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Channel
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Abstract—We study signal-space coding for coherent slow fre-
quency-hopped communications over a Gaussian multiple-access
collision channel (G-MACC). We define signal sets and inter-
leavers having maximum collision resistance. The packet-error
probability and the spectral efficiency obtained by these signal
sets concatenated with outer block coding and hard (error-only)
decoding is evaluated without assuming perfect interleaving.
Closed-form expressions are provided and computer simulations
show perfect agreement with analysis. The structure of good
interleavers is also discussed.

More generally, we present expressions for the information
outage probability and for the achievable (ergodic) rate of
the G-MACC at hand, under various assumptions on user
coding and decoding strategies. Outage probability yields the
limiting packet-error probability with finite interleaving depth
(delay-limited systems). The achievable rate yields the lim-
iting system spectral efficiency for large interleaving depth
(delay-unconstrained systems). Comparisons with other classical
multiple-access schemes are provided.

Index Terms—Coding and modulation, frequency-hopped com-
munications, information outage probability, multiple-access col-
lision channel.

I. INTRODUCTION

I N the Gaussian multiple-access channel (G-MAC), several
senders (users) encode their information messages indepen-

dently into sequences of real numbers and transmit their signals
at the same time. A common receiver gets the superposition of
all users signals plus additive Gaussian background noise and
detects the individual messages [1]. This channel model serves
as perhaps the simplest example of wireless network, where a
common resource has to be shared by a population of users (ex-
amples are the uplink of a satellite system or the mobile-to-base
link of a terrestrial cellular system, in the idealized case of iso-
lated cells and no fading [2]).

The capacity region of the G-MAC is well known [1] and the
modern research trend in the field is to devise low-complexity
coding and decoding schemes to approach this limit. For ex-
ample, [3] shows that all capacity region boundary points can be
achieved by single-user coding/decoding and “stripping,” pro-
vided that the users split their signals into at most two com-
ponents whose rate sum is equal to the users’ own rate (the
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rate-splitting approach). A more classical (and generally sub-
optimal) approach consists of eliminating multiple-access in-
terference (MAI) by making the user signals orthogonal, like
in TDMA/FDMA. The capacity region of the G-MAC with or-
thogonal access is strictly included in the general capacity re-
gion, and it is optimal in the case of equal-rate equal-energy
users (symmetric capacity) [1].

In practice, both optimal and orthogonal multiple access re-
quire a good deal of coordination among users, in order to ac-
commodate changing traffic conditions, access requests from
new users entering the network, and re-allocation of resources
(bandwidth and power) of users leaving the network. Users co-
ordination can be achieved at the expenses of additional over-
head and complexity, by implementing some protocol on top of
the basic G-MAC mechanism.

A simple alternative to user coordination is random access,
where no effort is made in order to avoid MAI and other
countermeasures are taken to mitigate its effects. A G-MAC
with random access shall be referred to as theGaussian
multiple-access collision channel(G-MACC). For example,
in some packet radio networks users may “collide” (i.e., their
signals may overlap in time–frequency) and are informed about
an unsuccessful transmission by a feedback channel, so that a
retransmission protocol can be implemented (e.g., the ALOHA
protocol [4]–[6]). In other applications, retransmissions are
undesirable or impossible. Then, the effect of collisions can be
mitigated by a combination of coding, interleaving, and signal
processing (see [8]–[15] and reference therein).

The capacity region of a noiseless collision channel without
feedback was determined in [16]. In the channel model of [16],
users cannot coordinate their transmissions because of unknown
transmission delays, that cannot be estimated because of the lack
of a feedback channel. Therefore, in [16] collisions are unavoid-
able. In this work, we do not place this restriction. On the con-
trary, we just assume that a “lazy” system designer did not im-
plement any user coordination protocol or retransmission pro-
tocol. Moreover, we constrain the network to be equipped with
conventional single-user matched filters (SUMF), which treat
MAI as additional (white) noise without implementing stripping
decoding or other signal–space interference cancellation tech-
niques. Obviously, we do not claim any optimality of this ap-
proach. Nevertheless, devising modulation and coding schemes
for this channel might be of some interest. Applications are, for
example, simple indoor wireless networks with limited-mobility
terminals, mobile satellite systems serving a large population of
users with “bursty” traffic, or low-rate random-access channels
for auxiliary operations in cellular systems, such as handoffs
and call requests. Moreover, several partially ordered protocols
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(e.g., PRMA [17], [18]) have been proposed for integrated voice
and data in wireless systems, so that the study of the underlying
G-MACC may provide useful insight into more evolved appli-
cations [19].

In this paper, we consider a slotted G-MACC with coherent
detection and equal-rate equal-energy users. The time–fre-
quency plane is organized inframes, and each frame is divided
in time–frequencyslots. Users interleave and transmit their
codewords over (pseudo-)randomly selected slots. Previous
analysis of time–frequency hopped systems considered perfect
interleaving and infinite signal-to-noise ratio (SNR) [13], [14].
On the contrary, we distinguish delay-limited systems, for
which is finite, from delay-unconstrained systems, where
perfect interleaving is allowed (i.e., can be made arbitrarily
large). Moreover, we take into account the effect of noise.

For this channel, we define a class of multidimensional
signal sets havingcollision resistance, i.e., such that even if
some signal components are transmitted during collided slots,
correct signal detection is still possible from the uncollided
components. A necessary condition for collision resistance
is that the components of the signal point are transmitted on
different slots. Then, we define a class of interleavers meeting
this constraint and we selectgood interleavers in this class.
Under some assumptions, the slotted G-MACC belongs to
the class of block-interference channels studied in [20], in
the case of no delay constraints. In fact, collisions can be
regarded as an extreme case ofblock fading, studied in [21],
[22]. Thus it is not surprising that high-diversity signal sets for
the fading channel [23], [24] have good collision resistance.
We provide a new algebraic construction of high-diversity
signal sets based on-modules, and an interesting four-dimen-
sional example.

The idea of improving the performance of slotted ALOHA
by introducing “packet redundancy” is not new (e.g., multicopy
ALOHA and its generalizations [25], [26]). Replicating the
same packet, as done in previous work, can be seen as the
concatenation of an outer code with a trivial repetition inner
code and a trivial interleaver. Here, we consider the concate-
nation of collision-resistant signal sets (which can be regarded
as inner signal-space coding) with outer block coding (e.g.,
Reed–Solomon codes) and nontrivial interleaving (Sections II
and III). The performance analysis of this scheme is inspired
by the work of [14], with the fundamental difference that
in our case, because of the finite interleaving depth, symbol
errors at the decoder input are statistically dependent, so that
the standard analysis of bounded-distance hard decoding [27]
does not apply. Nevertheless, we find simple closed-form
expressions for the word error probability and for the spectral
efficiency achievable by Reed–Solomon outer coding. Our
analysis of the error probability provides some useful hints on
the design of good interleavers (Section IV).

Finally, we look at the G-MACC from a more idealized
point of view and we derive closed-form expressions for its
information outage probability [21] (for finite interleaving
depth) and for its achievable symmetric rate (for ideal inter-
leaving). We provide comparisons with other conventional
access schemes for the G-MACC, such as slotted ALOHA,
“Naive” code-division multiple access (CDMA) (NCDMA)

with SUMF, and linear minimum mean-square error (MMSE)
receivers1 and ideal orthogonal access (Section V).

Proofs and mathematical details are collected in Appen-
dices A–D and conclusions and future research directions are
pointed out in Section VI.

Notations and Definitions:

• denotes thecombinations set, i.e., the set of subsets
of cardinality (referred to as “-combi-

nations of size ”). If , , otherwise
is empty.

• denotes the set of permutationsof elements.

• denotes theordered combinations set, i.e., the set of
vectors of length whose components are distinct el-
ements of . If , , other-
wise is empty. Moreover, there exists a (not unique)
one-to-one correspondence .

• .

• “p” and “a.e.” denote convergence in probability and al-
most everywhere, respectively [29].

• .

• denotes the indicator function of the event.

• denotes the Gaussian probability density func-
tion (pdf) with mean and variance .

• .

• and for a proba-

bility vector , .

II. SLOTTED GAUSSIAN MULTIPLE-ACCESSCOLLISION

CHANNEL

We consider a G-MACC with users and slotted random
access. The time–frequency plane is organized inframes. Each
frame is partitioned in time–frequencyslots. User signals
are divided intoburstswhich occupy one slot. Guard bands and
guard intervals are inserted in order to make signal bursts ap-
proximately time- and band-limited over the slots. Each slot
has real dimensions(or components) available for transmis-
sion. Users occupy an average numberof slots per frame and
transmit withinformation rate2 bits per dimension, so that
all users have the same average bit rate bits
per second, where denotes the frame duration. Users select
their slots randomly and independently, according to a given

1Following the terminology of [2], we denote by Naive CDMA an access
scheme where all signals overlap in time and frequency and where users are de-
coded independently. The receiver for NCDMA is formed by a soft-output de-
tector device (e.g., a bank of single-user matched filters, a bank of linear MMSE
interference cancelers [10], or a bank of decorrelators [9]) which produces se-
quences of soft-decision variables for each user encoded data stream, followed
by a bank of single-user decoders acting independently. No information from a
decoder can be fed back to other decoders, as done in a stripping procedure [3],
[28].

2In a real system,R should also take into account the overhead due to guard
bands, guard intervals, training sequences for synchronization, and channel es-
timation and suitable higher level protocol overhead, like user address identi-
fiers, packet numbering, acknowledgment, etc. For simplicity, in the following
we shall assume an ideally synchronized system with Nyquist band-limited sig-
nals and perfect coherent reception.
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(pseudo-)random time–frequency hopping code known to the
receiver. Following [14], the transmission of each user is mod-
eled as a Bernoulli process [29] with probability that a
user occupies any given slot. The slot collision probability (i.e.,
the probability that more than one user transmits over the same
slot) is given by [14]. We study the system
performance under the assumption of infinite user population

for a fixed ratio . Then, the number of
transmitting users in each slot is Poisson-distributed [29] with
mean ( is referred to as thechannel load), collisions in
different slots are independent and identically distributed (i.i.d.),
and the limiting collision probability is given by

(1)

Let denote the system bandwidth. Thesystem spectral effi-
ciencyis defined as bits per second per hertz. In this
work, we are interested in the limitingfor and con-
stant . According to the “ -Theorem,” we can
approximate and write

(2)

A. Channel Models

Because of the complete symmetry of the problem with re-
spect to any user, we can focus on the transmission of a given
reference user (say, user 1). As discussed in Section I, in the
G-MACC under analysis the receiver treats MAI as additional
noise and does not take any advantage of its structure.

An optimistic assumption is that the demodulator for user 1
behaves as a linear device irrespectively of the MAI power and,
for each received burst, provides a sequence ofsamples taken
at the symbol rate

(3)

where is the th component of the signal of user 1, is
the th MAI sample, and is the th additive white Gaussian
noise (AWGN) sample, i.i.d. . The variance of

depends on the number of interfering users transmitting
over the current slot, which is Poisson-distributed with mean

. The channel model defined by (3) will be referred to as the
variable-power additive noise(VPAN) channel.

On the contrary, a pessimistic assumption (very common in
the analysis of packet-radio networks [5]) is that the demodu-
lator for user 1 is totally impaired by collisions. In this case,
the demodulated sample sequence during the current slot can
be written as

(4)

where is thecollision random variable, defined by

if
if

(5)

The channel model defined by (4) will be referred to as the
on–offchannel.

Fig. 1. Encoding and interleaving.

Coherent demodulation is assumed in the channel models
(3) and (4). The real channel models derive from treating sep-
arately the in-phase and quadrature components of the signal
complex envelope. In model (3), the MAI circular symmetry
(i.i.d. in-phase and quadrature components) derives from as-
suming independent and uniformly distributed carrier phases for
all interfering users.

B. Encoding and Interleaving

User information is organized inpackets. Each packet is
independently block-encoded, interleaved, transmitted over
a given sequence of slots, demodulated, deinterleaved, and
decoded. Then, packet-error probability and word-error proba-
bility (WER) coincide. Encoding and interleaving is sketched
in Fig. 1 and described in the following.

Encoding: Without loss of generality, we consider signal-
space codes obtained by the concatenation of a block code
over an abstract symbol alphabet with a signal set through a la-
beling map [30]. Let be a block code of length defined over
a discrete and finite alphabet and let be a -dimensional
signal set (i.e., a discrete and finite set of vectors (signal points)
in ). Assume that and let be a se-
quence of labeling maps of onto the -fold Cartesian
product of by itself. Then, the code is given by

(6)

where and where the image of
under is the -dimensional real vector
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(the ’s are -dimensional vectors, or signal points, in
). Codes obtained in this way will be denoted briefly by

.
Interleaving: In general, system requirements impose a

maximum transmissiondelay. Then, the interleaving depth,
i.e., the number of slots over which a coded packet (codeword)
is transmitted, cannot be arbitrarily large [21]. We assume that
each user codeword is interleaved and transmitted overdis-
tinct slots, we consider a particular codeword of the reference
user and we number the slots over which this is transmitted
by . Clearly, because of the block-interference
model, the word error probability is independent of the actual
position of signal components in the slots. Also, slots may
contain signal components belonging to several codewords,
so that the slot length , the interleaving depth , and the
codesword length can be chosen quite freely.3 For the
following analysis, all that matters is the unordered assignment
of the signal components of the transmitted codesword
to the corresponding slots. Thus for codes , we
represent interleavers by an associated arrayof size
with elements in such that the th component of
the th signal in the codesword, denoted by , is sent over
the slot indexed by the th element of . The th row
of specifies the sequence of slots over which signalis
transmitted.

Table I gives an array for , , , and
, and an interleaver associated with. For example, the

components of signal are transmitted over slots 2, 3, and 6,
as specified by the 13th row of . By permuting arbitrarily the
order of the signal components in each slot, we obtain equivalent
interleavers all corresponding to the array(we can say that an
array is representative of a class of equivalent interleavers).

III. COLLISION-RESISTANT SIGNAL SETS

In this section we analyze the system from the point of view
of a single reference user. We focus on the transmission of-di-
mensional signals over the on–off channel. We consider
the channel output corresponding to the transmission of a
single signal without specifically indexing the user and, for
simplicity of notation, we drop the time index. Moreover, we
assume that the components of are transmitted
over different slots, indexed by and we de-
note by the collision pattern over these slots.
Then, we can rewrite (4) as

(7)

We assume that the receiver has perfect knowledge of(perfect
channel state information (CSI)). Then, the maximum-likelo-
hood (ML) decision rule for the detection ofis

(8)

This corresponds to selecting the minimum distance of the re-
ceived point from the points of a signal set obtained by

3For example, in the GSM full-rate standard, encoded packets corresponding
to speech frames of 20 ms are interleaved overM = 8 TDMA slots, and each
slot contains symbols from four different packets [31].

TABLE I
EXAMPLE OF INTERLEAVER STRUCTURE WITH

M = 6; D = 3; q = 1; AND N = 20

projecting over a -dimensional subspace generated by
the axes corresponding to the nonzero’s. In order to
avoid systematic errors (i.e., detection errors even for arbitrarily
large SNR) in the presence of collisions, we require that
the points in are distinct, for all with Hamming weight

Then, we have the following definition.

Definition: A -dimensional signal set hascollision resis-
tance if its projections on all -dimensional coordinate
subspaces have points, i.e., for all of weight

In this paper, we are interested in maximum collision resistant
(MCR) -dimensional signal sets, i.e., with collision resistance
equal to . The minimum Hamming distance of such signal
sets must be . A similar requirement is imposed in the design
of high-diversitysignal sets for the fading channel where the
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minimum Hamming distance between any two signal vectors is
calledmodulation diversity[23], [24].

A desirable property of interleavers is that the components of
each signal in the codesword are transmitted overdistinct
slots. We have the following definition.

Definition: Consider the array associated with
an interleaver. The interleaver is MCR if all rows of are (not
necessarily distinct) vectors from the ordered combinations set

In the following, we restrict our treatment to MCR inter-
leavers. The array of an MCR interleaver can be generated
randomly, by selecting i.i.d. with uniform probability vec-
tors and by writing them by rows. We refer to ran-
domly generated MCR interleavers as RMCR interleavers. We
shall make use of the following fact, which is an immediate con-
sequence of theStrong Law of Large Numbers[29]

Fact 1: For given and , consider a sequence of
RMCR interleavers for increasing block length, with associ-
ated array . For any given , let be the frac-
tion of rows of equal to . Then, as

A. Error Probability of MCR Signal Sets

The error probability analysis is complicated by the fact that,
in general, and its projections are notgeometrically uni-
form [32]. We cansymmetrizethe problem with respect to all
collision patterns of the same weight by averaging over all pos-
sible component permutations . A component permu-
tation , if applied to a vector , yields the per-
muted vector . Theunion bound[7] on
the symbol error probability conditioned on the number

of collided components and averaged over all and
is given by

(9)

where the second term of the above minimum corresponds to
the error probability with random selection of a signal in, and
where we define the conditionalpairwise error probability[7]

(10)

In (10), we assume that has unit average energy per dimen-
sion and that each signal component is scaled bybefore
transmission, so that the SNR is .

Notice that depends on only through its weight
. Since is binomially distributed, the average

symbol error probability is given by

(11)

By using (9) in (11) we obtain an upper bound on .

B. Construction of MCR Signal Sets

Good MCR signal sets have large squared Euclidean distance
(SED) between points and projected on the -dimen-
sional coordinate subspace determined by, for all . In par-
ticular, we define the (normalized) minimum SED givencol-
lided components as

(12)

For each , the exponential behavior as of
is determined by , in the sense that

Hence, a practical design criterion for good MCR signal sets is
to maximize for all . We now give some ex-
amples of four-dimensional MCR signal sets of size, having
spectral efficiency 1 bit/dim.

Example 1—The PAM Signal Set: A simple MCR
signal set is a repetition code of lengthover the one-dimen-
sional 16-PAM signal set . The
resulting four-dimensional constellation with normalized
average energy per dimension, denoted by PAM , is
made of 16 points equally spaced along the main diagonal
of a hypercube. The minimum SED of the projections are

and

Example 2—The RH Signal Set: An MCR signal set
can be obtained by applying a suitable rotation to a four-dimen-
sional hypercube with vertex coordinates . In
particular, the rotation matrix

(13)

was found in [24] to give maximum collision resistance and
to maximize the minimumproduct distancewithin a certain
family of rotation matrices. The obtained signal set, denoted by
RH , has minimum SED. It is interesting to note that not
all the -dimensional projected constellations are equiva-
lent. The four one-dimensional projections have minimum SED

. The six two-dimensional projections, shown in Fig. 2,
have three minimum SEDs, namely , , and and
the four three-dimensional projections all have minimum SED

.

Example 3—The Z signal set: Here, we show an ex-
ample of a general algebraic construction which enables to ob-
tain good MCR signal sets. Further details and examples can be
found in [33]. Let be the ring of integers modulo and
consider the -module , with
(i.e., the set of vectors , with , which can be
seen as a linear code over with generator matrix
[34]). If the elements of have a multiplicative inverse in ,
then the minimum Hamming distance ofis . The resulting
MCR signal set is obtained by applying componentwise the
mapping defined by to all , and
by normalizing the average energy per component.
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Fig. 2. The six two-dimensional projections of RH(16; 4) of Example 2.

The signal set can be optimized by selecting (e.g.,
with we obtain PAM ). The choice

proves to be particularly good. The resulting
signal set, denoted by Z , has minimum SED .
The four one-dimensional projections have minimum SED

. The six two-dimensional projections, shown in Fig. 3,
have two different minimum SEDs, namely, and
and the four three-dimensional projections all have minimum
SED .

Fig. 4 shows versus for the signal sets
PAM , RH , and Z , for .
The error curves of Z are more uniformly spaced
in the useful SNR range, thus resulting in a more graceful
performance degradation as the number of collisions increases.

IV. CONCATENATED CODING WITH HARD DECODING

In this section we evaluate the word-error probability of con-
catenated coding schemes over the on–off
channel, where is a -dimensional MCR signal set, MCR
interleaving with finite depth is employed, and the receiver
is formed by a symbol-by-symbol hard detector (SBSHD) fol-
lowed by a -error correcting decoder.4 In the following,
denotes the transmitted codesword, is the
corresponding signal sequence, is the se-
quence of detected signals at the output of the SBSHD, and

is the corresponding symbol sequence at the
decoder input.

4Schemes making use of side reliability information on the SBSHD outputs,
and/or error and erasures decoding are left for future investigation.

Fig. 3. The six two-dimensional projections of Z(16; 4) of Example 3.

The WER after bounded-distance error-only hard de-
coding is given by [27]

(14)

where is the probability that and differ in positions.
Then, the key quantity to be evaluated next is .

Let be the collision pattern occurring
over the slots spanned by the transmission of. Consider
the th detected symbol and the corresponding detected
signals . The detection error events

(for and )
are statistically independent if conditioned on. Then, the
probability of errors given can be written in general as

(15)

where the events have conditional probability

(16)

The desired can be obtained by averaging over
and over .

In general, is difficult to evaluate. Then, we shall
compute the expectation of over the ensemble of all
labeling maps and over all sequences of random component
permutations . From a standard random-coding argu-
ment [1], there exist a sequence of labeling maps and compo-
nent permutations such that the resulting concatenated coding
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Fig. 4. P (ejk) versusE =N for the MCR signal sets PAM(16; 4), RH(16; 4), and Z(16; 4), for k = 0; 1; 2; 3. The curves of PAM(16; 4) and Z(16;4)
for k = 3 coincide, as these signal sets have the same one-dimensional projections.

scheme performs at least as good as the average. It is immediate
to check that the expected is given by

(17)

where is upper-bounded in (9) and where is
the number of collided components for the signal transmitted in
position of the coded sequence. Clearly,
is a function of . For a given interleaver, the evaluation of (17)
is still prohibitively complex for large . Moreover, the result
would depend on the particular interleaver. In order to over-
come these difficulties, we shall consider the average perfor-
mance over all RMCR interleavers and an easily computable
expression which closely approximate the performance ofgood
MCR interleavers (we will clarify the concept of good inter-
leavers later on).

A. Average overRMCR Interleavers

By averaging over the ensemble of RMCR inter-
leavers we obtain an upper bound on the performance of the best
MCR interleaver. With RMCR interleaving, the slots over which
each signal is transmitted are given by the

th row of the interleaver array, independently randomly se-
lected from the ordered combinations set . It is immediate to
show that, for a given of weight , the number

of collisions is a random variable conditionally dis-
tributed as , given by

if

otherwise.
(18)

Since the slot selection for different signals is independent, the
’s in (17) are conditionally independent. Then, by av-

eraging over the RMCR interleaver ensemble, after some al-
gebra we obtain

(19)

where is given by

(20)

Finally, since depends only on the number of colli-
sions rather than on the particular collision patternand since

is binomially distributed, we have

(21)

By using (21) in (14), we obtain the desired WER average
bound.

For small this bound might be loose, in the sense that it
is easy to find interleavers performing significantly better than
the average. Intuitively, good interleavers are such that, for all
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of weight with , the number of positions
for which (for ) is minimum. In
fact, if , the signal has all collided
components and the SBSHD chooses at random
with uniform probability, so that the probability that is
large. Then, a good interleaver minimizes the number of “very
probable” symbol errors at the decoder input. In the random en-
semble with small , bad interleavers dominate the average
performance. However, as , from Lemma 2 of Ap-
pendix A, we have that

(22)

where is given in (11). corresponds to indepen-
dent collisions, i.e., perfect interleaving and can be obviously
obtained if . The limit (22) shows shows that the
average interleaver performs as well as the best one for large in-
terleaving depth, and that bad interleavers in the ensemble are
asymptotically irrelevant.

B. Approximation for Good Interleavers

If the block length of satisfies for some
integer , a good interleaver can be explicitly constructed by
writing the elements of the combinations set as a row
of , for all , and by repeating each row formed in
this way exactly times.5 In this way, exactly signals are
transmitted over the same set of out of slots, such that
the signals corresponding to the
th symbol are transmitted over the same set ofslots. The

number of symbols having signal completely collided is equal
to for all patterns of weight . In this way,
the maximum number of “very probable” symbol errors over
the ensemble of all collision patterns is minimized (a minimax
approach to the interleaving design).

Example 4—Good Interleaver:Table I gives an example of
such situation with and
If one collision occurs in any one of the six slots, then ex-
actly symbols are hit in one com-
ponent. If two collisions occur in any two slots, then exactly

symbols are hit in one component
and symbols are hit in two compo-
nents. If three collisions occur, nine symbols are hit in one com-
ponent, nine in two components, and one in three. With four col-
lisions, 4, 12, and 4 symbols are hit, respectively, in one, two,
and three components. With five collisions, 10 symbols are hit in
two components and 10 in three. With six collisions no symbol
is received.

The WER for interleavers of the above type can be computed
exactlyas follows. For a given , define the index set

contains the indices of symbols whose corresponding
signals have exactly collided components. By construction,

5Actually, � is anunorderedset while the rows ofMMM areorderedvectors.
Without loss of generality, we may assume that the elements of� are written
in lexicographic order. By permuting the rows elements, we obtain different
interleavers with the same MCR property.

, which depends on only through its

weight . Define and let be the number
of symbol error events for . Then, since
after conditioning with respect to the symbol error events are
statistically independent, is binomially distributed as

(23)

Moreover, the are conditionally statistically independent,
given . Since is a partition of the
index set for all , the total number of symbol errors
is given by the sum . Then

(24)

can be computed easily by convolving the binomial distributions
given in (23) for and given .

Unfortunately, the condition that divides is often too
restrictive. Then, for general and a search for opti-
mized interleavers is needed. Intuitively, we expect that good
interleavers behave as close as possible to the case where
divides , even if this condition is not satisfied. Driven by this
argument, we can approximate the performance of any good in-
terleaver by assuming the existence of an interleaver such that,
for all of weight , the size of is as close as possible
to (that in general is not integer). In particular, let

(25)

where denotes rounding to the closest integer and is
chosen such that and is minimum.
Then, from the same argument leading to (24), by convolving
the binomial distributions defined by (23) for the ’s given in
(25) we obtain the desired approximation for good interleavers.

As a consequence of Fact 1 in Section III, for RMCR in-
terleavers with large , any given -combination of size
appears on the rows of the interleaver array approximately the
same number of times. Then, for large block length
any RCMR interleaver can be turned into a good interleaver (i.e.,
an interleaver such that its actual is close to
for all ) by simple row reordering.

Example 5: Consider where is the
Reed–Solomon (RS) code with parameters over
GF and Z (in this case, ). Fig. 5 shows
WER versus obtained by Monte Carlo simulation and
closed-form analysis, with interleaving depth and

. The average bound (AVE) agrees perfectly with
the simulation (SIM) obtained by generating a different RMCR
interleaver for each transmitted codesword. The bad interleaver
of Table II (left) performs significantly worse than the average,
while the hand-designed good interleaver of Table II (right)
outperforms the average. The approximation (GOOD) obtained
via (25) is very close to the actual performance of the good
interleaver.

Example 6: Fig. 6 shows the WER versus for
where is the shortened RS code with parame-

ters over GF and Z (in this
case, ). The code information rate is 0.8 bit/dim.
The curves for finite are obtained by the approximation for
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Fig. 5. WER versusE =N for the RS-encoded scheme of Example 5, withM = 8 andP = 0:1.

TABLE II
ARRAYS MMM FOR THE BAD (LEFT) AND THE GOOD (RIGHT)

INTERLEAVERS OFEXAMPLE 5

good interleavers described above. For , the
error probability curve presents five flat regions (“plateaus”)
and four rapidly decreasing regions (“steps”). Theth plateau,
for corresponds to the SNR region where the
signals experiencing collided components are wrongly de-
tected with high probability, and the signals with collided
components are correctly detected with high probability. The ze-

roth and the fourth plateaus correspond to the regions where the
system is either completely noise-limited or completely inter-
ference-limited, respectively. As becomes larger than, the
number of plateaus and steps increases until they become indis-
tinguishable, since there are more and more ways of placing
collisions over slots, each of which occurs with smaller and
smaller probability. We observe that, by increasing, both a
coding gain at intermediate SNR and a lower error floor at large
SNR are achieved, at the price of a larger delay.

The WER obtained by the same RS code with conventional
binary antipodal modulation (2PAM) can be computed, for any
interleaving depth , by one of the methods described in [35].
For comparison, Fig. 6 shows the case of and of
perfect interleaving. It is apparent that the use of MCR signal
sets yields very large performance improvements with respect
to conventional noncollision resistant signal sets. Such bad per-
formance of RS-coded 2PAM might be surprising, but it can be
easily understood if we notice that, in the case of perfect in-
terleaving and large SNR, the probability of a symbol error at
the decoder input is close to the collision probability

, and that high-rate RS codes are efficient for much smaller
symbol error probabilities (normally, ). On the contrary,
with -dimensional MCR signal sets, perfect interleaving, and
large SNR, the symbol error probability is close to (in our
case, ).

C. Spectral Efficiency of RS-Encoded MCR Signal Sets

In this section we study the spectral efficiencyof RS-en-
coded MCR signal sets used over the G-MACC, in the limit for
large SNR. Let be a -dimensional MCR signal set of size

. Then, from the MCR property, assuming that the SBSHD
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Fig. 6. WER versusE =N for the RS-encoded scheme of Example 6, withM = 4; 8; 16; 32; and1 (perfect interleaving) andP = 0:1. For comparison,
the WER of the same RS code with conventional 2PAM is shown forM = 4; 16; and1.

makes a random choice if all components of the received signal
are collided, we have

if
if

(26)

Since we are interested in the performance of long codes with
good interleavers, we shall use the WER approximation de-
scribed in the previous section, which can be achieved asymp-
totically as increases. From the convolution of the binomial
distributions defined by (23) and from (26), we can show that

(27)

for all of weight , where we define .
Consider an RS code with parameters . Then,
as SNR , the limiting WER is given by

(28)

As in [14], we may compute the WER limit for large block
length and fixed code rate. Since the RS code alphabet size in-
creases with , for fixed the number of signals for each
code symbol grows to infinity as . Then,
and

(29)

In other words, for large SNR and block length, a codesword
having collided slots is affected by exactly symbol errors.
Let be the RS code rate. From (25),

as

Then

(30)

Finally, by using the above limit in (28) we get

(31)

In the case of perfect interleaving , from Lemma 2
of Appendix A we obtain

(32)

(the above limit holds for all . If
with , it can be shown that the limit of is equal
to ).
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Fig. 7. � versusG for the shortened RS family with parameters(210; 210� 2t; 2t + 1) over GF(256), with a four-dimensional MCR signal set of size16,
maximum WER constraint� = 10 , and interleavingM = 32. The value oft is reported next to each curve.

The asymptotic spectral efficiency for large SNR, subject to
a WER (i.e., packet-error) probability not larger than, is given
by

if
if

(33)

where is given either by (28) for finite or by (31)
for and finite or by (32) when . For
given , there exists an optimal code rate maximizing .
The maximum versus can be obtained graphically, by taking
the envelope of all the curves defined by (33), for .
In the case of perfect interleaving, from (32) and (1) we get
explicitly the optimum code rate as

(34)

D. Results

Fig. 7 shows versus for the shortened RS family with
parameters over GF concatenated
with an MCR signal set with and (e.g., any of
the signal sets of Examples 1, 2 and 3), forranging from to

, and the desired maximum WER . As
expected, the optimum code rate is a decreasing function
of .

Fig. 8 shows the maximum versus for asymptotically
large , MCR signal sets with , and , different
values of and desired maximum WER . These
curves are obtained from (31) and (33), by optimizingfor each

. The curve for (obtained from (34)) is shown for
comparison.

V. OUTAGE PROBABILITY AND ACHIEVABLE RATE

Both channel models (3) and (4) fall in the class ofblock-in-
terference channelsstudied in [20]–[22]. These channels may
or may not behave ergodically (or more generally, beinforma-
tion-stable) depending on the delay constraint. In particular, er-
godicity does not hold if [21].

From the very general approach of [36] (details are given in
Appendix B), by letting the code block length and
fixed and finite, we obtain theinstantaneous mutual informa-
tion of the -slot channel spanned by the transmission of
a user codesword. Being a function of the collision pattern,
is a random variable. Following [21], we define theinformation
outage probabilityas

(35)

is equal to the WER averaged over the random coding
ensemble of rate and over all collision patterns, for
and fixed [37], [36]. In our system, yields the
limiting packet-error probability under a given delay constraint.

From the same general approach, by letting first and
then , we obtain the achievable rate ergodic. This
yields the limiting spectral efficiency of delay-unconstrained
systems.

In the rest of this section, we present expressions for,
, and under different assumptions on the user signal

set (or input distribution) and on the type of decoding. Proofs
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Fig. 8. Maximum� versusG for infinitely long RS codes, with a four-dimensional MCR signal set of size16, maximum WER constraint� = 10 , and different
interleaving depths. The code rate is optimized for each value ofG.

are collected in Appendix C. These results serve as a baseline
comparison of different coding and decoding schemes.

A. VPAN Channel with Gaussian Inputs

User codes are independently generated according to a
Gaussian distribution . With the channel model (3) and
perfect CSI, the instantaneous mutual information is given by

(36)

where the ’s are i.i.d. Poisson-distributed with mean.
The exact evaluation of the outage probability is difficult if not
impossible in general. However, we can find upper and lower
bounds by defining two appropriate lattice random variables
[29] and such that

and by computing the -fold convolution of their probability
mass distributions. We shall not give further details about this
method because of space limitations. Also, from Jensen’s in-
equality we can write

(37)

so that can be upper-bounded by the probability that
the right-hand side (RHS) of the above inequality is less than

.

The delay-unconstrained achievable rate is given by

(38)

B. On–Off Channel with Gaussian Inputs

User codes are generated as before. With the channel model
(4) and perfect CSI, the instantaneous mutual information is
given by

(39)

where and is the number of collisions in the
pattern . Since is a nonincreasing func-
tion of , and is binomially distributed, the outage probability
can be computed as

(40)

where is the largest such that .
The delay-unconstrained achievable rate is given by

(41)

C. On-Off Channel, MCR Signal Sets with Soft Decoding

In this case, user codes are obtained
by randomly generating with i.i.d. components, uniformly
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distributed on , and with i.i.d. components, uniformly dis-
tributed on the set of all one-to-one mappings . With
RMCR interleaving, we obtain

(42)

where is given in (18), and where we define

(43)

( denotes expectation with respect to uniform over
, , and uniform over ). The expecta-

tion in (43) can be evaluated numerically (e.g., by Monte Carlo
simulation). Again, depends only on the number of colli-
sions . Since is nonincreasing in, can be com-
puted by (40).

The delay-unconstrained achievable rate is given by

(44)

D. On–Off Channel, MCR Signals with Hard Decoding

User codes are generated as before. The concatenation of
a modulator for the discrete and finite signal setwith the
G-MACC and with a SBSHD, conditioned on the collision pat-
tern , can be regarded as a discrete conditionally memoryless
channel (DMC). In order to simplify the problem, we may con-
sider the average of all transition probabilities with respect to
all labeling maps and component permutations, for given. It
is immediate to show that the resultingaverageDMC is sym-
metric [1] with transition probabilities

if
if (45)

From the convexity of the information density with respect to
the channel transition probability and from Jensen’s inequality,
this yields a lower bound on and .

We can interpret (45) as the transition probability assign-
ment of a DMC depending on the channel “state”, i.e., on
the number of collisions that occurred in the transmission of
signal . If the knowledge of for each transmitted is avail-
able, we say that the decoder has perfect CSI. The instantaneous
mutual information is given by

(46)

where is defined in (20). The resulting outage probability
can be computed again from (40).

The delay-unconstrained achievable rate is given by

(47)

where is given in (11).
Interestingly, in Appendix D we show that the same and

are achieved by a decoder having no CSI. This is in agree-
ment with the result of [20], showing that for a block-interfer-
ence channel with blocks of length , the
capacity without CSI converges to the capacity with perfect CSI
as the ratio increases. However, the result of [20] cannot
be used in our case since it holds under an ergodic assumption
( and finite), while our result needs no ergod-
icity ( finite and ).

E. Results

Fig. 9 shows versus in the cases of VPAN
channel with Gaussian inputs (G–vpan, upper (UB) and lower
(LB) bounds), on–off channel with Gaussian inputs (G-onoff),
MCR signals with soft decoding (MCR-soft) and MCR signals
with hard decoding (MCR-hard), for , , and

. Fig. 10 shows analogous results for . In the
case of MCR-soft and MCR-hard, we consider Z .
Then, in the case of MCR-hard can be compared with
the actual performance of RS-encoded schemes given in Fig. 6.
For , is very close to the actual WER attained
by RS codes, while for optimum coding and decoding
yields a potential gain of about 3 dB at WER and 5 dB
at WER .

The spectral efficiency with finite interleaving, subject to a
maximum outage (i.e., packet-error) probability constraint, is
given by , where is the maximum infor-
mation rate for which . Figs. 11 and 12 show
versus for and , respectively, 20 dB, and

. The curves labeled by “G-vpan (JLB)” are obtained
by using the Jensen’s inequality lower bound (37).

The spectral efficiency with perfect interleaving is given by
, where is calculated for channel load

equal to . We can compare the performance of the schemes
considered in this paper with other simple multiple-access
schemes such as 1) ideal orthogonal access; 2) slotted (S-)
ALOHA; and 3) NCDMA with SUMF or linear MMSE
receiver.

The spectral efficiency of ideal orthogonal access with
Gaussian inputs is

(48)
This is also the symmetric capacity of the system. With
S-ALOHA and infinite user population, the average number of
delivered packets per slot is [5]. With Gaussian inputs,
the resulting spectral efficiency is

(49)

Finally, NCDMA with direct-sequence spreading has spectral
efficiency , where is the number
of chips per symbol. As with , under
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Fig. 9. P (R) versusE =N for R = 0.8 bit/dim,P = 0:1, andM = 4.

Fig. 10. P (R) versusE =N for R = 0.8 bit/dim,P = 0:1, andM = 32.

the assumption of independent and random selection of the
spreading sequences and of Gaussian inputs, the spectral
efficiency of NCDMA can be obtained in closed form from the
results of [12]. For the SUMF receiver we have

(50)

and for the linear MMSE receiver we have

(51)

The above equations giveversus in parametric form, where
the parameter is the signal-to-interference ratio at the SUMF
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Fig. 11. � versusG for M = 4, maximum outage probability� = 10 , andE =N = 20 dB.

Fig. 12. � versusG for M = 32, maximum outage probability� = 10 , andE =N = 20 dB.

or MMSE receiver output, respectively. For a given , the
spectral efficiency limit for high channel load (i.e., for
or, equivalently, for ) is

(52)

Fig. 13 shows the spectral efficiencies - -
- - , and versus

for perfect interleaving and 20 dB. Fig. 14
shows analogous results for 30 dB. - and

- have been computed for Z .
The spectral efficiency loss of collision-type access with re-

spect to (optimal) orthogonal access is evident. Interestingly,
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Fig. 13. � versusG for perfect interleaving andE =N = 20 dB.

Fig. 14. � versusG for perfect interleaving andE =N = 30 dB.

S-ALOHA and the VPAN channel with Gaussian inputs have
very similar maximum . As , is vanishing while

- converges to a positive value. This limit is hard to com-
pute. However, from Jensen’s inequality we have that it is lower-
bounded by the limit spectral efficiency of NCDMA given in
(52). NCDMA with linear an MMSE receiver approaches op-
timal orthogonal access for , while its performance is
close to the SUMF for .

Encoded MCR signals achieve a large fraction of the max-
imum spectral efficiency achievable with signal sets carrying
1 bit/dim and ideal orthogonal access (about 84% (MRC-soft)
and 70% (MRC-hard) for 20 dB, and about 98%
for both schemes for 30 dB). Interestingly, there
exists a range of such that is below both -
and - . Then, for sufficiently large interleaving,
encoded MCR signals with slotted random access (without
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retransmissions) can compete with conventional CDMA with
SUMF receiver in terms of spectral efficiency.

VI. CONCLUSIONS

In this paper we studied signal-space coding and interleaving
for coherent slow frequency-hopped communications over a
G-MACC. We characterized signal sets and interleavers having
maximum collision resistanceand we gave some explicit
constructions. We analyzed the performance of these signal
sets concatenated with outer block coding and hard (error-only)
decoding in terms of packet-error probability and spectral
efficiency, without assuming perfect interleaving. Computer
simulations show perfect agreement with analysis. Our error
probability analysis yields some useful intuitions about the
structure of good interleavers.

Also, we obtained expressions for the information outage
probability and for the achievable (ergodic) rate of the G-MACC
under various assumptions on coding and decoding. Outage
probability yields the achievable packet-error probability with
finite interleaving and large block length. The achievable rate
yields the system spectral efficiency for large interleaving
depth.

From these results we can conclude that slow fre-
quency-hopped random access with appropriate signal-space
coding and interleaving might be a valid alternative to other
conventional multiple-access schemes, like S-ALOHA and
NCDMA with SUMF receiver. In particular, the spectral effi-
ciency of slow frequency-hopped random access is very similar
to that of S-ALOHA, without requiring feedback and retrans-
mission (but at the expenses of a much longer interleaving
delay). NCDMA with SUMF is suited for a high channel load
with low-rate uniform traffic (its maximum spectral efficiency
is achieved for ). On the contrary, frequency-hopped
random access, S-ALOHA, and NCDMA with the MMSE
receiver achieve their maximum spectral efficiency for finite

. Hence, these schemes are more suited for lower channel
load with high-rate traffic.

We conclude by listing a few topics for further research:

• By comparing the MCR-hard outage probability with the
WER of actual RS-encoded MCR signals we see that there
is a significant potential coding gain of optimal schemes
with respect to bounded-distance error-only decoding, that
increases as the interleaving depth gets large. Then, more
advanced hard-decoding schemes (e.g., involving errors
and erasures) should be considered and the analysis pre-
sented in this work should be extended to such schemes.

• By comparing MCR-soft and MCR-hard outage proba-
bilities, we observe the potential gain obtained by soft
decoding. In particular, trellis codes [30], suited for soft
Viterbi decoding, could be constructed over MCR signal
sets.

• Actual wireless channels are affected by time- and fre-
quency-selective fading. Extensions of the results of this
work to fading channels would be of great interest. Pre-
liminary results can be found in [38].

• In fading channels the users are not received with the same
power. Then, a signal burst may survive to a collision

provided that the interference signal is sufficiently faded.
This so-called “capture effect” has been investigated for
S-ALOHA [39], [40] and should be taken into account in
an extension of this work.

• Both the results in terms of WER of actual RS-encoded
schemes and in terms of outage probability show that the
user code information rate must be optimized depending
on the channel load . Then, adaptive coding schemes
which vary the user code rate depending on the channel
load should be considered.

• In partially ordered reservation protocols like PRMA [1],
users access the channel randomly on the unreserved slots
and place reservations in order to transmit a sequence of
packets, then release their slots. These protocols are par-
ticularly sensitive to collisions in the first slot (the one
with random access), since these usually cause an unsuc-
cessful reservation request. Then, adding signal-space re-
dundancy in order to protect this slot might improve the
overall protocol performance, as shown in [19]. In gen-
eral, the joint optimization of partially ordered protocols
and signal-space coding is a very interesting problem.

APPENDIX A
USEFUL LIMITS

In this appendix we state two lemmas and a corollary which
are extensively used throughout this paper. Because of space
limitations and since they are mainly technical, we only sketch
the proofs.

Lemma 1: For all and , we have

The proof follows by upper and lower bounding the binomial
coefficients using Stirling’s approximations (see [41, Appendix
A.3]).

Lemma 2: Let be a piecewise-continuous
function . Then, for all , such that is
continuous in , we have

The proof follows by applying Lemma 1 and the Laplace–
DeMoivre theorem [29], and by noting that is con-
tinuous for all .

Corollary 1: Let be a continuous function
, let be a binomial random variable distributed

as , and define
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and

Then

The proof follows from Chebyshev inequality [29], by
showing that

and that

Both these limits follow from the continuity of and from
Lemma 2.

APPENDIX B
ACHIEVABLE RATES

The achievable rates for a channel with input -sequence
, output , and transition probability satisfy

[36]

(53)

where is the inf-information rate, defined as theliminf
in probabilityof the normalizedinformation density[36]

(54)

Consider the case where a codesword , with
(a -dimensional signal set), is transmitted on the

G-MACC with an arbitrary deterministic MCR interleaver of
depth slots, and denote by the received -dimensional
channel output corresponding to the transmission of, so that

. For a fixed collision pattern, let de-
note the transition pdf of the channel with inputand output ,
where defines the slots over which is transmitted.
If the signals are selected i.i.d. over according to an arbi-
trary probability distribution , the information density can
be written as

(55)

where is the fraction of the occurrences ofin the inter-
leaver array, where and where we define

For all , from theWeak Law of Large Numbers[29],
as

(56)

We define theinstantaneous mutual information as the limit
in probability as of the information density for given
collision pattern and . From Fact 1 in Section III, (55), and
(56) we obtain

(57)

The achievable ergodic rate is obtained as the limit in prob-
ability (if it exists) of as .

APPENDIX C
PROOFS

Proof of (36) and (38): In this case, and .
With the channel model (3), the collision pattern is defined by
the where is the number of interferers in slot

. We have , so that

(58)

Then (36) follows immediately. Since the ’s are i.i.d.
Poisson-distributed with mean, we have

and (38) follows.

Proof of (39) and (41):Again, and . With
the channel model (4), the collision pattern is defined by the

, where if slot is collided
and if it is not. We have , so
that

(59)

Then (39) follows immediately. Since the ’s are i.i.d.
Bernoulli-distributed with mean , we have

and (41) follows.

Proof of (42), (44), (46), and (47):In this case, is an
MCR -dimensional signal set. The channel transition pdfs
are -variate Gaussian

(60)

where . For uniform over , we have

(61)

By summing over all and dividing by we imme-
diately obtain (42). The convergence in probability of to
given in (44) follows immediately from Corollary 1 of Appendix
A, since is a continuous (linear) function of the probabilities

for .

The proof of (46) and of (47) follows the same path as that of
(42) and (44), provided that we use the symmetric DMC transi-
tion probabilities (45) instead of the transition pdf (60).
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APPENDIX D
MUTUAL INFORMATION WITHOUT CSI

In this section we prove the claim made in Section V that
and given in (46) and in (47) are obtained also if the

decoder ignores the number of collided componentsfor each
transmitted -dimensional signal.

Let denote the number of signals transmitted over the slots
indexed by . Clearly, for each RMCR interleaver and
block length we have . Given a collision
pattern of weight , all the signals suffering
from collisions are transmitted over a DMC with transition
probability given by (45).

The decoder is not allowed to use this information for de-
coding (no CSI). However, it can group the signals corre-
sponding to the and use the fact that all the signals belonging
to the same group have the same (unknown) number of collided
components. Because of this grouping, a codesword can be seen
as a sequence ofsuper-symbolsof dimension , for

. Each super-symbol is transmitted over thesuper-channel
obtained by the th extension of the original DMC.

For simplicity, we let and
Since the DMCs treated here are symmetric, we identify their
channel transition probability matrix by its first row (the other
rows are permutations of the first). Then, the transition proba-
bility of the DMC defined by (45) has first row

The first row of the transition probability matrix of theth ex-
tension of this DMC is given by the-fold Kronecker product
of by itself, denoted by . With no knowledge of at the
decoder, the super-channel transition probability is a mixture of
the possible transition probabilities for where the
mixing is with respect to the conditional distribution ofgiven
, i.e., with respect to given in (18). The resulting

transition probability of the th super-channel is given by

(62)

From Fact 1, with RMCR interleaving as
, for all . Then, the transition probabilities (62) are

asymptotically equal. By letting and denoting
this common transition probability, we obtain

(63)

After some algebra, by applying the Laplace–DeMoivre the-
orem [29], we can write

(64)

The above limit can be computed by noting that for all

since the relative entropy is non-
negative [1]. Then, for each, the term with exponen-
tially dominates the sum inside the logarithm in (64). We obtain

By using the above result in (63) we obtain (46). Consequently,
also (47) can be achieved without CSI.
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