
integers will take the form a+by/2 with a,b € Z. Care should
be taken in generalizing this result (see Example 3). Ok is a
ring contained in K since it is closed under all operations
except for the inversion. For example, (2 + 2v/2)~! = (2 —
\/5)/6 does not belong to Og. .

Definition 3: We define the degree [K : Q] of an algebraic
extension K of Q as the dimension of K when considered
as a vector space over (. An algebraic number field is an
algebraic extension of @ of finite degree.

Example 1 (Continued): K is a vector space over @ of
dimension 2 so it is an algebraic number field of degree 2 (a
quadratic field). This is one way of seeing algebraic number
fields: as finite dimensional vector spaces over Q.

Result 1: Let K be an algebraic number field. There exists
an element § € K, called primitive element, such that the
Q vector space K is generated by the powers of 4. If K
has degree n then (1,6,82,--. 6*~') is a basis of K and
deg (ue(z)) = n. We will write K = Q(6).

Example 1 (Continued): In the above example we have
K = Q(V/2). # = /2 is a primitive element since (1,+/2)
form a basis. The minimal polynomial is. ug(z) = z? -- 2.

Example 2: Let us consider a slightly more complex exam-
ple with K generated by +/2 and /3; all its elements may be
written as a 4+ bv/2 + ¢v/3 + dv/6 with a,b,¢,d € Q so that
(1, V2, \/3, \/6) is a basis of K. If we consider the element
8 = V2 + /3, we have

105 0
(1,6,6%,6°) = (1,v2,v3,V6) 8 i g 191
002 0

The transition matrix is invertible in @ proving that we can
write K = @(6). The minimal polynomial of 4 is 2*—10z2+1
and its roots are

0=v2+V3,-V2-V3,V2-V3-V2+V3.

In this particular case they are all primitive elements.

The problem of finding the primitive element given a basis is
in general very complex. Usually we start from a field defined
by its primitive element.

Result 2: There exists a primitive element § which is an
algebraic integer of K. In other words, the minimal polynomial
wo(x) has coefficients in Z.

In the above examples 6 is not only a primitive element but
also an algebraic integer.

B. Integral Basis and Canonical Embedding

In the special case K = @Q(1/2), we have seen that the ring
of integers O was the set of all elements a + bv/2 with a,b
integers. Ox = Z(+/2) is a vector space over Z with (1,/2)
as a basis. Ok is called a Z-module, since Z is a ring and
not a field.

Result 3: The ring of integers O of K forms a Z-module
of rank n (a linear vector space of dimension n over Z).

Definition 4: Let (wi,ws,--,w,) be a basis of K.
We say that (w;) is an integral basis of K if Ox =
Z(wy,wa, -+ ,wy), that is, if (w;) is a generating set of the
Z-module Og. So that we can write any element of Oy as
Y21 aiw; with'a; € Z.

Example 3: Take K = Q(/5); we know that any algebraic
integer 8 in K has the form a + bv/5 with a,b € Q such that
the polynomial pg(z) = 2% — 2az + a® — 5b? has integer
coefficients. By simple arguments it can be shown that all
the elements of Oy take the form 8 = (u + vv/5)/2 with
both u,v integers with the same parity. So we can write
B = h+ k(1 + +/5)/2 with h,k € Z. This shows that
(1, (1 4+ +/5)/2) is an integral basis. The basis (1,+/5) is not
integral since a + bv/5 with a,b € Z is only a subset of Og.
Incidently, (1 4 +/5)/2 is also a primitive element of K with
minimal polynomial z? — & — 1.

There exist efficient algorithms to find an integral basis of
a given algebraic number field in polynomial time [11], [12].

Definition 5: Let K and K’ be two fields containing Q,
we call ¢ : K — K’ a Q-homomorphism if for each
a € Q,¢(a) = a. If K’ = C, the field of complex numbers,
a Q-homomorphism ¢ : K — C is called an embedding of
K into C. '

Result 4: Let 6 be a primitive element of K and pg(z)
its minimal polynomial with roots (61,62, -,6,),0 = 6;.
There are exactly n embeddings of K into C. Each embedding
oi : K — C,0;(6) = 6;, is completely identified by a root
b, € C of ug(z).

‘Notice that ¢1(f) = 6; = 6§ and thus o, is the identity
mapping o1(K) = K. When we apply the embedding o;
to an arbitrary element oo of K using the properties of Q-
homomorphisms we have ’

oi(a)=0; (Z ak9k) =Y oiar)oi(0)F =Y axbf € C
k=1 k=1 k=1

and we see that the image of any « under ¢; is uniquely
identified by 6;.

Definition 6: The elements o1(a),02(a), -, 0n(c) are
called the conjugates of o and

N(a) =] oi(a)

=1

_is the algebraic norm of o.

Result 5: For any o € K, we have N{o) € Q. If o € Og
we have N(a) € Z.
Example 1 (Continued): The roots of the minimal polyno-
mial z2 — 2 are 8; = /2 and 85 = —v/2 then
a1(0)= V2 oi(a+bV2)=a+bv/2
o2(0) =—V2  oa(a+bV2) = a~-bV2.
The algebraic norm of o is N(a) = o1(a)ga(a) = a? — 22
and we can verify the above result. ' ,
Definition 7: Let (w1, ws,---,w,) be an integral basis of
K. The absolute discriminant of K is defined as dx =
det [0 (wi)]?.
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Result 6: The absolute discriminant belongs to Z.
 Example 3 (Continued): Applying the two Q-homomor-
phisms to the integral basis wy,ws, we obtain
2

o1(1) 02(1)
dx = det <1+\/3 1+\/5>
o1 o2
2 2
; 1 1 2
=det{14++v5 1-+51] =5.
2 2

Definition 8: Let (01,092, +-0,) be the n Q-homomor-
phisms of K into C. Let r; be the number of @-homo-
morphisms with image in R, the field of real numbers, and
27y the number of Q-homomorphisms with image in C so that

1+ 2re = n.

The pair (r1,72) is called the signature of K. If 75 = 0 we
have a totally real algebraic number field. If r; = 0 we have
a totally complex algebraic number field. In all other cases
we will speak about a complex algebraic number field.
Example 4: All the previous examples were totally real

algebraic number fields with 7y = n. Let us now consider

K = Q(v/-3). The minimal polynomial of /=3 is z2 + 3

_and has two complex roots so the signature of K is (0, 1). For
later use we observe that (1,1/—3) is not an integral basis.
If we take

0 =e™% = (14iV3)/2
where 7 = /—1, we have
K =Q(0) =Q(W-3)

and an integral basis is (1, (1 + 4/3)/2). The minimal poly-
nomial of ¢ is 2 — z + 1. The ring of integers of this field is
also known as the Eisenstein integer ring. This is the simplest
example of cyclotomic field, i.e., a field generated by an mth
root of unity. '

Definition 9: Let us order the o; so that o;(a) € R for
1 <i<r and 0j4,(a) is the complex conjugate of o;(c)
for ;1 +1 < j < 71 + ry. We call canonical embedding
o : K — R™ x C™ the isomorphism defined by
U(a) = (Ul(a) v » Tr14r (Oé))

ER™ xC™.

“Ory (a)v 07.14_1(0(), e

If we idéntify R™ x C™ with R", the canonical embedding
can be rewritten as 0:K — R"

o(a) = (o1(a), -

» Oy (Oé), %a"'l‘f‘l (OZ), %0'7“14'1 (CK),
s §R0’7“1-0-7“2 (o‘)v %07'14-7‘2 ((X)) €ER"

/ where R is the real part and J is the imaginary part.

This definition establishes a one-to-one coirespondence be-
tween the elements. of an algebraic number field of degree n
and the vectors of the n-dimensional Euclidean space. The
final step for this algebraic construction of a lattice is given
by the following result. ‘

Result 7: Let (wi,ws,---,wy,) be an integral basis of K
and let dx be the absolute discriminant of XK. The n vectors
v; = o(w;) € R™ are linearly independent, so they define a
full rank lattice A = ¢(Og) with generator mamx (see (12)
at the bottom of this page).

The vectors w; are the rows of G. The volume of the
fundamental parallelotope of A is given by [13]

vol(A) =

|det (G)] = 2772 x \/[dx].

13)

C. Totally Real and Totally Complex Number Fields

Result 8: The lattices obtained from the genérator matrix

(12) exhibit a diversity L = 73 + ro.

Proof: Let z # o be an arbitrary point of A
n
2= (2,20, ,20) = Y Aiw;
o=l

with A; € Z and v; = (v;5) = o(w;) the rows of the lattice

generator matrix G. .

n

M=

n
'Uij

1 n r1+ry n
H <Z /\iwi> H §R0j (Z /\sz>
j=1 i=1 j=rl+l =1

1470 n
X H %O'j (Z )\sz> (14)
j=rl+l \i=1

The algebraic integer 7*_; A\;w; is nonzero because all \;’s are
not null together (z # 0) This implies that o; (X7 Aw;) # 0
and so the first product at the right side of the above expression
contains exactly r; nonzero factors. The minimum number of
nonzero factors in the second and the third products is 7,
since the real and imaginary parts of any one of the complex
embeddings may not be null together. We then conclude that
for such lattices we have a diversity L > r; +ro. Now, let
us take the special element o = 1 in Og. The canonical
embedding applied to 1 gives exactly r; 4 ro nonzero terms
in the above product (o;(1) = 1 for any j). Hence, we can

o1(wi) v o (wi) .%Ur'ﬁl’(wl) Sos,41(w1) Ropy oy (W1) SOy (w1) \
o1(ws) or(w2) Rop y1(w2)  Sor11(ws) Rovy 11, (W2) S0y 4ry (w2)

G = R . . . (12)
o1(wn) oy (wn) Rop 11(wn) Sop 41 (wn) Rory 4ry (Wn) SOy s (""n>




BOUTROS et al.: GOOD LATTICE CONSTELLATIONS FOR BOTH RAYLEIGH FADING AND GAUSSIAN CHANNELS 507

confirm that L = r; + 5, as indicated in [10]. Q.E.D.

dE min/2 - dE “E min

v2Ny 8Ny
— 377 _Ei dZE min
T\ 271 N vol (A)2/n

In the case of totally real algebraic number fields (ro = 0),
presented in [9], we have

o1(w1) oa(wr) on(w1)
_ o1(wa) ‘Uz(wz), on(w2)
61(wn) Oawn) -+ Onlwn)

The lattice A constructed in this case attains the maximum
degree of diversity L = n. The n-product distance of z from
0 is

= Z)\ oj(wi)

) o

Since i ; Ajw; € Ok and it is different from zero, according
to Result 5, we have

dy(0,2) =

ﬁlzjl—l—[

7j=1

Z/\'Ul

i=1

i

dM(0,2) >1 Vz #0.

The minimum product distance dp in == 1 is given by. the
elements of K with algebraic norm 1, the so-called units of
K. The fundamental parallelotope has volume

Vidx].

The totally real algebraic number fields with minimum
absolute discriminant are known up to dimension 8 (first
column of Table I) and appear to be the best asymptotically
good lattices for the Rayleigh fading channel. In fact, for a
fixed number of points M, the energy of constellations carved
from these lattices is proportional to vol (A) and vol (A) is
minimized by selecting the fields with minimum absolute
discriminants. ,

Still, two disadvantages are hidden behind the maximal
diversity and the minimal absolute discriminant. The funda-
mental volume can be further reduced if we choose a signature
where 7o # 0, i.e. if the number field is complex. Equation
(14) shows that vol (A) can be divided by 272. We can even
maximize r by working in a totally complex field ro = n/2.
Lattices derived from totally real number fields have bad

vol (A) =

performance over a Gaussian channel (a negative fundamental -

gain as shown in Section VII) mainly because of their high
values of vol (A) (Table I). The second disadvantage appears
over the fading channel and is related to the product kissing
number 7,. We find that the product kissing number is much
higher for real fields lattices than for complex fields lattices.
High diversity dense lattices built from complex algebraic
number fields have been first proposed in [10]. The totally

TABLE I
MINIMAL ABSOLUTE DISCRIMINANTS
(Values with an * are the best known values.)

n ra=0 ra=1 | P, =219, =3| r,=4
2 5 -3 — —_ —

3 49 —23 _ - —

4 725 —275 117 — —

5 14641 —4511 | 1609 — -

6| 300125 | —92779* | 28037 | —974T |° —

7| 20134393 ? ? ? —_

8 | 282300416 ? ? ? 1257728*

complex fields are possible only for even degrees since r, =
n/2. The generator matrix is
Ro1(w1) Sop(wr)
Ro1(wz) So1(we)

Roy, (w1)  Sop,(w1)
Ro,, (wz) Sop,(wa)

Ror, (wn) %Um.(wn)

(16)

Ro1(wn) Sor(wn)

Nothing can be said about the value of the minimum product
distance dj, min for complex fields lattices, since it is not related
to the algebraic norm as in the totally real case.

Looking at Table I we immediately notice that the absolute
discriminants of the complex fields are comparatively smaller
than the ones for the totally real fields. This fact, combined
with the fact that vol (A) is reduced by a factor 272, results
in lower average energy of the constellation S, for complex
fields. Of course, the price to pay is the reduced diversity
unless we use number fields with higher degrees such as 12,
16 or 24. This led us to search for good lattices (A6 0r Asq)
adapted to Rayleigh channel and the logical continuation is
Section VI. In the next section, we study in detail some of the
lattices constructed by canonical embedding applied to fields
in Tables I and II.

V. LATTICES FROM MINIMAL
ABSOLUTE DISCRIMINANT FIELDS

In Table I we have all the known minimal absolute dis-
criminant fields up to dimension 8. These fields (especially
in dimensions above 4) have been a subject of study of
a branch of mathematics known as computational algebraic
number theory. Computational algebraic number theory has
developed powerful algorithmic tools which enable to extend
many results, with the aid of computers, to fields of higher
degree [11], [12]. Part of this table, up to n = 6, can
be found in [15] and the references therein. All the totally
real fields are reported in [9]. For degree 5 and 6 complex
fields see [16] and [17], respectively. The degree 8, totally
complex field of minimal absolute discriminant can be found
in [18] together with other 25 totally complex fields of absolute
discriminant smaller than 1954287. Table II gives the reduced
minimal polynomials of the fields of Table I along with the
fundamental volume of the corresponding lattice obtained from
the canonical embedding. A minimal polynomial is called
reduced if the powers of one of its roots (the primitive element)
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TABLE I
REDUCED MINIMAL POLYNOMIALS AND FUNDAMENTAL
VOLUMES OF THE CORRESPONDING LATTICES

() vol{Anz)
Agp | 2?2 +1 0.8660
Ago |22 =z —1 2.2361
Agp |2~z —1 2.3979
Ass |2®+2?—-20—1 7
Az |2t —2®—2? 4o+l 2.7042
J VP P P 8.2016
Ao |2~ =322+ +1 26.9258
Ass [z =2+ 2?2 L2 -1 10.0281
Agy | 2° ~ 20 427 1 33.5820
Ags | 2%+ 2t —42% — 322 4+ 3241 121
Az | 2® —32° + 42% —40® + 42? — 22 + 1. 12.3409
Mgy |20 — 225 +32% - 22 —1 41.8606
Ags | 2° P S S P 152.2982
Agg |28 —2® ~ To* + 223 + T2 — 22— 1 547.8367
Arg | 27+ 28 = 625 — 5zt +82° + 522 — 22 — 1 4487.1364
Agg | 2% — 22" +42° — 424 4+ 322 — 20+ 1 70.0928
Agg | 2%+ 227 — Ta® — 82° + 152* + 82° — 927 — 2z + 1 | 16801.7980

is an integral basis of the number field. These lattices will be
indicated with A, 1.

The main steps for the construction of a lattice from an
algebraic number field K = Q(0) can be summarized as
follows:

* Find an integral basis of K, which identifies O

* Find the n roots of (), which identify the n embeddigs

01,02y ***,0n.

. Construct the generator matrix applying the canonical

embedding.
We show the application of this procedure to some of the
lattices of Table II. \

Azp - K = Q(iV3)

From Example 4 we have the integral basis (1,1 +14+/3/2).
The two embeddings are

We may recognize in the above matrix the hexagonal lattice
As. The fundamental volume is vol (Ag7) = |det(G)| =
V3/2 and the minimum squared Euclidean distance is
dEmm =17 = 0,72 = 1 and the diversity is L = 1
since the vector (1,0) belongs to the lattice.

Asz — K = Q(V5)
From Example 3 we have the integral basis (1,1 +v/5/2).

The two embeddings are o1(/5) = /5, 02(v/5) = —/5 and
the lattice generator matrix is
0'1(1 0'2(1)4
G = ’
7(42) @a(55)
1 1
- 1+v5  1=vE
2 2

The fundamental volume is vol (Az5) = |det(G)| = v/5 and
the minimum squared Euclidean distance is d%, ;= 2.71'=
2,79 = 0 and the diversity is L = 2.

Aso — K = Q(F)

@ is a primitive element with minimal polyn0m1a1 28—z -1,
whose roots are

3
91=U+V32,3:_%(U+V)ii§(o'—v>
where
g La/9+3V63 v 12/9-3V63 -
-3 2 T3 2

The primitive element # coincides with #; and an integral
basis is 1,0, 0%. The three embeddings are o1(6) = 6 (real),
02(0) = 85, and o3(0) = 03, where oy and o3 are conjugates
(r1 = 1,72 = 1). We obtain the lattice generator, matrix (see
the bottom of this page).

The fundamental volume is vol (A o) = |det (G)] = 2.39

o1(iV3) = iV3,05(iV3) = —iV/3 and the minimum squared Euclidean distance is d% . = ‘
. .. 1.895. The diversity is given by L = r;+7r5 = 2 since the vec-
and the lattice generaior matrix s tor (1, 1,0) belongs to the lattice and d2)((0,0,0), (1, 1, 0)) =
Ro1(1) Sai(1) 1. ‘
G =
143v3 1+i/3
gF‘?Ul( 2 ) 3‘”( 2 ) Az 3z — K = Q(cos (2w /7))
_ r o - An integral basis is
=,
2 2 (2cos (2x/7),2cos (4m/7),2 cos (67 /7)).
1 1 \/_ 0 1.000 1.000 0.000
1 3
ag=| U+V) —5U+V) - (U+V) 1325 —0.662  0.562
1 V3 '
2 _ = 2 2 _ _ys 2 _ 2 .
(U +V) Z(U tv wv) 2 (U V) 1.755 0.123 —-0.745
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With the following thrée embeddings:
o1(cos (2m /7)) = cos (27 /7)
a2(cos (2m /7)) = cos (47 /7)
o3(cos (2w /7)) = cos (67 /7)

we obtain the lattice generator matrix

2cos (2r/7) 2cos (4w /7) 2cos (67/7)
G = | 2cos (4w /7) 2cos(6m/7) 2cos(2n/7) |
2cos (67/7) 2cos (27r/7) 2cos (47 /7)

The fundamental volume is vol (As3) = |det(G)| = 7 and
the minimum squared Euclidean distance is d%,;, = 3. The
diversity is L = 3.

Asp — K = Q(0)
6 is a primitive element with minimal polynomial z* +
222 4 13 and roots

f1234=%(REil)==+ \/\/1—32”1 :tz.\/\/l—i’;—l—l

Taking the following signs for the roots:
O1: (+4), 02 = (=+), O3 : (+—), Os:(~-)
we have the primitive element § = 6, and the four embeddings
01(8) = 01, 02(0) = bs, 03(6) = 03, 04(0) = 4.

The canonical embedding is given by
' o = (Roy, So1, Roz, Soa)

but (1,8, 62%,6%) is not an integral basis, because 2* + 222413
is not reduced. An integral basis is

(1,3(1+6), 53+ 06%), (1 +6)(3+6%)

We obtain the lattice generator matrix:

1.000 0.000 1.000  0.000

= 1.070 —-0.758 —0.070 —0.758
0.500 -0.866  0.500 0.866

-0.121- —-1.306 0.621 —-0.440

The fundamental volume is vol (A42) = |det (G)| = 2.70 and
the minimum squared Euclidean distance is d% ;. = 2. The
diversity is given by L = ro = 2 since the vector (1,0,1,0)
belongs to the lattice and d$((0,0,0,0),(1,0,1,0)) = 1.

Ays — K = Q(iy/ -3+ 2V5)

The roots of the minimal polynomial 24 — 622 — 11 are

91=\/3+2\/57
92=—\/3+2\/5;
85 =i\ -3 +2V5

fa=—i\/-3+2V5

and

With 6 = 03, the four embeddings are 01(0) = 61,02(0) =
62,03(8) = 63, and 04(¢) = 64 and the integral basis has
the same form as in A4 >. The canonical embedding is given
by ¢ = (01,02,R03,S03). We obtain the lattice generator
matrix:

1.000 1.000 1.000  0.000
G = 1.866 —0.866 0.500 -—0.606
| 2618 2618 0.381 0.000
4.887 —2.269 0.190 -0.231

As an example we show the' calculation of the element (4, 2)
of the above matrix

o221+ )3+ 6%) = 02(3)02(1 + 0)02(3 + 6%)
= 03(3)(02(1) + 02(6))
(02(3) + 02(6%))
=11 +065)(3+63) = —2.269
The fundamental volume is vol(Ag3) = |det(G)| =

8.29 and the minimum squared Euclidean distance is
d2 = 2. The diversity is given by L = 7 + 75 = 3

FE min

since the vector (1,1,1,0) belongs to the lattice and
d;7((0,0,0,0),(1,1,1,0)) = 1.

Asg— K = Q(WT7+2V5)

The roots of the minimal polynomial z* — 1422 + 29 are

1=\ 7+2V5
0= —\/T+2V5
B =1/7-2V5
6y = —\/7 — 2V5.

With 6 = 6y, the four embeddings are o1(8) = 61,09(0) =
B2, 03(0) = 83,04(8) = 84, and an integral basis has the same
form as in A4 2. We obtain the lattice generator matrix

and

1.000 1.000 1.000 1.000

Q- -1.193 -0.294 1.294 2.193
3.618 1.381 1.381 3.618

—4.318 —0.407 1.789 7.936

The fundamental volume is vol (Ag4) = |det(G)| = 26.92
and the minimum squared Euclidean distance is d% ., = 4.
According to Section IV-C, the diversity is 4 and dp, i, = 1.

VI. LATTICES FOR THE GAUSSIAN CHANNEL
ADAPTED TO THE FADING CHANNEL

The idea of rotating a QAM constellation in order to
increase its diversity was first presented in [8]. The advantage
of such a technique lays in the fact that the rotated constellation
holds its properties over the Gaussian channel. The method
proposed was straightforward: find the rotation angle which
gives a diversity of 2 and maximizes the minimum product
distance. It was found that for a 16-QAM the rotation angle of .
m /8 was optimum. Unfortunately, in dimensions greater than
2 this method becomes impracticable.
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TABLE It
ASYMPTOTIC. GAINS FOR THE GAUSSIAN CHANNEL
nire=0|ra=1{rp,=2|rm=3|r,=4
210485 | 0625 | — — —
3|-0863| 0242 | — | — | —
41-1.130 | 0.178 | 0.850 — —
5| —1.341 | —0.084 | 0.597 | — —
6 | —1.347 | —0.286 | 0.380 | 1.133 | —
7| -1.983 7 ? ? —
8 | —1.5632 ? ? ? 1.406

We have at our disposal the work of Craig [19], [20],
who showed how to construct the lattices Fg, Fg, Azg (Leech
lattice) from the totally complex cyclotomic fields K =
Q(e*/N) for N = 9,20,39. Applying his procedure we
found D, (Schlafli lattice), K15 (Coxeter—Todd’s lattice), and
A1s (Barnes-Wall’s lattice) from the 8th, 21st, and the 40th
root of unity. These lattices are obtained by applying the
canonical embedding to particular integral ideals of the above
cyclotomic fields. The ideals are given in Table IV. The lattices
we obtain are actually sublattices of o(Og ). This means that
they have the same diversity L = n/2 of o(Of), but a much
higher fundamental gain compared to the lattices presented in
Section V.

To illustrate the construction of the most famous lattice
sphere packings, we need a few more results from algebraic
number theory.

A. Ideals in the Ring of Integers

In the sequel, all given definitions and properties for ideals
are true only in number fields and are not necessarily valid
in an arbitrary field. For more theoretical details, the reader
should consult [11]-[13].

Definition 10: Let K be a number field of degree n and
Og its ring of integers. An ideal I of O is a sub-Z-module
of Ok such that for every a € O and b € I we have ab € I,
briefly ol C I and bOg C I.

The sum and the product of two ideals I and J of Oy are
also ideals of Ok and are defined by

I+J={zx+y, wherez € [andy € J}

IJ:{Z:ciyi, where z; € I and y; EJ}.

7

Similarly, the intersection of two ideals is an ideal and we
have the inclusions

IJcIﬂJCI_cI+J.

Definition 11: Anideal I of Ok is called prime (or maxi-
mal) if the quotient ring O /I is a field. I is called principal
if I = aOp for some algebraic integer ¢, in this case we also
denote I = (w). ‘

Result 9: Let I be a nonzero ideal of Og. Then I is a
module of maximal rank. The quotient ring O /I is finite and
its cardinality is called the norm of the ideal I and denoted

N(I), N(I) = Card Ok /1) = [Ox : 1],

If wi,ws,---,w, is an integral basis of Ok, we can write
Ok = wiZ + weZ ++-- + wyZ. It simply means that the
integral basis is a Z-basis and that O is a module of maximal
rank n. Let  be a nonzero element of I. The following
relation ©Oxr C I C Opgk shows that I is included in a
module of rank » and that I contains a module of rank n.
Hence, I itself has the maximal rank n. It can be expressed
as I = ywZ+2Z + - -+ v, Z where ~; are elements-of O
The proposition below follows:

Result 10: Any nonzero ideal I of Ok can be written as
I =yZ+vZ+ - +vZ. The set {y;,s = 1---n} is
called a Z-basis of I. :

After applying the canonical embedding o to the ideal I
included in the ring O, we obtain the lattice A; = o(I) of
rank 7 included in A = o(Og). As a consequence of the two
above results, the generator matrix G of Ay is given by (17) °
at the bottom of this page.

Logically, we ask for the relation between the two matrices
G and Gy. This can be found by comparing O and I as
Z-modules. Let T be the n x n matrix associated with the
transition from the first basis to the second basis, i.e. ’

T w1

Y2 w2
. =Tx

Yn Wn,

Indeed, the «y;’s are algebraic integers and can be written

as linear combinations of the w;’s. v; = XP_;t;wk, where
tik € Z. We deduce that T = [t;;] is an integer matrix. 7'
is also known as the integral matrix representation of 1.
Furthermore, we can announce the following result:
" Result 11: The generator matrix G of the lattice A7 can
be obtained from the generator matrix G of the lattice A by
applying the transition T' between the Z-bases of I and Ox,
briefly Gy = TG. ‘

This is derived directly from the formula v; = Xr_ 1 tieWe,
which is also valid after taking the real part and the imaginary
part of both sides

n ‘ n
oj(3) = D oj(tawwr) = > tinos(we).
k=1 k=1

o1(71) or(m) Ror11(m)
a g1 (72) Ory (,72) §:FE(T'l"l +1 (’YZ) ) %0.7“1'1—1 (72)
= . .
g1 ('Yn)

%UTl +1 (71)

0-”1(7'”) §RO_’I‘1+1('YN) Sa'rl-ﬁ-l(’)’n)

\ Roryir (M) SOpypry (1)

%01‘1 +7o (’YZ) %Un +.7“2 (72) (17)

ROy 4y (’Y@) S04y (V)
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The equality Gy = T'G allows us to write det G = detT x
det G which means that vol (A7) = |detT'| x vol (A). The last
equation can be used to compute the fundamental volume of
Ag.

Result 12:

vol (A7) = (18)

N(I) x 2772 x \/|dx].

Proof: By definition N(I) is equal to the cardinality
of Ok /I. But Og/I is isomorphic to the quotient A/A;
due to the canonical embedding ¢. Thus they have the same
cardinality (or same index as quotient groups). So we have
N(I) = |A/Ag|. But the group partitioning [7], A == A; +
[A/Af], shows that a fundamental region of the sublattice Az
can be constructed as the disjoint union of |A/Af| copies of
a fundamental region of A i.e. :

vol (Ar) = |A/Az| X vol (A) = N(I) x vol (A).

Finally, (18) is obtained by combining vol (A;) = N(I) X
vol (A) and (13). QE.D.
Now we can relate 7" and N(I) with N(I) = |detT|, since

vol (A]) = N(I) vol (A) =

This is very useful especially when I is a principal ideal. In
this case, the transition matrix is functlon of a and will be
denoted T = R(a).

Result 13: Let I = Ok be a principal ideal. The norm of
I is equal to the absolute value of the algebraic norm of its
generating element N(I) = |N(«a)|.

Proof: The Z-basis of the principal ideal I = aOk is

the set {aw;,7 = 1---n}. The transition equation becomes

|det T vol (A).

w1 w1
%)) (1553

ax | . =R(a) x | . 19)
Wn ' Wn

Recall that T = R(a) and N(I) =
the conjugates of the above identity,

|detT’|. If we take all

ox(a)(or(wr), ox(wz), - -, or(wn))
= R(O{)(Uk(wl), ox(wa), -

fork =1,2,-.-,n ,where the prime indicates the transposition
of the vector. We can write in a concise form

son(a)) = R()Q

>0k(wn))/

Q2 diag(o1(a), o2(a),- - -

where Q@ = [o;(w;)] for 4,5 = 1,---,n. Taking the deter-
minant we obtain det R(a) = N(«) and finally N(I) =
|det R(e)| = |N (). QE.D.
Example 5: Let K = Q(+/5) and let § be a primitive
element with minimal polynomial 2* — z — 1. Given o =
0 —3 € Ok, we want to compute the integer transition matrix
= R(a) = (%). Using (19) with w; = 6°"* and the
1dent1ty 6% = 6+ 1 derived from the minimal polynomial,

we obtain
-3 _f{a+ bl
2041/ \c+db

( 13 ! ,)- We now have
N(-5+5/2) =5

which is equal to det R(6 — 3). The generator matrix G of
Aj, where I = aOg, is computed by

~5++/5
GI:TG:R(0—3)G=< 2
-5

which gives R(a) =
N(§—-3)=

_5_ \/5

5 )
V5

and (18) can be easily verified. \

We have seen the Z-basis representation of an ideal I.
This representation was very practical to get properties for the
associated lattice A; = o(I). Equation (18) is very important
and will guide us in the construction of A;. We note also
that the norm of the product of two ideals in Og is equal to
the product of the norms N(IJ) = N(I)N(J). This result
is closely related to (18). Sometimes when searching for an
ideal of a given norm N () to build Ay, we start from an ideal
H such that N(H) = ¢N(I) where c is an integer constant.
Clearly, we are tempted to search for an ideal H = IJ,c =
N(J). Hence, we face the problem of factoring an ideal in the
ring of integers. The factorization method for principal ideals
is given in Result 16. Unfortunately, the factorization is a little
bit difficult if we use the Z-basis representation of the ideal.
The following result shows a new representation of an ideal
based on two elements of Og.

Result 14: Let I be an ideal of Og. For any nonzero
element o € I there exists an element S € I such that
I = a0k + BOgk. a and (3 are called Og- generators of
I. The ideal is denoted I = (o, ).

The above result says that any ideal I in O can be

' _expressed as the sum of two principal ideals. What about the

Z-basis of I = aOg + O ? This can be found if we notice
that

I =awnZ+ -+ awnd + PuwrZd+ -+ BwnZ

We obtain 2n Z-geperators of I. But the transition matrix
T is defined only by n Z-generators. So the difficulty is to
determine a Z-basis with n elements given a Z-basis with 2n
elements. This can be done by searching for the n X n integer
matrix 7" whose rows span the same subgroup of Z" generated
by the rows of R(a) and R(f).

Result 15: Every ideal I of Ok can be written in a unique

way as
I= H Jes
J

the product being over a finite set of prime ideals J. The
exponents e; are positive integers.

Result 16: Let K = Q(f) be a number field, where 6 is an
algebraic integer whose minimal polynomial is denoted p(z).

Let f = : Z101]. Then for any prime p not dividing f one
can obtam the factorization of the principal ideal I = pOg .
as follows. Let
g v
w(z) = Hp,i(x)ei (mod p)

i=1
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TABLE IV
SOME KNOWN LATTICES FROM CycLoToMIC FIELDS
Q(6) N Tdeals
Dy 6441 8 (2,6+1)
Ess 0% —6+1 9 GB,0+1p)
Esa P —0+8t—-02+1 20 (5,0-2)
Kize 612 — 9" 1+ 6° — 954 21 (7,6 +3)
+6° -84+ 6% -8+1 ’
Ases 916 — 613 468 9t 11 20 | (2,04 +65+ 82 L0 +1)
. (5,62 +2)
Au,u 9% 73 1§21 _ 920 | 918 _ 1T L 15 _gl4 | 39 (3’ 46— 1)
B R R A AR N A R (B3,6°+8*+8+1)
(13,6 - 3)

be the decomposition of p(z) into irreducible monic factors
pi(z) in the ring of polynomials over GF (p), the Galois field
. of order p. Then

g
I=p0g =[] J5
i=1
where J; = pOx + 11(6)Ok.
Furthermore, the index f; = [Ox/J; : GE(p)] is equal to
the degree of p;(z). We have

9

deg(K)=n=> ef;

1=1

and the norm of the prime ideal J; is given by N(J;) = p:.
Let us check the norm of I = pOj in the factorization

theorem. All the conjugates o;(p) of p are equal to p because
p is-an integer. The algebraic norm of p is

N(p) = Hffi(p) =p" =

From the decomposition formula we see that

g g
[IvEe) =TTo" =
i=1 i=1

It is clear that the factorization of an ideal requires the
factorization of a polynomial in a finite field (modulo p).

N(D).

N(I) =

The above algorithm will be used in the next subsection to

decompose prime ideals while building the lattices of Table
IV. Note that the ideals in Table IV are defined by two Og-
generators. The last two ideals (for A1 and Agy) are given as
the product of two and three prime ideals, respectively.

B. Lattices from Cyclotomic Fields Ideals

In this section we assume that K is the cyclotomic field
K = Q(0) where § = e2"/N denotes a primitive Nth root of
unity. Some well-known properties of cyclotomic fields are

1) The degree of K is n = ¢(N), where ¢ is the Euler

function.

2) The conjugates of § are the §* with ged (i,m) = 1.

3) The ring of integers is Ox = Z[f] (the index f is 1).

4) The minimal polynomial of 6 is

p(z) =[]

d|n

_ pyuln/a)

of degree n = $(N), u(3) is the Mobius function of
the integer <.
5) The absolute discriminant of K is

H p"/ (p-1),

pIN

dg = n/2Nn

Equation (18) is used to compute N(I) given the lattice
fundamental volume. The volume vol (A) is replaced by p™/§,
where p is the packing radius and § is the lattice center density
[6]. The search for the rotated lattices of Table IV having
dimension n and diversity n/2 goes through the following
steps:

1) Calculate the minimal polynomial of ¢*27/Y ‘which has
- degree ¢(N).

2) Find all ideals I of Ok with integer norm -

2n/2
VIdk|

3) Using the transition matrix 7" of I compute the generator
matrix Gy = T'G and evaluate the lattice parameters
such as the center density and the kissing number. If they
are equal to the parameters of Dy, Fg, Eg, A12, Ags,
or Aoy, then we have obtained a rotated version of
these lattices. In fact, these lattices are unique ‘with such
parameters.

N(I) =

0
X—é,—.

This procedure was applied successfully to obtain a gen-
erator matrix for each one of the lattices in Table IV. The
key operation is the factorization of prime ideals presented in
Result 16.

We show as an example the new constructions - of
Dy, Kizg and Ajgg.

D42

We first note that ¢(8) = 4 and that the other values of
N giving ¢(N) = 4 do not result in the rotated version of
D,, whose center density is 1/8. The minimal polynorial of
9 = ¢*27/8 is given in Table IV and the absolute discriminant
of the field K = Q(0) is dx = 2%. The signature of K is
(0,2). Using (18) we can write

2%/2 p* 3 4
NO=TFap=r

- and for N(I) = 2 we may take p = 1/+/2. The ideals I with

norm 2 can be obtained from the factorization of the prime
ideal (2), which has norm 2*

T2 =2,0+1)=1"
Now I has the desired norm 2. The generator matrix of our
lattice is then Gy = TG, where 7' is the integral matrix
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representation of [

2 000
1100
T_1010
1 0 01

and G is the generator matrix of o(Og ). The lattice generated
by Gy has center density 0.125 = 1/8 and kissing number
24 exactly like Dy. Since Dy is the unique lattice with these
parameters, we have constructed a rotated version of it with
diversity equal to 2.

Kizs

We first note that ¢(21) = 12 and that the other values of
N giving ¢(N) = 21 do not result in the rotated version of
K5, whose center density is 1/27. The minimal polynomial of
f = 27/12 j5 given in Table IV and the absolute discriminant
of the field K = Q(0) is dg = 35 - 7'0. The sxgnatule of K
is (0,6). Using (18) we can write

912/2 y p12 _ 26 . p12
V/36.710 T 1/27 75
and for N(I) = 7 we may take p = v/7/+/2. The ideals I

with such a norm can be obtained from the factorization of
the ideal (7), having norm 72,

(M=

In fact, N(I;) = N(Iz) = 7 so we may select ] = I, which
has the desired norm. The generator matrix of our lattice is
then G; = TG, where T is the integral matrix representation
of I

N() =

(776 + 3)6(77 6 — 2)6 = 11615

7 00000O0O0UO0UO0O00
31 000000UO0UO0O00O0
50 100000UO0UO0O00
6 001 0000O0UO0O00
3 00010000O0TUO00

T=500001000000
6 00000100000
300000010000
500000001000
6 00 0000O0O0T1O00
3 00000O0UO0O0O0T1O0
50 000000 O0O0TO0°1

and G is the generator matrix of o(Ok ). The lattice generated
by G has center density 1/27 and kissing number 756 exactly
like K12. Since K5 is the unique lattice with these parameters,
we have constructed a rotated version of it with diversity equal
to 6.

Miss

We first note that ¢(40) = 16 and that the other values of
N giving ¢(IN) = 16 did not result in the rotated version of
A1g, whose center density is 1/16. The minimal polynomial of
§ = ¢'27/40 js given in Table IV and the absolute discriminant

of the field K = Q(6) is dx = 2°2 - 52. The signature of K
is (0,8). Using (18) we can write

916/2 ple pl6
N(I) = X =
V232512 1/16 56 .94

and for N(I) = 2* - 5% we may take p = V2 - 5. So we need
to find the ideats I with such a norm. These can be obtained
from the factorization of the ideals (2) and (5), having norms
216 and 516, respectively.

(2)=(2,0*+ + 0 +6+1)* =1t
(5) = (5,07 +2)*(5,6° — 2)* = I 13
In fact

N(I,) = 2%, N(I,) = 5%, N(I3) = 5°

so we may select I = ;15 which has the desired norm
N(I) = N(I;I;) = N(I;)N(I) = 2* - 5%.

The generator matrix of our lattice is then G; = T'G, where
T is the integral matrix representation of I and G is the
generator matrix of o(Og ). The lattice generated by G has
center density 0.0625 and kissing number 4320 exactly like
Aqg. Since Ajg is the unique lattice with these parameters,
what we have constructed is simply a rotated version of it
with diversity equal to 8. '

VII. DECODING AND PRACTICAL RESULTS

A. Decoding Algorithm

The lattices codes found in Sections V and VI, when used
over the Gaussian channel, can be decoded using the algorithm
shown in [21], [22]. This algorithm searches efficiently for all
the lattice points inside a sphere of given radius V/C centered
at the received vector and then outputs the closest one. It can
be summarized as follow:

o Input: A received point r in the n-dimensional real space

R".

o Output: The lattice point  that minimizes 7, |r; — z;|?.

1) Select a real positive constant C' (the squared radius).

2) Enumerate all points in the n-dimensional sphere of

radius v/C centered at .

3) Choose the closest point to r.

We show how to adapt this lattice-decoding algorithm to
the Rayleigh fading channel case. For maximum-likelihood
decoding with perfect side information, the problem is to
minimize the metric m(z|r, ) given in (2). Let G be the
generator matrix of the lattice A and let us consider the lattice
A, with generator matrix

G. = G diag (o, - -

We can imagine this new lattice A, in a space where each
component has been compressed or enlarged by a factor
;. A point of A, can be written as u = (u1,--,un) =
(a121,- -+, nTx). The metric to minimize is then

n
= Z |ri b ’LL,'IQ.
=1 .

,Qn ).

m(z|r, @)
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Fig. 2. Lattice constellations over the Gaussian channel (7 4).
This means that we can simply -apply the lattice decoding
algorithm to the lattice A, when the received point is r. The
decoded point 4 € A, has the same integer components (in
Z™) as & € A. The additional complexity required by this
algorithm comes from the fact that for each received point we
have a different compressed lattice A.. So we need to compute
a new Cholesky factorization of the Gram matrix for each A,
[11], [12]. We also need

Gc_1 = diag (1/0517 Ty 1/an)G_1

to find the components of the received vector but this only
requires a vector—matrix multiplication since G~! can be
precomputed. :

As discussed in [21], this decoding algorithm is maximum-
likelihood only for an infinite lattice. When dealing with a
finite constellation, with a given spectral efficiency, some care
should be taken. In fact, the decoder may output a lattice point
which is not part of the signal set. The constellations we have
simulated are constituted by the points of the first shells of
the lattice in order to obtain the minimal average energy per
point. Since the decoding complexity increases with the search:
radius of the sphere, this is adaptively selected according to the
fading coefficients so that we can always find at least a point
of A, inside the sphere. To optimize the decoder whenever
the received point lays outside the outermost shell of the
constellation we take its projection on this shell. -

B. Results

We present some simulation results to illustrate and support
some of the statements made throughout the paper. Due to
the complexity of the decoding algorithm we have made
simulations up to dimension eight while for higher dimensions
we have plotted the upper bounds derived in the appendices.
All built constellations have a spherical shape. All curves give
the bit error probability as a function of E,/Ny for n = 4

bits/symbol. For convenience we will identify the lattice and
the lattice constellation carved from it, with the same symbol.
~ Fig. 2 shows the performance of different lattice constella-
tions over the Gaussian channel. Taking Z° as a reference we
can make the following observations.

e FEg only gains 2 dB at 107° although its asymptotic
coding gain is 3 dB [6]. This draws the attention to the
limitations of the asymptotic coding gain when used as
parameter for practical values of the error probability.

* Ag g, from the totally real field with minimal discriminant,
loses (curve on the right of Z%) 0.9 dB at 10~% and
asymptotically 1.5 dB (Table III), showing the weakness
of these lattices over the Gaussian channel.

* Ag 4, from the totally complex field with minimal discrim-
inant, gains 1.4 dB at 10~° and is only 0.6 dB at 10~°
from Fg, the asymptotically eight-dimensional optimal
lattice code for the Gaussian channel. * :

For comparison, Agy (at the most left) gains 3.7-dB over A
at 105, This curve is computed with (5) after adding 1.10
dB of shape gain.

Fig. 3 shows the performance over the Rayleigh
fading channel of the rotated versions of the lattices
Dy, Eg, Es, K12, Ase, the last two are upper bounds. As
discussed in Section ITI, the slopes of the curves asymptotically
correspond to the diversity. For these lattices we can see that
this is already true for low bit error probabilities.

o At 1073 the gam over Z® is about 17 dB and it-exceeds

25 dB at 107°.

* Eg 4 outperforms Dy o with 10 dB at 1073,

* Kz and Aigg curves (upper bounds) have been com-
puted using (10) after neglectmg high-diversity terms
(> L+1).

Fig. 4 shows the performance over the Rayleigh fading

channel of the lattice constellations from totally real algebraic
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Fig. 3. Rotated famous lattice ognstellations over the Rayleigh fading channel (7 = 4).
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Fig. 4. Lattice constellations from totally real algebraic number fields of minimal discriminant over the Rayleigh fading channel (7 = 4).

number fields. These lattices give a good performance over algebraic number fields. The curves achieve quite rapidly the
the fading channel but have negative asymptotic gains over slope corresponding to the diversity and their performance
the Gaussian channel. The gain of Ag g (compared to ZS) on over the fading channel is very close to the one of the
the Rayleigh channel is 19 dB at 1073 and >25 at 107°. corresponding lattices in Fig. 4.
Although the theoretical diversities are comparatively higher,
the actual slopes of the curves do not reach the asymptotic
value in the range of interest. For example, Ag ¢ curve at the
most left shows a diversity of 4 instead of 8. An explanation
of this fact comes from the high value of the product kissing Two different approaches (Sections IV, V versus Section
number for these constellations. VI) have been used to study two families of lattices in order
Fig. 5 shows the performance over the Rayleigh fading to achieve good performance over both Gaussian and Rayleigh
channel of the lattice constellations from totally complex channels, with high spectral efficiency.

VIII. CONCLUSIONS
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Fig. 5. Lattice constellations from totally complex algebraic number fields of minimal discriminant over the Rayleigh fading channel (n =

The first family is generated by canonical embedding over
the ring of integers of a number field. Among the lattices of this
family, we especially gave importance to the classes of totally
complex and totally real fields lattices. We found that totally
real fields lattices (A;e,1) exhibit very good performance on
Rayleigh channels with a maximal diversity of n. But they
have a negative gain on Gaussian channels caused by their
weak packing density. The totally complex fields lattices
(Acpix) are a compromise between diversity and packing
density. They showed a positive gain on Gaussian channels
and good performance on Rayleigh channels with a diversity
of n/2.

The second family of lattices is generated by canonical
embedding over special ideals in totally complex cyclotomic
fields. This family includes versions of the famous lattice
packings - Dy, Eg, Eg, K12, A1, and Agg. These lattices act
in a similar way as the n/2 diversity Acpix lattices over the
Rayleigh channel and thus can achieve a diversity from 2
through 12. Furthermore, these are the best lattices for the
Gaussian channel.

The first important point in this conclusion is the fact
that number fields with relatively small (or minimal) absolute
discriminants are known only for degrees less or equal to 8. So
the diversity of A e, cannot exceed &, unless mathematiciang
find optimal fields with higher degree. On ‘the contrary, the
lattices of the second family are less limited in diversity;
Aoy 12 achieves a diversity of 12. Of course, we can think
" about building Azy 16 and Agg 32 to attain diversities 16 and
32, respectively. But we are limited by the ratio of the system’s
complexity over the practical gain. We cannot forget also that
the study of the first family makes it possible for us to construct
and understand the second family.

A second nonnegligible point to be mentioned concerns the
practical aspects of lattice encoding/decoding. There exist no
efficient algorithms for encoding and decoding the lattices

4).

presented in this paper, especially those of the first family.
The universal decoding algorithm presented in the last section
has a high complexity in terms of number of arithmetical
operations. In fact, we are very pessimistic about finding a
fast and a cheap. decoding algorithm for the lattices of ‘the
first family. It is mainly too difficult to find a simple lattice
(such as Z™) containing these lattices and to make a group
partitioning from which a simple encoding/decoding algorithm
can be derived. On the contrary, we are very optimistic when
it comes to elaborate efficient encoding/decoding algorithms
for the /2 diversity lattices of the second family viewed as
rotated binary lattices. '

APPENDIX [
UPPER BOUND ON THE AWGN CHANNEL
In this Append1x we modify inequality (4) to express itasa
function of Fj/Ny. We assume that the constellation S has a
cubic shape centered at the origin and has volume (2A4)™. The
components z; of any point z in ' satisfy the inequality |z;| <
A. The total number of points in S can be approximated by

ez
~ vol(A)

for sufficiently large M. We want to compute the average en-
ergy per point £ = E[||z||?] without specifying the particular
lattice. Using a continuous approximation for the constellation
points, we compute the second-order moment of the hypercube
containing the constellation

dx

E/ el o

/ / (2 4+ +32) dxézA)n

The above integral is easily computed and gives E = nA?/3.




BOUTROS et al.: GOOD LATTICE CONSTELLATIONS FOR BOTH RAYLEIGH FADING AND GAUSSIAN CHANNELS 517

Since
A2 M?/™ yol (A)Z/" _ 27vol (M)
4 4
the average energy per bit is
B E A% 27vol(A)Pm
YT xn 3 12
and
dEmiﬂ/2 — dQEmm — 31 Eji dQE'mm
V2Ny 8Ny 27+1 Np vol (A)2/»”

This yields the upper bound (5) to the error probability for the
AWGN channel.

APPENDIX IT
UPPER BOUND ON THE RAYLEIGH CHANNEL

In this Appendix we derive an upper bound for the pairwise

* point error ‘probability P(z — y) on the Rayleigh fading

channel. The channel power gain is assumed normalized

E[a?] = 1. As described in Section II, the components r; of

the received vector are given by r; = «;xz; + n;. The received

point r is closer to y than to z, if m(ylr, «) < m(z|r,a). The
conditional pairwise error probability is given by

n

P(z - yla) =P(Z Iri — aigil?

i=1

n
< Z Ir; — sz |% |2 transmitted)

i=1

—P(Z lai(z; — yi) +nil> < Z |m|2>
i=1 i=1
:P(Z oZ(zi — y;)*
=1
V'n
+ 22681'((5@' — yl) n; S 0) .
=1

Now, let
X = il — yi)nix
i=1

is a linear combination of Gaussian random variables (the n;).
Consequently, y is Gaussian with zero mean and variance

n
oy = NOZa%(mi —yi)?

i=1
Let
. n
A= 1/2204?(.’1)5 — yi)z
i=1
be a constant. We can write the conditional pairwise error

probability in terms of x and A

Pz — yla) = P(x 2 4) = Q(A/oy)

where
Q) = a7 [ e (/) d

is the Gaussian tail function. The Gaussian tail function
can be upper-bounded [23] by an exponential Q(z)
1/2exp (—z2/2). This bound is very tight already for z > 3.
The conditional pairwise error probability becomes

1 A?
Pz — yla) < 5 eXp (‘ﬁ)

-1 2 ExP ( Z ai(z; — y1)2> .

The pairwise error probability P(xz — y) is computed by
averaging P(z — yl|a) over the fading coefficients o

Plz —y)= /P(z — yla)p(a) da

1 1
< 2/exp ( A Zaf(zi—yif)p(a) da.

i=1
The differential probability is
p(a) da = p(ay) -

where p(a;) = Zaie_"‘? is the normalized Rayleigh distribu-
tion. Replacing in the last inequality we obtain

plon) dog - - - dowy,

n
Pz -y <i]]L

i=1

Iié/ooo eXP( 8]1\, of (zi — i) )p(a;) do;

= / 2a; exp (—B;a?)do;
0

where

and B; = 1+ (z; — 4:)?/(8Ny). By simple calculations we
obtain I; = 1/B; and

11
P(xﬁy)giga

which is (7) in Section III. This upper bound is sufficient to
derive the optimization criteria for lattices on fading channels.
It differs from the classical Chernoff bound by a factor 1/2 and
can be tightened by the use of Gaussian ‘quadratic forms [5]
which lead to a coefficient equal to (**") /4% instead of 1/2.
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