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On - and -Linear Lifts of the Golay Codes

Marcus Greferath and Emanuele Viterbo,Member, IEEE

Abstract—We analyze 4- and 9-linear lifts of the binary [24; 12]
and ternary [12; 6]-Golay code under different weight functions on the
underlying ring, and present algebraic decoding schemes for these codes.

Index Terms—Codes over rings, decoding, Golay codes, weight func-
tions on rings.

I. INTRODUCTION

At the begining of the 1990’s, A. A. Nechaev [12] and later
R. Hammonset al. [10] hinted at the significance of rings in Coding
Theory. Since then many papers dealing with codes over4 (equipped
with the Lee metric) and also other integer residue rings have been
published. Foundational aspects involving more general rings and
more general weight functions on these rings can be found in [15],
[16], [11], [13], [8], and [9].

In this correspondence we investigate4-linear and 9-linear lifts1

of the extended binary and ternary Golay codes which have also been
considered in [2], [14], and [4]. The paper [14] completely classifies
the set of isomorphy classes of self-dual4-preimages of the binary
code, and we mention that these can be used to construct the Leech
lattice.

Following the line of a recent work [9] we introduce weight
functions on 4 and 9 which reflect previously unknown error-
correcting and packing capabilities of these codes. We compare their
properties with those of the Hamming, Lee, and homogeneous weight
(as presented in [11]) and give algebraic decoding schemes using the
general decoder presented in [8]. The decoding method presented
works for all free preimages of the Golay codes under the natural
binary (ternary) reduction.

In our discussion of different weight functions on the alphabet4

or 9 we will compute the volumes of the (open) balls of radius
dmin=2 wheredmin is the minimum distance, in order to obtain a
measure for the quality of the induced packing. This is done by an
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1By lifting an extended cyclic code we mean, by abuse of notation, the

canonical way of Hensel-lifting its generator polynomial to the ring in question
and then introducing the standard extension of the resulting cyclic code by a
check position.

application of the generating function technique in [1, p. 298]. For the
characterization of the errors being corrected we adopt the notation
of [10] defining thetype of a word e as its (complete) enumerator.
For instance,24 denotes the type of a word the nonzero components
of which equal two in four positions, and by abuse of notation(�3)3

is the type of a word with exactly three nonzero components each of
which is chosen fromf3;�3g:

II. THE QUATERNARY [24; 12]-GOLAY CODE

The binary Golay code is a cyclic[23; 12; 7]-code generated
by the polynomialx11 + x9 + x7 + x6 + x5 + x + 1 2 2[x]:
Hensel-lifting this polynomial to 4[x] results in the polynomial
x11�2x10�x9�x7�x6�x5�2x4+x�1, which generates a free
[23; 12]-code over 4: Extending the latter code by a parity check
produces a 4-linear self-dual free[24; 12]-codeE4 which will be
the subject of the following considerations.

In [3], the complete enumerator ofE4 has been computed. Using
this, we determine the symmetrized enumerator as

SEE (x; y; z) = 4096x24 + 24288x16y8 + 680064x16y6z2

+ 1700160x16y4z4 + 680064x16y2z6

+ 24288x16z8 + 61824x12y11z

+ 1133440x12y9z3 + 4080384x12y7z5

+ 4080384x12y5z7 + 1133440x12y3z9

+ 61824x12yz11 + 12144x8y14z2

+ 170016x8y12z4 + 765072x8y10z6

+ 1214400x8y8z8 + 765072x8y6z10

+ 170016x8y4z12 + 12144x8y2z14 + y
24

+ 759y16z8 + 2576y12z12 + 759y8z16 + z
24
:

Here the variablex corresponds to the units,y to the element2,
andz to the zero element of4:Substitutingz 7! 1 andx; y 7! t we
produce the 16-term Hamming weight enumerator.

WH(t) = 28385t24 + 61824t23 + 692208t22

+ 1133440t21+ 1870176t20+ 4080384t19

+ 1445136t18+ 4080384t17+ 1239447t16

+ 1133440t15+ 765072t14 + 61824t13

+ 172592t12 + 12144t10 + 759t8 + 1:

By the substitutionz 7! 1; x 7! t and y 7! t2; we obtain the
15-term Lee weight enumerator

WL(t) = t
48 + 12144t36 + 61824t34

+ 195063t32 + 1133440t30+ 1445136t28

+ 4080384t26+ 2921232t24+ 4080384t22

+ 1445136t20+ 1133440t18+ 195063t16

+ 61824t14 + 12144t12 + 1:

Note that the Lee weight on4 coincides with the homogeneous
weight introduced in [11].

Let us introduce the weight function

w4: 4 �! ; r 7!

0; if r = 0
4; if r 2 �

4

5; else.
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TABLE I
PERMUTATIONS USED FOR DECODING OF E4

For this weight the substitutionz 7! 1, x 7! t4, andy 7! t5 yields
the weight enumerator

Ww = t
120 + 24288t104 + 61824t103

+ 12144t102 + 4096t96 + 680064t94

+ 1133440t93 + 170016t92 + 1700160t84

+ 4080384t83 + 765072t82 + 759t80

+ 680064t74 + 4080384t73 + 1214400t72

+ 24288t64 + 1133440t63 + 765072t62

+ 2576t60 + 61824t53 + 170016t52

+ 12144t42 + 759t40 + 1:

The respective sphere packings, and accordingly, the error-
correcting capabilities reflected by the different weights, are quite
different: the Hamming ball of radius3 contains exacly 57 205 words.
In contrast, the Lee ball of radius5 contains 1 925 357 words, wheras
the w4-ball of radius19 covers 907 285 words. In Section IV, we
develop a bounded distance decoder forE4, which implements the
error-correcting capabilities reflected by the latter weight. Note that
the set of correctable errors is given by the set of all words of
Hamming weight up to4 except the word of type24:

Remark 2.1: For the weight function

w: 4 �! ; r 7!

0; if r = 0
3; if r 2 �

4

4; else

which, up to a normalization, was first introduced in [9], we obtain
the nine-term weight enumerator

Ww(t) = t
96 + 98256t80 + 1987616t72

+ 6546375t64 + 5974848t56 + 1925376t48

+ 231840t40 + 12903t32 + 1:

The w-ball of radius15 covers 2 267 413 words; it consists of
the w4-ball of radius19 together with the 24

5
� 25 words of type

(�1)5 and it is an open problem to find a decoding algorithm that
implements the corresponding error correction.

III. T HE 9-LINEAR [12; 6]-GOLAY CODE

The ternary Golay code is a cyclic[11; 6; 5]-code generated by
the polynomialx5 + x4 � x3 + x2 � 1 2 3[x]: Hensel-lifting this
polynomial to 9[x] results in the polynomialx5� 2x4� x3 + x2�

3x � 1, which generates a free[11; 6] code over 9: Extending the

latter code by a parity check produces a9-linear free[12; 6]-code
E9 which is the subject of this section.

Using a computer program we compute the symmetrized enumer-
ator as

SEE (x; y; z) = 17496x12 + 95040x9y3 + 142560x9y2z

+ 71280x9yz2 + 11880x9z3 + 16632x6y6

+ 52272x6y5z + 59400x6y4z2 + 47520x6y3z3

+ 11880x6y2z4 + 4752x6yz5 + 24y12

+ 440y9z3 + 264y6z6 + z
12
:

Here thex; y; andz denote the variables for the unital multiples of
1, 3, and0, respectively. From this we obtain the Hamming weight
enumerator

WH(t) = 129192t12 + 194832t11 + 130680t10 + 59840t9

+ 11880t8 + 4752t7 + 264t6 + 1

by the substitutionz 7! 1 and x; y 7! t; which shows thatE9

possesses only eight different Hamming weights. Since its minimum
weight is given by6 this code corrects all Hamming errors of weight
� 2 which yields a sphere packing with Hamming balls of volume
4321. It can furthermore be seen, that the minimum Lee weight of
E9 equals9 producing a packing with Lee balls of volume16641.

For the homogeneous weightwhom on 9, which assigns the units
the weight2 and the nonzero nonunits the weight3, we compute
the weight enumerator ofE9 by substitutingx 7! t2; y 7! t3; and
z 7! 1 and get

Ww (t) = 24t36 + 16632t30 + 147752t27 + 219456t24

+ 118800t21 + 24024t18 + 4752t15 + 1:

As in the case of the Hamming weight it turns out thatE9 possesses
only eight different homogeneous weights and it can be seen that
this is not true in general for other choices of the weight function.
The homogeneous weight produces a packing which is denser than the
Hamming or Lee packings discussed earlier. SinceE9 has a minimum
homogeneous weight of15 we easily see that the volume of the balls
in this packing is given by99361.

Like in the preceding section, there exists a weight function on9,
which produces an even denser packing and hence reflects additional
error-correcting capabilities of the code at hand. To see this we
establish the weight function

w9: 9 �! ; r 7!

0; if r = 0
5; if r 2 �

9

6; else.
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TABLE II
PERMUTATIONS USED FOR DECODING OF E9

The weight enumerator ofE9 with respect to this function is
computed by substitutingx 7! t5; y 7! t6; andz 7! 1; which yields
the 12-term enumerator

Ww (t) = 24t72 + 16632t66 + 95040t63

+ 69768t60 + 142560t57 + 59840t54

+ 71280t51 + 47520t48 + 11880t45

+ 11880t42 + 5016t36 + 1:

Due to the minimum weight of36 we find thatE9 is able to correct
all error patterns of weight up to17, which yields a packing by balls
of volume115201. The set of all errors correctable byE9 is simply
described by the set of all errors up to Hamming-weight3 except the
8 � 12

3
errors of type(�3)3:

IV. A B OUNDED DISTANCE DECODER

In all what follows letCp; p 2 f2; 3g; denote the respective cyclic
Golay code, and letEp denote its extension by a parity check. We
now develop decoding schemes forE

p
as defined in the foregoing

sections correcting all error patterns of weight less than half of the
respectivewp -minimum distances.

A Decoder forEp and a Set of Permutations

Complete algebraic decoders for the cyclic Golay codes have been
developed in [5] and [6]. These algorithms can be upgraded to decode
Ep by simply appending the parity-check symbol to the codeword
decoded by the decoding algorithm forCp: The resulting decoderp
then reliably corrects all errors of Hamming weight� 3 in case of
p = 2, and of Hamming weight� 2 in casep = 3: Furthermore,
all quadruple (triple) errors affecting the check position are reliably
corrected, whereas if such errors occur in the cyclic part then they
will cause a decoding error.

The permutation group ofEp, provides a setPp of permutations
such that for every errore of Hamming weight at most4 (3) there
exists� 2 Pp such that�(e) can reliably be corrected byp: This
is due to the fact that� moves one of the nonzero positions ofe into
the extension position ofEp:

We first obtain the permutation(5; 11; 13) (6; 9; 14) (8; 22; 21)
(10; 16; 19) (12; 24; 18) (15; 20; 23) of E2 and (5; 7) (6; 11)
(8; 9) (10; 12) of E3 by consultingMagma V2.3-1 . Multiplying
these permutations with the cyclic shifts (in the respective cyclic
component) we obtain the permutation Tables I and II.

In order to implement the full error-correcting capabilities ofEp
we combine the general decoding technique presented in [8] with an
application of the above permutations to thep-adic components of
the received word. This is possible because the codes in question are
free, and hence splitting in the sense of [7].

Fig. 1. Flowchart of the decoder.

This yields a set ofjPpj votes for the transmitted word which
contains the word actually sent. This word can easily be identified as
the unique one closest (with respect tow

p
) to the received word.

We illustrate the bounded distance decoderp in Fig. 1, where we
denote the encoder and decoder ofEp with p and p, respectively.
We denote by �1

p the reverse encoding operation which extracts the
information symbols from a codeword ofEp: Finally

p
denotes

the encoder for the codeE
p
:
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P. Solé, “The 4-linearity of Kerdock, Preparata, Goethals, and related
codes,”IEEE Trans. Inform. Theory, vol. 40, pp. 301–319, 1994.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2527

[11] I. Constantinescu and W. Heise, “A metric for codes over residue class
rings of integers,”Probl. Pered. Inform., vol. 33, no. 3, pp. 22–28, 1997.

[12] A. A. Nechaev, “Kerdock code in a cyclic form,”Discr. Math. Appl.,
vol. 1, pp. 365–384, 1991.

[13] A. A. Nechaev and A. S. Kuzmin, “Linearly presentable codes,”Proc.
IEEE Int. Symp. Information Theory and Its Applications, 1996, pp.
31–34.

[14] E. Rains, “Optimal self-dual codes over4;” preprint, 1996.
[15] J. A. Wood, “Extension theorems for linear codes over finite rings,” in

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, T.
Mora and H. Mattson, Eds. Berlin, Germany: Springer-Verlag, 1997,
pp. 329–340.

[16] , “Weight functions and the extension theorem for linear codes
over finite rings,”Contemp. Math., vol. 225, pp. 231–243, 1999.

Negacyclic and Cyclic Codes Over

Jacques Wolfmann,Member, IEEE

Abstract—The negashift � of n

4
is defined as the permutation of n

4

such that

�(a0; a1; � � � ; ai; � � � ; an�1) = (�an�1; a0; � � � ; ai; � � � ; an�2)

and a negacyclic code of lengthn over 4 is defined as a subsetC of n
4

such that�(C) = C: We prove that the Gray image of a linear negacyclic
code over 4 of length n is a binary distance invariant (not necessary
linear) cyclic code. We also prove that, ifn is odd, then every binary
code which is the Gray image of a linear cyclic code over 4 of length n

is equivalent to a (not necessary linear) cyclic code and this equivalence
is explicitely described. This last result explains and generalizes the
existence, already known, of versions of Kerdock, Preparata, and others
codes as doubly extended cyclic codes. Furthermore, we introduce a
family of binary linear cyclic codes which are Gray images of 4-linear
negacyclic codes.

Index Terms—Gray map, negacyclic and cyclic codes over 4.

I. INTRODUCTION

As usual, 4 is the ring of integers modulo4 and 2 is the finite
field of order 2.

The negashift� of n

4 is defined as the permutation ofn4 such that

�(a0; a1; � � � ; ai; � � � ; an�1) = (�an�1; a0; � � � ; ai; � � � ; an�2)

and a negacyclic code of lengthn over 4 is defined as a subsetC
of n

4 such that�(C) = C:

Recently, the Gray map of n4 into 2n

2 was used to solve an
important old problem in Coding Theory about Kerdock and Preparata
codes and this gives a new point of view on some binary codes (see
[6] for a survey).

We prove that the Gray image of a linear negacyclic code over4

of lengthn is a binary distance-invariant (not necessary linear) cyclic
code. We also prove that, ifn is odd, then the Gray image of a linear
cyclic code over 4 of length n is equivalent to a (not necessary
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linear) cyclic code and this equivalence is explicitly described. This
last result explains and generalizes the existence, already known, of
versions of Kerdock, Preparata, and others codes as doubly extended
cyclic codes.

In general, the Gray image of a4-linear code is not a binary
linear code. In Section IV we introduce a family of binary linear
cyclic codes which are Gray images of4 linear negacyclic codes.

The reader can find more information on Coding Theory in [10]
and on codes over 4 in [19].

Warning:

1) Classicaly, “cyclic code” means linear and shift-invariant code.
In this correspondence we consider shift-invariant codes which
are not necessary linear.Consequently, we use “cyclic code”
for every shift-invariant code, linear or not.

2) If A is any commutative ring, andf(x) is a polynomial of
degreed in A[x], we represent the factor ringA[x]=(f(x)) as
the set of polynomials ofA[x] which are zero or of degree
at most d � 1, endowed with modulof(x) addition and
multiplication. In other words, every nonzero class modulo
f(x) is represented by its member of smallest degree. In this
way, a member of this factor ring can be viewed as a member
of A[x] as well. If necessary, we specify if calculations are
made inA[x] or in the factor ring.

II. NEGACYCLIC CODES

A. Definitions

First recall that a linear code of lengthn over 4 is a 4-submodule
of n

4 and that the polynomial representation ofn4 is the mapP of
n

4 into 4[x] such that

P(a0; a1; � � � ; ai; � � � ; an�1) =

n�1

i=0

aix
i:

If C is a subset of n
4 , its polynomial representation isP(C):

We now introduce less familiar definitions about codes over4:

Definitions 2.1:

1) The negashift� of n
4 is the permutation of n4 defined by

�(a0; a1; � � � ; ai; � � � ; an�1) = (�an�1; a0; � � � ; ai; � � � ; an�2):

2) Let � be the negashift of n
4 :

A negacyclic code of lengthn over 4 is a subsetC of n
4 such

that �(C) = C:

Proposition 2.2: A subsetC of n
4 is a linear negacyclic code of

lengthn over 4 if and only if its polynomial representation is an
ideal of the factor ring 4[x]=(x

n + 1):
Proof: The proof is quite similar to the proof about polynomial

representations of linear cyclic codes over a finite fieldq as ideals
of q[x]=(x

n
� 1) and is left to the reader (see [10]).

B. Negacyclic Codes of Odd Length

Proposition 2.3: Let � be the map of 4[x]=(x
n
� 1) into

4[x]=(x
n + 1) defined by

�(a(x)) = a(�x):

If n is odd then� is a ring isomorphism.
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