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Golden Space–Time Trellis Coded Modulation
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Abstract—In this paper, we present a multidimensional trellis
coded modulation scheme for a high rate 2 2 multiple-input
multiple-output (MIMO) system over slow fading channels. Set
partitioning of the Golden code is designed specifically to increase
the minimum determinant. The branches of the outer trellis code
are labeled with these partitions and Viterbi algorithm is applied
for trellis decoding. In order to compute the branch metrics, a
sphere decoder is used. The general framework for code design
and optimization is given. Performance of the proposed scheme is
evaluated by simulation and it is shown that it achieves significant
performance gains over the uncoded Golden code.

Index Terms—Coding gain, diversity, Golden code, lattice, min-
imum determinant, set partitioning, trellis coded modulation.

I. INTRODUCTION

SPACE–TIME codes were proposed in [1] as a combina-
tion of channel coding with transmit diversity techniques

in order to enhance data rates and reliability in multiple-an-
tenna wireless communications systems. In the coherent sce-
nario, where the channel state information (CSI) is available
at the receiver, the design criteria based on rank and determi-
nant criteria for space–time codes in slow fading channels were
developed [1]. The design criteria aim to maximizing the min-
imum rank and determinant of the codeword distance matrix in
order to maximize the diversity and coding gain. This in turn
guarantees the best possible asymptotic slope of the error per-
formance curve on a log-log scale, as well as a shift to the left
of the curve.

Subsequent work designed new space–time trellis codes
and orthogonal space–time block codes [2], [4]. In particular,
orthogonal space–time block codes attracted a lot of interest
due to their low decoding complexity and high diversity
gain. Further work produced full diversity, full rate algebraic
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space–time block codes for any number of transmit antennas,
using number-theoretical methods [5]–[7]. A general family of
full rank and full rate linear dispersion space–time block codes
based on cyclic division algebras was proposed in [8]. However,
all the above coding schemes did not always exploit the full
potential of the multiple-input multiple-output (MIMO) system
in terms of diversity–multiplexing gain tradeoff [3]. In [9],
the Golden code was proposed as a full rate and full diversity
code for MIMO systems with nonvanishing minimum
determinant (NVD). It was shown in [10] how this property
guarantees the achievement of the diversity–multiplexing gain
tradeoff.

In this work, we focus on the slow-fading model, where it
is assumed that the channel coefficients are fixed over the du-
ration of a fairly long frame. In such a case, in order to re-
duce the decoding complexity, concatenated coding schemes
are appropriate. Space–time trellis codes (STTCs) transmitting
phase-shift keying (PSK) or quadrature amplitude modulation
(QAM) symbols from each antenna were designed according to
both rank and determinant criteria [1]. A more flexible design,
using a concatenated scheme, enables to separate the optimiza-
tion of the two design criteria. As an inner code, we can use
a simple space–time block code, which can guarantee full di-
versity for any spectral efficiency (e.g., Alamouti code [2]). An
outer code is then used to improve the coding gain. Essentially
two approaches are available:

• bit-interleaved coded modulation (BICM) using a powerful
binary code and computing bit reliability (soft outputs) for
the inner code;

• trellis-coded modulation (TCM) using set partitioning of
the inner code.

The first approach requires a soft-output decoder of the inner
code, which can have high complexity as the spectral efficiency
increases. The second approach, considered in this paper, over-
comes the above limitations and is appropriate for high data rate
systems. We note how the NVD property for the inner code is
essential when using a TCM scheme: such schemes usually re-
quire a constellation expansion, which will not suffer from a
reduction of the minimum determinant. This advantage is not
available with super-orthogonal STTCs proposed in [12].

A first attempt to concatenate the Golden code with an outer
trellis code was made in [18]. Set partitioning of the inner
code was used to increase the minimum determinant of the
inner codewords, which label the branches of the outer trellis
code. The resulting ad hoc scheme suffered from a high trellis
complexity.

In this paper, we develop general framework for code design
and optimization for Golden space–time trellis coded modula-
tion (GST-TCM) schemes. In [13]–[16], lattice set partitioning,
combined with a trellis code, is used to increase the minimum
square Euclidean distance between codewords. Here, it is used
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to increase the minimum determinant. The Viterbi algorithm is
used for trellis decoding, where the branch metrics are computed
by using a lattice sphere decoder [11] for the inner code.

We consider partitions of the Golden code with increasing
minimum determinant. In turn, this corresponds to a lattice
partition, which is labeled by using a sequence of nested binary
codes. The resulting partitions are selected according to a design
criterion that is similar to Ungerboeck design rules [14], [19].
We design different GST-TCMs and optimize their performance
according to the design criterion.

For example, we will show that 4- and 16-state TCMs achieve
significant performance gains of 3 and 4.2 dB, at frame error
rate (FER) of , over the uncoded Golden code at spectral
efficiencies of 7 and 6 bits per channel use (bpcu), respectively.

The rest of the paper is organized as follows. Section II intro-
duces the system model. Section III presents a set partitioning
of the Golden code which increases the minimum determinant.
Section IV, the GST-TCM, presents design criteria and various
examples of our scheme. Conclusions are drawn in Section V.

The following notations are used in the paper. Let denote
transpose and denote Hermitian transpose. Let and

denote the ring of rational integers, the field of rational num-
bers, the field of complex numbers, and the ring of Gaussian
integers, where . Let GF denote the bi-
nary Galois field. Let denote an algebraic number field
generated by the primitive element . The real and imaginary
parts of a complex number are denoted by and . The

-dimensional identity matrix is denoted by . The
-dimensional zero matrix is denoted by . The Frobenius

norm of a matrix is denoted by . Let be the eight-dimen-
sional integer lattice and let and (Gosset lattice) denote
the densest sphere packing in four and eight dimensions [21].

II. SYSTEM MODEL

We consider a MIMO system over
slow-fading channels. The received signal matrix ,
where is the frame length, is given by

(1)

where is the complex white Gaussian noise
with independent and identically distributed (i.i.d.) samples

is the channel matrix, which is
constant during a frame and varies independently from one
frame to another. The elements of are assumed to be i.i.d.
circularly symmetric Gaussian random variables .
The channel is assumed to be known at the receiver.

In (1), is the trans-
mitted signal matrix, where . There are three dif-
ferent options for selecting inner codewords .

1) is a codeword of the Golden code , i.e.,

(2)

where are the information symbols,

,

and the factor is necessary for energy normalizing
purposes [9].

2) are independently selected from a linear subcode of the
Golden code.

3) A trellis code is used as the outer code encoding across the
symbols , selected from partitions of .

We denote Case 1 as the uncoded Golden code, Case 2 as the
Golden subcode, and Case 3 as the Golden space–time trellis
coded modulation.

In this paper, we use -QAM constellations as information
symbols in (2), where . We assume the constellation
is scaled to match , i.e., the minimum Eu-
clidean distance is set to and it is centered at the origin. For
example, the average energy is for

. Without loss of generality, we will neglect
the translation vector and assume the -QAM con-
stellation is carved from , using a square (or cross-shaped)
bounding region , typical for QAMs. For convenience in
our analysis, we will choose to be in the positive quad-
rant. In order to minimize the transmitted energy of this constel-
lation, we center it with by adding a suitable translation.

SNR is defined as , where
is the energy per bit and denotes the number of information
bits per symbol. We have , where is the noise
variance per real dimension, which can be adjusted as

.
Assuming that a codeword is transmitted, the maximum-

likelihood receiver might decide erroneously in favor of another
codeword . Let denote the rank of the codeword difference
matrix . Since the Golden code is a full rank code, we
have .

Let , be the eigenvalues of the codeword dis-
tance matrix . Let be
the determinant of the codeword distance matrix and be
the corresponding minimum determinant, which is defined as

(3)

The pairwise error probability (PWEP) is upper-bounded by

(4)

where is the diversity gain and is the coding
gain [1]. In the case of linear codes analyzed in this paper, we
can simply consider the all-zero codeword matrix and we have

(5)

In order to compare two coding schemes for the
MIMO system, supporting the same information bit rate, but
different minimum determinants ( and ) and
different constellation energies ( and ), we define the
asymptotic coding gain as

(6)

We will only consider the case with , which enables
to exploit the full power of the Golden code with the minimum
number of receive antenna. Adding extra receive antennas can
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increase the receiver diversity and hence performance at the cost
of higher complexity.

Performance of both uncoded Golden code (Case 1) and
Golden subcode (Case 2) systems can be analyzed for .
The Golden code has full rate, full rank, and the minimum
determinant is [9]; thus, for Case 1, . For
Case 2, a linear subcode of is selected such that .
For GST-TCM (Case 3) we consider and the minimum
determinant can be written as

(7)

A code design criterion attempting to maximize is hard to
exploit, due to the nonadditive nature of the determinant metric
in (7). Since are positive definite matrices, we use the
following determinant inequality [22]:

(8)

The lower bound will be adopted as the guideline of our
concatenated scheme design. In particular, we will design trellis
codes that attempt to maximize , by using set partitioning
to increase the number and the magnitude of nonzero terms

in (8).
Note that our design criterion is based on the optimization of

an upper bound to the upper bound on the worst case PWEP in
(4). Nevertheless, simulation results show that the codes with
the largest always performe better.

III. UNCODED GOLDEN CODE AND ITS SUBCODES

In both Cases 1 and 2, the symbols are transmitted inde-
pendently in each time slot . The subscript will be
omitted for brevity. We recall below the fundamental properties
of the Golden code deriving from its algebraic structure [9].

• Full-rank: the cyclic division algebra structure guarantees
that all the codewords have full rank (i.e., nonzero deter-
minant).

• Full-rate: the spectral efficiency is of two -QAM infor-
mation symbols per channel use (i.e., bits/s/Hz)
and saturates the two degrees of freedom of the
MIMO system.

• Cubic shaping: this relates to the cubic shape of the vec-
torized eight-dimensional constellation and guarantees that
no shaping loss is induced by the code, i.e., reduced trans-
mitted energy.

• Nonvanishing determinant for increasing -QAM size:
this property is derived from the discrete nature of the
infinite Golden code.

• Minimum determinant : this preserves the
coding gain for any -QAM size.

• Achieves the diversity multiplexing gain frontier for
2TX-2RX antennas [10]

These particular properties of the Golden code are the key to its
performance improvement over all previously proposed codes.
The NVD property is especially useful for adaptive modulation
schemes or whenever we need to expand the constellation to
compensate for a rate loss caused by an outer code, as in TCM.

A. Uncoded Golden Code

At any time , the received signal matrix
can be written as

(9)

where is the channel matrix, the trans-
mitted signal matrix, and the noise matrix. Vector-
izing and separating real and imaginary parts in (9) yields

(10)

where are given in (11), (12), (13), and (14), respec-
tively, at the bottom of the page. Lattice decoding is employed
to find such that

(15)

(11)

(12)

(13)

(14)
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TABLE I
THE GOLDEN CODE PARTITION CHAIN WITH CORRESPONDING LATTICES,

BINARY CODES, AND MINIMUM DETERMINANTS

where

(16)

is a rotation matrix preserving the shape of the QAM infor-
mation symbols . For this reason, we will identify the
Golden code with the rotated lattice where

(17)

The lattice decoding problem can be rewritten as

(18)

B. Golden Subcodes

Let us consider a subcode obtained as right principal ideal
of the Golden code [18]. In particular, we consider the sub-
code , where

(19)

Since has the determinant of , the minimum determinant
of will be .

Similarly, we consider the subcodes for ,
defined as

(20)

which provide the minimum determinant (see Table I).
In the previous section, we have seen how the Golden code-

words correspond to the rotated lattice points. Neglecting the
rotation matrix , we can define an isomorphism between and

. All the subcodes of correspond to particular sublattices of
which are listed in Table I. In particular, it can be shown that

the codewords of , when vectorized, correspond to Gosset lat-
tice points (see Appendix I). Similarly, we find that corre-
sponds to the lattice (the direct sum of two four-dimensional

Shäfli lattices) and corresponds to an eight-dimensional lat-
tice that is denoted by . Finally, since , we get the
scaled Golden code corresponding to .

Appendix II provides a simple overview of two basic tech-
niques, which will play a key role in rest of the paper: Con-
struction A for lattices [21] and lattice set partitioning by coset
codes [15], [16].

As described in Appendix II, since the subcodes of are
nested, the corresponding lattices form the following lattice par-
tition chain:

(21)

Any two consecutive lattices in this chain form a
four-way partition, i.e., the quotient group has order

. Let denote the set of coset leaders of the quotient
group .

The lattices in the partition chain can be obtained by Con-
struction A, using the nested sequence of linear binary codes

listed in Table I, where is the universe code, is the
extended Hamming code or Reed–Muller code RM , is
a subcode of is the dual of and is the empty code
with only the all-zero codeword [23]. The generator matrix
of the code are given by

Looking at we can see that is the direct sum of two parity-
check codes , this proves why it yields the lattice by
using Construction A. Similarly, since is the direct sum of
two repetition codes , we can get some insight about the
structure of the lattice .

Following the track of [14]–[16], we consider a partition tree
of the Golden code of depth . From a nested subcode sequence

, we have the corresponding
lattice partition chain ,
where

This results in four way partition tree of depth . Fig. 1 shows
an example for .

The coset leaders in form a group of order iso-
morphic to the group , which is generated by two
binary generating vectors and , i.e.,

GF
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Fig. 1. Two-level (` = 2) partition tree of � into 16 cosets of � .

If we consider all the lattices in (21) and the corresponding
sequence of nested codes , we have the following quotient
codes with their respective generators:

(22)

Note that in order to generate any quotient code ,
we stack the above vectors in the generator matrix
defined as

... (23)

so we can write

GF (24)

For example, to generate we use the four generators to
get the 16 coset leaders as

GF (25)

where

Note that since the code is self-dual, i.e.,
[23], we have

C. Encoding and Decoding the Golden Subcodes

In this subsection, we first show how to carve a cubic shaped
finite constellation from the infinite lattices corresponding to

Fig. 2. The E encoder structure resulting in a B shaped finite constellation.

the Golden subcodes. Construction A (Appendix II) is the tool
that also simplifies bit labeling for such a finite constellation.
We then discuss the relation between rate and average energy
required to transmit the constellation points. Finally, we analyze
the decoding of the finite constellation.

We consider the sublattice at level in the partition
chain and the eight-dimensional bounding region ,
the four-fold Cartesian product of the bounding region of the

-QAM symbols. For example, using square QAM constel-
lations, we have an eight-dimensional hypercube as bounding
region.

Using Construction A, a constellation point can
be written as

(26)

where is a eight-dimensional vector with in-
teger components and is a binary codeword of
the corresponding code . With an abuse of notation, we have
lifted the binary components GF to integers.

Each pair of components is in
. Note that there are only distinct points

from the -QAM that correspond to pairs of components
. Since the components are either

or , we are guaranteed that and .
We are now able to define the bit labels for the finite con-

stellation as follows. We use bits to label the
codewords of , through the generator matrix , and

bits to label the point .
As an example, the encoder structure is shown in Fig. 2.

Assuming 16-QAM symbols , we use bits to
label the points and bits to select one of the
codewords of as

(27)

Note that there are 16 possible codewords of .
We observe that the constellation requires higher en-

ergy to transmit the same number of bits as the uncoded Golden
code constellation , since . In particular, we have
that the index of the sublattice in .

For example, encoding 12 bits with requires the average
energy of the 16-QAM , while encoding the same
number of bits with the uncoded Golden code only requires the
average energy of an 8-QAM . Similarly, using
128-QAM we encode 24 bits with the lattice
constellation, while with an uncoded Golden code constellation
we can use 64-QAM with half the energy requirements

.



1694 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Fig. 3. Performance of Golden code with 64-QAM and E Golden subcode with 128-QAM (12 bpcu).

Let us consider the decoding problem for the fi-
nite constellation. Sphere decoding of finite constellations re-
quires high additional complexity to handle the boundary con-
trol problem, when the constellation does not have a cubic shape
[11]. In order to avoid this problem, we adopt the following
strategy.

Given the received point , the lattice decoder first minimizes
the squared Euclidean distances in each coset

(28)

where , then makes the final
decision as

(29)

Even if we perform sphere decoding operations, this strategy
is rather efficient, since each decoder is working on and
visits on average an extremely low number of lattice points
during the search. In fact, this is equivalent to working on the
lattice at a much higher SNR.

D. Performance of the Golden Subcodes

In order to compensate for the rate loss of any subcode, a
constellation expansion is required, as noted in the previous
section. For large QAM constellations, it can be seen that en-
ergy increases approximately by a factor of (1.5 dB) from
one partition level to the next. Since the minimum determinant
doubles at each partition level, we conclude that the asymptotic
coding gain (6) is (0 dB). However, for small constellations,
the energy does not double and some gain still appears. To illus-
trate the observations, we show the performance of and in
Figs. 3 and 4, corresponding to different spectral efficiencies. In
Fig. 3, we show the performance of with 64-QAM symbols
( bits per codeword) and with 128-QAM symbols
( bits per codeword), corresponding to a

spectral efficiency of 12 bpcu. We can see that both codes have
approximately the same codeword error rate (CER). This agrees
with the expected asymptotic coding gain

0.1 dB

Fig. 4 compares the performance of the with 8-QAM symbols
( bits per codeword) and with 16-QAM symbols
( bits per codeword), corresponding to
the spectral efficiency of 6 bpcu. We can see that the outper-
forms by 0.7 dB at CER of , in line with the expected
asymptotic coding gain

0.8 dB

This small gap is essentially due to the higher energy of the
8-QAM,1 for which .

It is interesting to note that the constellation is the densest
sphere packing in dimension . This implies that maximizes

among all subcodes of the Golden code. Code design based on
this parameter is known as a trace or Euclidean distance design
criterion [19, Sec. 10.9.3]. Our result shows how this design
criterion becomes irrelevant even at low SNR, when using the
Golden code as a starting point.

IV. TRELLIS CODED MODULATION

In this section, we show how a trellis code can be used as
an outer code encoding across the Golden code inner symbols

. We analyze the systematic design problem
of this concatenated scheme by using Ungerboeck style set par-
titioning rules for coset codes [14]–[16]. The design criterion

1This is the Cartesian product of a 4-PAM and 2-PAM constellation.
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Fig. 4. Performance of Golden code with 8-QAM and E Golden subcode with 16-QAM (6 bpcu).

Fig. 5. General encoder structure of the concatenated scheme.

for the trellis code is developed in order to maximize ,
since this results in the maximum lower bound on the asymp-
totic coding gain of the GST-TCM over the uncoded system

(30)

We note that the asymptotic coding gain gives only a rough es-
timate of the actual coding gain. Nevertheless, it is currently
the only means to obtain a tractable design rule for space–time
TCM schemes [1]. We then show several examples of the above
schemes with different rates and decoding complexity. We com-
pare the performance of such schemes with the uncoded Golden
code case.

A. Design Criteria for GST-TCM

Encoder Structure: In a standard TCM encoder the trellis en-
coder output is used to label the signal subset, while the uncoded
bits select the signals within the subset and yield the so-called
parallel transitions in the trellis [19]. Fig. 5 shows the encoder
structure of the proposed concatenated scheme. The input bits
feed two encoders, an upper trellis encoder and a lower sub-
lattice encoder. The output of the trellis encoder is used to se-
lect the coset, while the sublattice encoder will select the point
within the coset. The trellis will have parallel transitions on each
branch corresponding to the constellation points within the same
coset.
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We consider two lattices and from the lattice par-
tition chain in Table I, such that is a proper sublattice of
the lattice , where denotes the relative partition level of

with respect to . Let denote the absolute partition
level of the lattice . For example, with , we
have and , with , we have

and .
The quotient group has order

(31)

which corresponds to the total number of cosets of the sublattice
in the lattice .

Let us consider a trellis encoder operating on information
bits. Given the relative partition depth , we need to select

distinct cosets. If we consider a trellis code with rate
, the trellis encoder must output

bits

hence we can input bits. Since the trellis has in-
coming and outgoing branches from each state, this choice is
made to preserve a reasonable trellis branch complexity. The
previous design, proposed in [18], had a much larger branch
complexity.

The bits are used by the coset mapper to label the coset
leader . The mapping is ob-
tained by the product of the -bit vector with a binary coset
leader generator matrix

... (32)

where the rows are taken from (32).
We assume that we have a total of input

information bits. The lower encoder is a sublattice encoder for
and operates on the remaining information bits.

The bits label the cosets of in
by multiplying the following binary generator matrix:

... (33)

which generates coset leader . We finally add
both coset leaders of and modulo to get . The remaining

bits go through encoder and generate
vector as detailed in Appendix II. Finally, is added to
(lifted to have integer components) and mapped to the Golden
codeword .

We now focus on the structure of the trellis code to be used.
We consider linear convolutional encoders over the quaternary
alphabet with operations. We assume

Fig. 6. The four-state encoder with g (D) = 1 and g (D) = D and corre-
sponding trellis diagram. Labels on the left are outgoing from each state clock-
wise, labels on the right are incoming counterclockwise.

the natural mapping between pairs of bits and symbols, i.e.,
. Let denote the input

symbol and denote the output symbols gen-
erated by the generator polynomials over .

For example, Fig. 6 shows a four-state encoder with rate
defined by the generator polynomials

and . The trellis labels for outgoing and incoming
branches listed from top to bottom. Fig. 1 shows how the

cosets can be addressed through a partition tree of
depth .

Labeling: Let us first consider the conventional design of the
trellis labeling in a TCM scheme. We then show how this can
be directly transferred to GST-TCM. The conventional TCM
design criteria attempt to increase the minimum Euclidean dis-
tance between codewords in the following way.

1) Use subconstellations with a larger minimum Euclidean
distance , known as intra-coset distance.

2) Label the parallel branches in the trellis with the points
within the same subconstellation.

3) Label the trellis branches for different states so that the par-
titions can increase the inter-coset distance among
code sequences.

The aim of our GST-TCM design criteria is to maximize the
lower bound in (8). The additive structure of the
enables to use the same strategy that is used for the Euclidean
distance in conventional TCM design. Let

(34)

denote the minimum determinant on the trellis parallel transi-
tions corresponding to the Golden code partition of ab-
solute level . Let

(35)

denote the minimum determinant on the shortest simple error
event, where is the length of the shortest simple error event
diverging from the zero state at and merging to the zero state
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Fig. 7. Inter coset distances for a two-level partition tree.

TABLE II
SUMMARY OF THE PARAMETERS OF GST-TCM EXAMPLES

at . We can increase in (35) either by increasing
or by increasing the terms. Fig. 7 shows the pos-

sible inter coset distances contributing to (35).
Note that once is fixed, Ungerboeck’s design rules focus

on the first and last term only. The lower bound in (8) is
determined either by the parallel transition error events or by the
shortest simple error events in the trellis, i.e.,

(36)

The corresponding coding gain will be

(37)

Therefore, we can state the following.

Design Criterion: We focus on . The incoming and out-
going branches for each state should belong to different cosets
that have the common father node as deep as possible in the
partition tree. This guarantees that simple error events in the
trellis give the largest contribution to .

In order to fully satisfy the above criterion for a given relative
partition level , the minimum number of trellis states should be

. In order to reduce complexity we will also consider

trellis codes with fewer states. We will see in the following that
the performance loss of these suboptimal codes (in terms of the
above design rule) is marginal since is dominating in (36).
Nevertheless, the optimization of yields a performance en-
hancement. In fact, maximizing has the effect of minimizing
another relevant PWEP term.

Decoding: Let us analyze the decoding complexity. The de-
coder is structured as a typical TCM decoder, i.e., a Viterbi algo-
rithm using a branch metric computer. The branch metric com-
puter should output the distance of the received symbol from all
the cosets of in . The decoding complexity depends
on two parameters

• the total number of distinct parallel branch metrics,
• the number of states in the trellis.

We observe that the branch metric computer can be realized
either as a traditional sphere decoder for each branch or as single
list sphere decoder which can keep track of all the cosets at once.

B. Code Design Examples for TCM

In this subsection, we give four examples of GST-TCM with
different numbers of states using different partitions .
We assume a frame length in all examples. All related
parameters are summarized in Table II.

The trellis code generator polynomials have been selected by
an exhaustive search among all polynomials of degree less than
four with quaternary coefficients. The selection was made in
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order to satisfy the design criterion (when possible) and to max-
imize .

We first describe the uncoded Golden code schemes, which
are used as reference systems for performance comparison. In
the standard uncoded Golden code, four -QAM information
symbols are sent for each codeword (2), for a total of infor-
mation bits, where . When is not integer, we have
to consider different size QAM symbols within the same Golden
codeword, as shown in the following examples.

• 5 bpcu—A total of 10 bits must be sent in a Golden code-
word: the symbols and are in a 4-QAM (2 bits), while
the symbols and are in a 8-QAM (3 bits). This guaran-
tees that the same average energy is transmitted from both
antennas. In this case, we have
and bits.

• 6 bpcu—A total of 12 bits must be sent in a Golden code-
word: the symbols are in a 8-QAM (3 bits). In this
case, we have and bits.

• 7 bpcu—A total of 14 bits must be sent in a Golden code-
word: the symbols and are in a 8-QAM (3 bits), while
the symbols and are in a 16-QAM (4 bits). This guaran-
tees that the same average energy is transmitted from both
antennas. In this case, we have
and bits.

• 10 bpcu—A total of 20 bits must be sent in a Golden code-
word: the symbols are in a 32-QAM (5 bits). In
this case, we have and bits.

Example 1: We use a two level partition . The 4-
and 16-state trellis codes using 16-QAM gain
2.2 and 2.5 dB, respectively, over the uncoded Golden code

at the rate of 5 bpcu.

The two-level partition ( and ) has a quotient
group of order . The quaternary trellis
encoders for 4 and 16 states with rate , have

input information bits and output bits, which
label the coset leaders using the generator matrix with rows

. The trellis structures are shown in Figs. 6
and 8, respectively. The sublattice encoder has and

input bits, giving a total number of input bits per
information symbol 2.5 bits.

In Fig. 6, for each trellis state, the four outgoing branches with
labels , corresponding to input , are listed
on the left side of the trellis. Similarly, four incoming trellis
branches to each state are listed on the right side of the trellis
structure. In this case, chooses the cosets from in
and chooses the cosets from in .

We can observe that the four branches merging in each state
belong to four different cosets of in , since is con-
stant and varies (see Fig. 10). This guarantees an increased

. On the other hand, the four branches departing from each
state are in the cosets of in . This does not give the largest
possible since varies. Looking, for example, at the
zero state, there are four outgoing branches labeled by

and is fixed to , while the four incoming branches
are labeled by and .

Fig. 8. The optimal 16-states trellis corresponding to the generators g (D) =
D and g (D) = 1 + D . Labels on the left are outgoing from each state
clockwise, labels on the right are incoming counterclockwise.

This results in a suboptimal design since it cannot guarantee
that the outgoing trellis paths belong to cosets that are in the
deepest level of the partition tree. We can see that the
shortest simple error event has a length of , corre-
sponding to the state sequence and labels .
This yields the lower bound on the asymptotic coding gain

1.4 dB (38)

The above problem suggests the use of a 16-state encoder. In
Fig. 8, we can see that the shortest simple error event has length

corresponding to the state sequence
and labels . In general, we have that the first output
label is fixed for both outgoing and incoming states. This
guarantees both incoming and outgoing trellis branches from
each state belong cosets with the deepest father nodes in the
partition tree. This yields the lower bound on the corresponding
asymptotic coding gain

2.0 dB (39)

Compared to 4-state, the 16-state GST-TCM has a higher de-
coding complexity. It requires 64 lattice decoding operations in
each trellis section, while the 4-state GST-TCM only requires
16 lattice decoding operations. Note that each lattice decoding
operation is working on .
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Fig. 9. Performance comparison of a 4-state trellis code using 16-QAM constellation and an uncoded transmission at the rate 5 bpcu, � = E ;� = 2 ; ` = 2

(see Example 1).

Performance comparison of the proposed codes with the
uncoded scheme with 5 bpcu is shown in Fig. 9. We can ob-
serve that a simple 4–state GST-TCM outperforms the uncoded
scheme by 2.2 dB at the FER of . The 16-state GST-TCM
outperforms the uncoded case by 2.5 dB at the FER of .

Example 2: We use a two-level partition (
and ). The 4- and 16-state trellis codes using 16-QAM

gain 3.0 and 3.3 dB, respectively, over uncoded
Golden code at the rate of 7 bpcu.

As in Example 1, we can see that the 4-state trellis code is
suboptimal since it cannot guarantee that both the incoming and
outgoing trellis paths belong to cosets that are in the deepest
level of the partition tree. In contrast, the 16-state trellis
code always has a fixed label in each state. This fully sat-
isfies the proposed design criteria. However, the 16-state code
requires higher decoding complexity. Finally, we have

1.4 dB (40)

for the 4-state GST-TCM and

(41)

for the 16-state GST-TCM.
Performance of both the proposed TCM and uncoded trans-

mission (7 bpcu) schemes is compared in Fig. 10. It is shown
that the proposed 4- and 16-state TCMs outperform the uncoded
case by 3.0 and 3.3 dB at the FER of .

Compared to Example 1, this GST-TCM has a higher de-
coding complexity. It requires lattice decoding op-
erations of in each trellis section or 16 lattice decoders of
cosets of .

Example 3: We use a three-level partition (
and ). The 16- and 64-state trellis codes using 16-QAM

gain 4.2 and 4.3 dB, respectively, over an uncoded
Golden code at the rate of 6 bpcu.

In Fig. 12, for each trellis state, the four outgoing branches
with labels , corresponding to input , are
listed on the left side of the trellis. Similarly, the four incoming
trellis branches to each state are listed on the right side of the
trellis structure. In such a case, chooses the cosets from in

chooses the cosets from in , and chooses
the cosets from in .

The four branches departing from each state belong to four
different cosets of , since and are constant, while
varies. On the other hand, the four branches arriving in each
state are cosets of . This does not yield the largest possible

, since only is fixed but varies. This results in a
suboptimal design since it cannot guarantee that both incoming
and outgoing trellis paths belong to cosets that are in the deepest
level of the partition tree.

We can see that the shortest simple error event has a length
of corresponding to the state sequence
and labels . This yields the lower bound of the cor-
responding asymptotic coding gain

2.0 dB (42)

The above problem suggests the use of a 64-state encoder.
In Fig. 8, we can see that the shortest simple error event
has length corresponding to the state sequence

and labels . Note
that now the output labels are fixed for all outgoing
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Fig. 10. Performance comparison of 4- and 16-state trellis codes using 16-QAM constellation and an uncoded transmission at the rate of 7 bpcu and� = ;� =

E ; ` = 2 (see Example 2).

Fig. 11. Performance comparison of 16- and 64- state trellis codes using 16-QAM constellation and an uncoded transmission at the rate of 6 bpcu and � =

;� = L ; ` = 3 (see Example 3).

and incoming states. This guarantees that both incoming and
outgoing trellis branches from each state belong to the cosets
that are deepest in the partition tree. This yields the lower
bound of the corresponding asymptotic coding gain

2.3 dB (43)

Performance of the proposed codes and the uncoded scheme
with 6 bpcu is compared in Fig. 11. We can observe that a
16-state GST-TCM outperforms the uncoded scheme by 4.2 dB
at the FER of . The 64-state GST-TCM outperforms the
uncoded case by 4.3 dB at FER of .

Note that in the Example with 16 states, we have the same
decoding complexity as in the previous example with 16 states.

Example 4: We use the same partition as in Example 3. The
16-and 64-state trellis codes using 64-QAM
gain 1.5 dB, in both cases, over an uncoded Golden code

at the rate of .

The trellis structures are shown in Figs. 12 and 14, respec-
tively. This yields the lower bounds of the corresponding
asymptotic coding gain

(44)
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Fig. 12. The 16-states trellis corresponding to the generators g (D) =
D; g (D) = D , and g (D) = 1 +D . Labels on the left are outgoing from
each state clockwise, labels on the right are incoming counterclockwise.

for the 16-state GST-TCM and

(45)

for the 64-state GST-TCM.
Fig. 13 compares the performance of the above codes at the

spectral efficiency of 10 bpcu with 64-QAM signal constellation
for GST-TCM and 32-QAM signal constellation for uncoded
case, respectively. It is shown that a 16-state GST-TCM outper-
forms the uncoded scheme by 1.5 dB at the FER of . The
64-state code has similar performance as the 16-state code.

Remarks: For GST-TCM, we can see that the lower bound
on is only a rough approximation of the true system

performance. This is due to the following reasons:

1) is based on the worst case pairwise error event which
is not always the strongly dominant term of the full union
bound in fading channels;

2) the lower bound on can be loose due to the deter-
minant inequality;

3) the multiplicity of the minimum determinant paths is not
taken into account.

Looking at Table II, we observe that the true coding gain is
better approximated by a combination of and
in (37), rather than .

V. CONCLUSION

In this paper, we presented GST-TCM, a concatenated
scheme for slow-fading MIMO systems. The inner code
is the Golden code and the outer code is a trellis code. Lattice set
partitioning is designed specifically to increase the minimum
determinant of the Golden codewords, which label the branches
of the outer trellis code. Viterbi algorithm is applied in trellis
decoding, where branch metrics are computed by using a lattice

sphere decoder. The general framework for GST-TCM design
and optimization is based on Ungerboeck TCM design rules.

Simulation shows that 4- and 16-state GST-TCMs achieve
3 and 4.2 dB performance gains over uncoded Golden code
at FER of with spectral efficiencies of 7 and 6 bpcu,
respectively.

Future work will explore the possibility of further code opti-
mization, by an extensive search based on the determinant dis-
tance spectrum, which gives a more accurate approximation of
the true coding gain.

APPENDIX I
PROOF OF (20)

Let us consider a subcode of the Golden code obtained
by , where is given in (19) and is
given as

(46)

where we omit the normalization factor for simplicity. After
manipulations, we obtain the subcode codeword

(47)

where are given by

(48)

(49)

(50)

(51)

Note that and . Vectorizing (47) yields

(52)

where is given by (53) and are given by (54) at
the bottom of the following page. The matrix can be written
as

Substituting the matrix , defined in (16), into above equation
yields the lattice generator matrix

By conducting Lenstra–Lenstra–Lovász (LLL) lattice basis re-
duction, we found that the lattice generator matrix has the
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Fig. 13. Performance comparison of 16- and 64-state trellis codes using 64-QAM constellation and an uncoded transmission at the rate of 10 bpcu and � =

;� = L ; ` = 3 (see Example 4).

minimum squared Euclidean distance . Since the de-
terminant of is , the packing density coincides with the one
of , which is the unique optimal sphere packing in dimension

. Note that there exist multiple lattice generator matrices for
lattices, all of which have the same properties as above [21].

Therefore, we conclude that the subcode of the Golden code
, when vectorized, corresponds to the lattice points. A sim-

ilar approach can be used for the other lattices in the partition.

APPENDIX II
CONSTRUCTION A AND SET PARTITIONING

In this appendix, we review the basic principles of Construc-
tion A and lattice set partitioning by coset codes following a
simple example based on the lattice . The general theory un-
derlying these techniques is described in detail in [21], [15],
[16]. We assume that the reader is familiar with the basic facts

of group theory, in particular, we will use the notions of group,
subgroup, quotient group, and group isomorphism [20].

Construction A establishes a correspondence between an in-
teger lattice and a linear binary code [21]. In particular, given an
integer lattice we obtain all the codewords of a linear binary
code by taking all components of the lattice points ,
we write

(55)

On the other hand, given a linear binary code with
codewords we can write

(56)

This construction provides also a simple relation between the
minimum Hamming distance of the code and the minimum
Euclidean distance between any two lattice points. For this
reason, it can be used to design dense sphere packing lattices

(53)

(54)

and
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Fig. 14. The optimal 64-states trellis corresponding to the generators g (D) = D; g (D) = D , and g (D) = 1 +D . Labels on the left are outgoing from
each state clockwise, labels on the right are incoming counterclockwise.

[21]. For our purposes we will use Construction A as means
to handle the set partitioning and to bit-label the lattice points
within a finite constellation.

As an example, let us consider a two-dimensional integer lat-
tice , depicted in Fig. 15. In such a lattice, the checkerboard
lattice is a sublattice of containing all integer vectors

such that is even. Using the repetition code of length
two we write

This is illustrated in Fig. 15, where the squares denote the
lattice that is the union of the lattice (light squares) and its
translate (dark squares).

Similarly, given the universe code
, we can write

Fig. 15. Example of Construction A and set partitioning of .

Given the linear code , the dual code is defined such
that , i.e., all the binary sums of a codeword
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from with a codeword from yield all the universe code-
words. In our example, has a dual code

.
Linearity of the codes is related to the additive group struc-

ture and enables to interpret codes and subcodes as groups and
subgroups. In turn, this lets us define a quotient group between
a code and its subcode.

For example, given that we can write the quotient
group as the set of two cosets of the subgroup , i.e.,

.
A well-known property of Abelian groups tells us that the

quotient group has itself a group structure. The quotient group
operation between two cosets is defined as

This implies that the quotient group is isomorphic to the so
called quotient code denoted by and defined as the set
of all the coset leaders. If is the universe code then the quo-
tient code coincides with the dual code, i.e.,

(57)

In our example .
Let us consider a lattice and sublattice . Thanks to

the group structure of lattices, we can define the quotient lattice
as the set of all distinct translates (or cosets) of , i.e.,

(58)

where are the translation vectors or coset leaders. Let
denote the set of all the coset leaders then we write

(59)

If and are the corresponding binary codes defined by
Construction A, we have the following group isomorphism:

(60)

Note that the quotient group defines a partition of into dis-
joint cosets of the same size , where denotes
the cardinality of the set. Thanks to the above isomorphism, the
index of the sublattice in the lattice is finite, i.e., .
Considering the fundamental volume of a lattices defined as

, where is the lattice generator ma-
trix, we have .

Consider the sequence of nested lattices
. Each coset of the quotient lattice can be identified by a coset

leader which is related to the quotient code as follows:

and (61)

This is due to the fact that the lattice is obtained by Con-
struction A with the code, containing only the all-zero
codeword. The partitions of the basic lattice can be written
as

(62)

Fig. 16. The two-way partition tree of .

Fig. 17. Labeling the finite constellation carved from D .

In our example, we first partition into two cosets: the sub-
lattice and its translate (squares and circles in
Fig. 15, respectively)

The number of partitions equals to the index of the sublattice
in and equals . We can further partition

each coset by partitioning into two cosets. The sequence of
nested lattices induces a partition chain

which can be represented by the two-level binary partition tree
in Fig. 16.

We observe how Construction A yields a simple bit labeling
of a finite constellation carved from the infinite
lattice with shaping region . In particular, since ,
with generated by code generator matrix , the
constellation points are written as , with
and .

In order to label the constellation points , we form the bit
label vector as the concatenation of two parts and , i.e.,

. The first part has bits and indexes the code-
word . The second part labels the integer vectors ,
such that . Note that the number of bits in depends
on the size of . When has a cubic shape, we can apply a Gray
labeling to each component of .

For example, Fig. 17 shows the labeling of an eight-point
constellation carved from , where one bit is used to select
one on the two codewords and , while the other two
bits to select one of the four points in .
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Fig. 18. Labeling the finite constellation carved from using the two level
set partitioning.

Finally, we consider the labeling of the entire finite constella-
tion carved from . In order to follow the partition into
cosets induced by , we use (62) to get

(63)

In particular, we add information bits, which are used to label
the codewords of the quotient code . So the final bit label
is .

Fig. 18 shows the labeling of the 16-QAM obtained by set
partitioning corresponding to Fig. 15. The extra bit selects
one of the two codewords of the dual code and , while

and are the same as in Fig. 17. This labeling technique
was first proposed by Ungerboeck and we can observe how the
overall labeling is not a Gray labeling of the 16-QAM.
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