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Il. THE QUATERNARY [24, 12]-GoLAY CODE

The binary Golay code is a cyclif23, 12, 7]-code generated
. . by the polynomialz'* + 2” + 2" + 2® + 2° + 2 + 1 € Zs[x].
On Z4- and Zo-Linear Lifts of the Golay Codes Hensel-lifting this polynomial toZ.[x] results in the polynomial
ztt 10 _ 2% — " — 2% —2® — 22" 42 — 1, which generates a free
[23, 12]-code overZ,. Extending the latter code by a parity check

produces &.-linear self-dual freg24, 12]-code E, which will be

Abstract—We analyze Z,- and Zy-linear lifts of the binary [24, 12] the subject of the following considerations. .
and ternary [12, 6]-Golay code under different weight functions on the In [3], the complete enumerator &, has been computed. Using

underlying ring, and present algebraic decoding schemes for these codes.this, we determine the symmetrized enumerator as
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Index Terms—Codes over rings, decoding, Golay codes, weight func-  SEx, (x, y, z) = 40962>* + 242882"%y" + 6800642 %y° 2>
tions on rings. - 16 4 4 16 2 6
4+ 1700160x "y~ 2" + 680064x "y =
+242882'°2% + 618242y 2

. INTRODUCTION _ 20 s .

At the begining of the 1990’s, A. A. Nechaev [12] and later + 1133440.:“19;/%2? +4080384m”y3/'9

R. Hammonset al. [10] hinted at the significance of rings in Coding + 4080384z “y" 2" + 11334402 “y° =
Theory. Since then many papers dealing with codes dyéequipped 4618242 2y =11 4 12144251422

with the Lee metric) and also other integer residue rings have been & 12 4 s 10 6
; ; ; ; ; 4+ 1700162 y "z 4+ 765072z "y =
published. Foundational aspects involving more general rings and
more general weight functions on these rings can be found in [15], + 12144002y 2® + 7650722%y° 2 *°
[16], [11], [13], [8], and [9]. - 8 4_12 514482 14 24
. . . . . . 170016 z 121442y~ =
In this correspondence we investigd@ielinear andZ-linear lifts A vy ET v Ty

of the extended binary and ternary Golay codes which have also been + 759y 02 + 2576y 21 + T59y% 10 4 2

considered in [2], [14], and [4]. The paper [14] completely classifies o6 the variable: corresponds to the unitg, to the elemen,
the set of isomorphy classes of self-diZatpreimages of the binary _ 4. o the zero element of,.Substituting: — 1 andz, y — ¢ we

code, and we mention that these can be used to construct the Le&‘&iuce the 16-term Hamming weight enumerator
lattice. '

Following the line of a recent work [9] we introduce weight W (t) =28385t™" + 61824¢™ + 692208t°
functions onZ, and Z; which reflect previously unknown error- +1133440£2" + 1870176¢2° + 4080384¢'°
correcting and packing capabilities of these codes. We compare their 18 17 16
properties with those of the Hamming, Lee, and homogeneous weight + 1445136t + 4080384¢™" + 1239447¢
(as presented in [11]) and give algebraic decoding schemes using the +1133440¢'° 4+ 765072¢"" + 61824¢'?
general decoder pregented in [8]. The decoding method presented 117250262 4 1214460 4+ 75065 4 1.
works for all free preimages of the Golay codes under the natural
binary (ternary) reduction. By the substitution: +— 1,2 — ¢t andy — ¢, we obtain the

In our discussion of different weight functions on the alphabget 15-term Lee weight enumerator
or Zs we will compute the volumes of the (open) balls of radius N s . 36 . 34
dmin/2 Where dmin is the minimum distance, in order to obtain a Wo(t) =7 + 1214487 + 61824¢
measure for the quality of the induced packing. This is done by an +195063t"% 4+ 1133440t + 14451364

4 447° 4 29212326* + 4 47
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1By lifting an extended cyclic code we mean, by abuse of notation, the 0. if r=0
canonical way of Hensel-lifting its generator polynomial to the ring in question e 7 N 4’ it e 7"
and then introducing the standard extension of the resulting cyclic code by a Wai £a — N, T = ! |7 €72

5, else.

check position.
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TABLE |
PerRMUTATIONS USED FOR DECODING OF E4

| Po H 1 ] 2 ] 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ] 14 ] 15 ] 16 ] 17 ] 18 ] 19 ] 20 ] 21 ] 22 ] 23 ] 21 |
Ty 1 2 3 4 11 9 7 22 14 16 13 24 5 6 20 19 17 12 10 23 8 21 15 18
T 2 3 4 11 9 7 22 14 16 13 24 5 6 20 19 17 12 10 23 8 21 15 1 18
T3 3 4 11 9 7 22 14 16 13 24 3 6 20 19 17 12 10 23 8 21 15 1 2 18
T4 4 11 9 7 22 14 16 13 24 3 6 20 19 17 12 10 23 8 21 15 1 2 3 18
T5 11 9 7 22 11 16 13 24 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 18
TG 9 7 22 11 16 13 24 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 18
T 7 22 14 16 13 24 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 18
T8 22 11 16 13 21 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 7 18
T 11 16 13 241 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 7 22 18
T 16 13 24 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 7 22 14 18
T 13 24 5 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 7 22 14 16 18
T2 241 5 6 20 19 17 12 10 23 8 21 15 1 2 3 1 11 9 7 22 11 16 13 18
T3 5 6 20 19 17 12 10 23 8 21 15 1 2 3 1 11 9 7 22 11 16 13 241 18
T4 6 20 19 17 12 10 23 8 21 15 1 2 3 4 11 9 7 22 14 16 13 24 5 18
T 20 19 17 12 10 23 8 21 15 1 2 3 1 11 9 7 22 11 16 13 21 5 6 18
TG 19 17 12 10 23 8 21 15 1 2 3 1 11 9 7 22 11 16 13 241 5 6 20 18
TIT 17 12 10 23 8 21 15 1 2 3 4 11 9 7 22 14 16 13 24 5 6 20 19 18
T8 12 10 23 8 21 15 1 2 3 4 11 9 7 22 14 16 13 24 5 6 20 19 17 18
TG 10 23 8 21 15 1 2 3 1 11 9 7 22 14 16 13 21 5 6 20 19 17 12 18
TR0 23 8 21 15 1 2 3 1 11 9 7 22 14 16 13 241 5 6 20 19 17 12 10 18
T 8 21 15 1 2 3 4 11 9 7 22 14 16 13 24 3 6 20 19 17 12 10 23 18

For this weight the substitution— 1, 2 — t*, andy — ¢’ yields latter code by a parity check produceZalinear free[12, 6]-code

the weight enumerator E, which is the subject of this section.
W, — 170 L 9498841 | 6182410 at;Jrs:;Sg a computer program we compute the symmetrized enumer-
+ 12144¢"%% + 4096¢°° + 680064¢™* SEpy (2,9, ) = 174962'% + 950402 + 14256027y >
+ 1133440t™ 4 170016¢°* 4 1700160¢*" + 7128027y + 118802°2° + 166322°4°
+ 4080384t%® 4+ 765072t 4 759¢%° 4522722597 2 + 5040025y 22 + 4752025y 27
+ 680064¢™" + 4080384¢™* 4 1214400t™° 41188025y 2" + 475205 y57 + 244"
+ 24288t%* 4 1133440¢°® + 765072¢°> 44405 28 4 264502 4 212

60 1453 ~ 52
+ 2576t + 61824¢™ + 170016t Here thez, y, andz denote the variables for the unital multiples of

+ 12144t* 4 759" 4 1. 1, 3, and0, respectively. From this we obtain the Hamming weight

. . . enumerator
The respective sphere packings, and accordingly, the error-

7 612 1o9onpll 10 = y 9
correcting capabilities reflected by the different weights, are quite "Wrr(t) = 129192t +194832¢ 4 1306801~ + 59840t
different: the Hamming ball of radiu&contains exacly 57 205 words. 4 11880t% + 4752¢7 + 264t° + 1
In contrast, the Lee ball of radidscontains 1 925 357 words, wheras

the w4-ball of radius19 covers 907 285 words. In Section IV, we i ] } . . . Y
develop a bounded distance decoder Kor, which implements the POSSE€Sses only eight different Hamming weights. Since its minimum

error-correcting capabilities reflected by the latter weight. Note th‘f-,’(te.ight i§ givgn b6 this code corr.ects ",’1” Hammipg errors of weight
the set of correctable errors is given by the set of all words ot 2 which yields a sphere packing with Ham_m_lng balls of vglume
Hamming weight up tot except the word of type* 4321. It can furthermore be seen, that the minimum Lee weight of

Remark 2.1: For the weight function Ey equals9 producing a pagking with Lee ba!ls of vglunléﬁ41. .
For the homogeneous weighit.... onZs, which assigns the units

by the substitutionz — 1 and z,y — ¢, which shows thatEy

0, !f = 0* the weight2 and the nonzero nonunits the weight we compute
wily — N, r—=3, ifrezy the weight enumerator of; by substitutingz — #2,y — #*, and
4, else z — 1 and get

which_, up to a nqrmalization, was first introduced in [9], we obtain Wy, (£) = 24£% + 166326%° + 1477526>" + 219456t
the nine-term weight enumerator 21 . 15
+ 118800t + 24024+~ 4 4752t ° + 1.

W (t) =% 4 98256t + 1987616t _ . _—
(®) + ? + ! As in the case of the Hamming weight it turns out ttat possesses

+6546375¢°" 4 5974848t + 1925376t " only eight different homogeneous weights and it can be seen that
+ 231840¢*° + 12903¢°2 + 1. this is not true in general for other choices of the weight function.
The homogeneous weight produces a packing which is denser than the
The w-ball of radius15 covers 2267413 words; it consists OfHamming or Lee packings discussed earlier. Siigdas a minimum

the w,-ball of radius19 together with the(%') - 2° words of type homogeneous weight df we easily see that the volume of the balls
(£1)” and it is an open problem to find a decoding algorithm tha this packing is given byp9361.

implements the corresponding error correction. Like in the preceding section, there exists a weight functioZgn
which produces an even denser packing and hence reflects additional
ll. THE Zs-LINEAR [12, 6]-GoLay CODE error-correcting capabilities of the code at hand. To see this we

The ternary Golay code is a cycl{t1, 6, 5]-code generated by establish the weight function

the polynomials® + «* — &* + 2% — 1 € Z;[«]. Hensel-lifting this 0, if r=0
polynomial toZs[z] results in the polynomiat® — 2z* — 2 4 2% — we: Ly — N, 7+ {5, if r €75
3z — 1, which generates a frdé1, 6] code overZs. Extending the 6, else.
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TABLE I
PERMUTATIONS USED FOR DECODING OF Eg

[Ps [1]2]3]4]5]|6]7][8]9]10]11]12]

it 112 (3147 (1159 |8|12|6 |10

2 2 (3|4 |7|11|5]9 |8 126|110

wg | 3| 4| 711|598 [12/6|1]2] 10 ro:i=r (mod p)
L7 4 7111519811216 123110

T 7111|5198 (12,6 |1]2]|3)]410

e |11 5191811216 1|2 |3|4]| 7,10

Ty 51981126 |12 34| 7]|11]10 Loop:

g 9 | 8|12, 6 1|23 |47 |11 5 10

Ty 8|12 6 112|347 |11]5]9]10

T |12/ 6|1 213147 |11]5]9]8]|10

The weight enumerator ofy with respect to this function is
computed by substituting — #*,y — t°, and z — 1, which yields
the 12-term enumerator

W (1) = 2487 + 16632t°° + 95040t
+ 69768t 4 142560t 4 59840t
+ 71280£°" 4 47520t*° + 11880¢*
+ 11880#*% 4+ 5016¢™° + 1.

Due to the minimum weight df6 we find thatEs is able to correct
all error patterns of weight up to7, which yields a packing by balls
of volume115201. The set of all errors correctable i is simply
described by the set of all errors up to Hamming-wetyjecept the
8- (%) errors of type(+3)°.

3

IV. A BOUNDED DISTANCE DECODER

do i= 771Dy w(ro)
Vg = ]Egl (do)
en i =rg — d() (mod p)
wi=r— I, (vo) — ey (mod p?)
di = 7 "Dy w(uy)
v = ”‘:; (dl)

vi= vy +pu1
c:=22(v)
ci=r—c¢ p(m()d p?)

Fig. 1. Flowchart of the decoder.

In all what follows letC,, p € {2,3}, denote the respective cyclic
Golay code, and let;, denote its extension by a parity check. We Thjs yields a set of?,| votes for the transmitted word which
now develop decoding schemes B as defined in the foregoing contains the word actually sent. This word can easily be identified as
sections correcting all error patterns of weight less than half of tlhge unique one closest (with respectug:) to the received word.
respectivew,.-minimum distances. We illustrate the bounded distance decddgr in Fig. 1, where we
denote the encoder and decodeEhfwith E ,, andD,,, respectively.

A Decoder forE, and a Set of Permutations We denote byE;l the reverse encoding operation which extracts the

Complete algebraic decoders for the cyclic Golay codes have bé
developed in [5] and [6]. These algorithms can be upgraded to decé
E, by simply appending the parity-check symbol to the codeword
decoded by the decoding algorithm 0§. The resulting decoddp,
then reliably corrects all errors of Hamming weigfit3 in case of
p = 2, and of Hamming weigh& 2 in casep = 3. Furthermore,
all quadruple (triple) errors affecting the check position are reliably[2]
corrected, whereas if such errors occur in the cyclic part then they
will cause a decoding error. 13]

The permutation group oF,, provides a seP, of permutations
such that for every error of Hamming weight at most (3) there  [4]
existsw € P, such thatr(e) can reliably be corrected by,. This
is due to the fact that moves one of the nonzero positionseointo
the extension position oF,.

We first obtain the permutatiof®, 11, 13) (6, 9, 14) (8, 22, 21) [6]
(10, 16, 19) (12, 24, 18) (15, 20, 23) of E» and (5, 7) (6, 11)
(8,9) (10, 12) of E5 by consultingMagma V2.3-1 . Multiplying (7]
these permutations with the cyclic shifts (in the respective cycligg)
component) we obtain the permutation Tables | and II.

In order to implement the full error-correcting capabilitiesfof: [l
we combine the general decoding technique presented in [8] with an
application of the above permutations to thedic components of 10

(1]

(5]

the received word. This is possible because the codes in question aré
free, and hence splitting in the sense of [7].

Wrmation symbols from a codeword df,. Finally E,. denotes
%g encoder for the codg,,:.
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- . - ' ' "
Abstract—The negashift of Z} is defined as the permutation ofZ} of Az] as well. If necessary, we specify if calculations are

such that . . .
made inA[z] or in the factor ring.
v(ag,ar, -, @i, an-1) = (—Ap—1,00, ++,ai,+,dn_2)
and a negacyclic code of lengtt over Z, is defined as a subsef’ of Z}} Il. NecAcycLic CODES

such thatr(C') = C. We prove that the Gray image of a linear negacyclic
code overZ, of length » is a binary distance invariant (not necessary .
linear) cyclic code. We also prove that, ifn is odd, then every binary A. Definitions

code which is the Gray image of a linear cyclic code oveZ of length n First recall that a linear code of lengthoverZ, is aZ,-submodule

is equivalent to a (not necessary linear) cyclic code and this equivalence n . . @ D
is explicitely described. This last result explains and generalizes the of Z; and that the polynomial representationZif is the mapP> of

existence, already known, of versions of Kerdock, Preparata, and others Zi into Zs[«] such that

codes as doubly extended cyclic codes. Furthermore, we introduce a

family of binary linear cyclic codes which are Gray images ofZ,-linear i

negacyclic codes. Plao, a1, -+, Qiy- s pn_1) = Z a;x .
=0

n—1

Index Terms—Gray map, negacyclic and cyclic codes oveZ,. ,
If C is a subset 0%}, its polynomial representation B(C').

We now introduce less familiar definitions about codes er
. INTRODUCTION

. . . . - Definiti 2.1
As usual,Z, is the ring of integers modulé and[F: is the finite efinitions . . . I
field of order?. 1) The negashift of Z} is the permutation oZ; defined by

The negashift of Z} is defined as the permutation 8f such that D( Aoy ity s gy ey A1) = (—lne1sG0s =" - iy~ - Az

v(ao, a1, -+, @iy ap 1) = (—n_1,80, ", @i, "+, Un_2)

2) Let v be the negashift oZ7.

and a negacyclic code of lengthover Z, is defined as a subsét A negacyclic code of lengtl over Z, is a subseC' of Z; such
of Z; such thatv(C) = C. thatv(C) = C.
Recently, the Gray map of} into F3" was used to solve an

important old problem in Coding Theory about Kerdock and Prepara}taPmpOSItlon 2'2.: A subsetQ O.f Ziisa Iln_ear negacycllc_ cod_e of
S ' ; ) ength n over Z, if and only if its polynomial representation is an
codes and this gives a new point of view on some binary codes (slge

[6] for a survey). eal of the factor ringZ4[=]/(x" + 1).

. . . Proof: The proof is quite similar to the proof about polynomial
We prove that the Gray image of a linear negacyclic code dver . : . e ;
. : : . . . representations of linear cyclic codes over a finite fleldas ideals
of lengthn is a binary distance-invariant (not necessary linear) cyclic

p . . Jxl/ (™ =1 i .
code. We also prove that,f is odd, then the Gray image of a I|nearOf Falel/ (> ) and is left to the reader (see [10]) -
cyclic code overZ, of length» is equivalent to a (not necessary )
B. Negacyclic Codes of Odd Length
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