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Modulation and Coding for the Gaussian Collision
Channel

Giuseppe CairegMember, IEEEEmilio Leonardj Member, IEEEand Emanuele ViterhdMember, IEEE

Abstract—We study signal-space coding for coherent slow fre- rate-splitting approach). A more classical (and generally sub-
quency-hopped communications over a Gaussian multiple-accessoptimal) approach consists of eliminating multiple-access in-
collision channel (G-MACC). We define signal sets and inter- terference (MAI) by making the user signals orthogonal, like

leavers having maximum collision resistance The packet-error . . . .
probability and the spectral efficiency obtained by these signal in TDMA/FDMA. The capacity region of the G-MAC with or-

sets concatenated with outer block coding and hard (error-only) thogonal access is strictly included in the general capacity re-
decoding is evaluated without assuming perfect interleaving. gion, and it is optimal in the case of equal-rate equal-energy
Closed-form expressions are provided and computer simulations ysers (symmetric capacity) [1].

show perfect agreement with analysis. The structure of good | hractice, both optimal and orthogonal multiple access re-
interleavers is also discussed. . L .

More generally, we present expressions for the information quire a good deal ‘?f Coord'_nat'on gmong users, in order to ac-
outage probability and for the achievable (ergodic) rate of commodate changing traffic conditions, access requests from
the G-MACC at hand, under various assumptions on user new users entering the network, and re-allocation of resources
coding and decoding strategies. Outage probability yields the (handwidth and power) of users leaving the network. Users co-

limiting packet-error probability with finite interleaving depth — gination can be achieved at the expenses of additional over-
(delay-limited systems). The achievable rate yields the lim-

iting system spectral efficiency for large interleaving depth head and complexity, by |mplementlng some protocol on top of
(delay-unconstrained systems). Comparisons with other classical the basic G-MAC mechanism.
multiple-access schemes are provided. A simple alternative to user coordination is random access,
Index Terms—Coding and modulation, frequency-hopped com- Where no effort is made in order to avoid MAI and other
munications, information outage probability, multiple-access col- countermeasures are taken to mitigate its effects. A G-MAC
lision channel. with random access shall be referred to as @Gaussian
multiple-access collision channéG-MACC). For example,
|. INTRODUCTION in some packet radio networks users may “collide” (i.e., their

) ) ;i{i;nals may overlap in time—frequency) and are informed about
N the Gaussian multiple-access channel (G-MAC), severgi unsuccessful transmission by a feedback channel, so that a
senders (users) encode their information messages indepgfansmission protocol can be implemented (e.g., the ALOHA

dently into sequences of real numpers and transmit their ?!gnﬁétocol [4]-[6]). In other applications, retransmissions are

at the same time. A common receiver gets the superpositiongfgesirable or impossible. Then, the effect of collisions can be
all users signals plus additive Gaussian background noise gigigated by a combination of coding, interleaving, and signal
detects the individual messages [1]. This channel model SeryRscessing (see [8]-[15] and reference therein).

as perhaps the simplest example of wireless network, where &he capacity region of a noiseless collision channel without

common resource has to be shared by a population of users @@%uback was determined in [16]. In the channel model of [16],

amples are the uplink of a satellite system or the mobile-t0-baggars cannot coordinate their transmissions because of unknown

link of a terrestrial ceII_uIar system, in the idealized case of iS@3nsmission delays, that cannot be estimated because of the lack
lated cells and no fading [2]). _ of a feedback channel. Therefore, in [16] collisions are unavoid-
The capacity region of the G-MAC is well known [1] and theyple. In this work, we do not place this restriction. On the con-
modern research trend in the field is to devise Iow—complequary' we just assume that a “lazy” system designer did not im-
coding and decoding schemes to approach this limit. For eggment any user coordination protocol or retransmission pro-
ample, [3] shows that all capacity region boundary points can g&o|. Moreover, we constrain the network to be equipped with
achieved by single-user coding/decoding and “stripping,” prepnventional single-user matched filters (SUMF), which treat
vided that the users split their signals into at most two conyA| as additional (white) noise without implementing stripping
ponents whose rate sum is equal to the users’ own rate (Hi&oding or other signal—space interference cancellation tech-
nigues. Obviously, we do not claim any optimality of this ap-
Manuscript received July 1, 1998; revised October 1, 1999. the materialpfoach. Nevertheless, devising modulation and coding schemes
this.pap% was pl\'ﬁegted L”.sa“ a tAheA'EEE '”ltgfgi“olg?gSSVmPOSium on InfRér this channel might be of some interest. Applications are, for

mation eory, , Camoriage, , August 16-21, . . . . . - .
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(e.g., PRMA[17],[18]) have been proposed for integrated voiegth SUMF, and linear minimum mean-square error (MMSE)

and data in wireless systems, so that the study of the underlymegeivers and ideal orthogonal access (Section V).

G-MACC may provide useful insight into more evolved appli- Proofs and mathematical details are collected in Appen-

cations [19]. dices A-D and conclusions and future research directions are
In this paper, we consider a slotted G-MACC with cohereminted out in Section VI.

detection and equal-rate equal-energy users. The time—freNotations and Definitions

guency plane is organized frames and each frame is divided

in time—frequencyslots Users interleave and transmit their

codewords ovend (pseudo-)randomly selected slots. Previous

analysis of time—frequency hopped systems considered perfect

interleaving and infinite signal-to-noise ratio (SNR) [13], [14]. .

On the contrary, we distinguish delay-limited systems, for * Ll denotes the set of permutation®f £ elements.

which M is finite, from delay-unconstrained systems, where < =} denotes the@rdered combinations seite., the set of

+ ¢} denotes the&eombinations set.e., the set of subsets
¢ C {1,...,n} of cardinalityk (referred to as+-combi-
nations of size:”). If n > k, |®7| = (}), otherwisedy
is empty.

perfect interleaving is allowed (i.e}/ can be made arbitrarily vectors§ of length k. whose components are distinct el-
large). Moreover, we take into account the effect of noise. ements of{1,...,n}. If n > k, |E}| = K!(}), other-

For this channel, we define a class of multidimensional  wise Z} is empty. Moreover, there exists a (not unique)
signal sets havingollision resistancei.e., such that even if one-to-one correspondengg «— &} x Il.

some signal components are transmitted during collided slots, B(n, k,p) A (")p’“(l _pynk
correct signal detection is still possible from the uncollided T k ' _ -
components. A necessary condition for collision resistance * P~ and “a.e.” denote convergence in probability and al-
is that the components of the signal point are transmitted on  MOSt everywhere, respectively [29].

different slots. Then, we define a class of interleavers meeting * (5) = 0" = &0

this constraint and we selegbod interleavers in this class.  « 1{A} denotes the indicator function of the eveht

Under some assumptions, the slotted G-MACC belongs to |, 2 . o . .
the class of block-interference channels studied in [20], in ii\(/)(nuésdf)) sv?t?]ofﬁ;lt;f;?ju\fasgzgégbabll|ty density func
the case of no delay constraints. In fact, collisions can be A oo 2 '
regarded as an extreme casebbfck fading studied in [21], * Qx) = [, \/%C_t 2 dt.
[22]. Thus it is not surprising that high-diversity signal sets for A

the fading channel [23], [24] have good collision resistance. * Hp) = —plogzp - (/

[u—y

—p)log,(1 — p) and for a proba-

- A
We provide a new algebraic construction of high-diversity ~ Pility vectorp, H(p) = — 3, pilog, pi.
signal sets based @iymodules, and an interesting four-dimen-
sional example. ll. SLOTTED GAUSSIAN MULTIPLE-ACCESSCOLLISION
The idea of improving the performance of slotted ALOHA CHANNEL

by introducing “packet redundancy” is not new (e.g., multicopy . .
ALOHA and its generalizations [25], [26]). Replicating the we co_rr1rs]|d$r a (?'MACC W't:N“ USErs anql ;g;ned rgndr(])m
same packet, as done in previous work, can be seen as qfgess. 1he ime-requency plane IS organiz es kac

concatenation of an outer code with a trivial repetition innetf'"’“”ne is partitioned inV, time-frequencislots User signals

code and a trivial interleaver. Here, we consider the concaf¥€ d|v!ded mtd)urst'_swhlch oc_:cupy one slot. Gugrd bands and
ard intervals are inserted in order to make signal bursts ap-

nation of collision-resistant signal sets (which can be regard8g®" . o
9 ( g EE\roxmately time- and band-limited over the slots. Each slot

as inner signal-space coding) with outer block coding (e.q., 5 [di . lable for t .
Reed-Solomon codes) and nontrivial interleaving (Sections fSbs rea imensiongor componentsavailable for transmis-
n. Users occupy an average numédef slots per frame and

and IIl). The performance analysis of this scheme is inspir N . ) . .
) P y b fransmit withinformation raté R bits per dimension, so that

by the work of [14], with the fundamental difference tha%I| users have the same average bit die= gRL. /T bits

in our case, because of the finite interleaving depth, symb d. wher# denotes the f duration. U lect
errors at the decoder input are statistically dependent, so t §f second, whe enotes he frame duration. USers selec
ir slots randomly and independently, according to a given

the standard analysis of bounded-distance hard decoding [

does ”‘?t apply. Nevertheless, we fl.n_d S|mple CIOS(:"d'formlFolIowing the terminology of [2], we denote by Naive CDMA an access
expressions for the word error probability and for the spectraheme where all signals overlap in time and frequency and where users are de-
efficiency achievable by Reed-Solomon outer coding. Og@gded independently. The receiver for NCDMA is formed by a soft-output de-

. o - : ctor device (e.g., a bank of single-user matched filters, a bank of linear MMSE
analysis of the error probability provides some useful hints é erference cancelers [10], or a bank of decorrelators [9]) which produces se-

the design of good interleavers (Section V). guences of soft-decision variables for each user encoded data stream, followed
Finally, we look at the G-MACC from a more idealizedby a bank of single-user decoders acting independently. No information from a

point of view and we derive closed-form expressions for i coder can be fed back to other decoders, as done in a stripping procedure [3],
information outage prObab”'ty [21] (for finite mterleavmg 2In a real systemR should also take into account the overhead due to guard
depth) and for its achievable symmetric rate (for ideal intebands, guard intervals, training sequences for synchronization, and channel es-
leaving). We provide comparisons with other Convemiongqnation and suitable higher level protocol overhead, like user address identi-
lers, packet numbering, acknowledgment, etc. For simplicity, in the following
access schemes for the G-MACC, such as slotted ALOHA@ shall assume an ideally synchronized system with Nyquist band-limited sig-

“Naive” code-division multiple access (CDMA) (NCDMA) nals and perfect coherent reception.
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(pseudo-)random time—frequency hopping code known to t RS codeword
receiver. Following [14], the transmission of each user is mo : N
eled as a Bernoulli process [29] with probability= g /N, thata ¢, e cx

user occupies any given slot. The slot collision probability (i.e
the probability that more than one user transmits over the sa
slot) is given byl — (1 — p)™=~! [14]. We study the system
performance under the assumption of infinite user populati 9

(N, — oo) for afixed ratioN, /N, = 3. Then, the number of 5, L. | |.J... MCR symbols
transmitting users in each slot is Poisson-distributed [29] wi
meanG = g3 (G is referred to as thehannel loag), collisions in b D

different slots are independent and identically distributed (i.i.d Transmitted codeword
and the limiting collision probability is given by

3 N.—1 :
P.o 21_ lim <1 — g_) =1-—eC, (1) abN

Ny —o0 N, Interleaver

Let W denote the system bandwidth. Tegstem spectral effi-
ciencyis defined as) = N pits per second per hertz. In this
work, we are interested in the limitingfor NV, — oc and con- F to M
. [____> channel
stantV, /N, = 3. According to the 2WT-Theorem,” we can slots
approximatel; = 2WT/N, and write

n=2RG. (2) I

Fig. 1. Encoding and interleaving.

A. Channel Models

Because of the complete symmetry of the problem with re- o .
spect to any user, we can focus on the transmission of a giverl;oherent demodulation is assumed in the channel models

reference user (say, user 1). As discussed in Section |, in {#é @nd (4). The real channel models derive from treating sep-

G-MACC under analysis the receiver treats MAI as additiondf@t€ly the in-phase and quadrature components of the signal
noise and does not take any advantage of its structure. complex envelope. In model (3), the MAI circular symmetry

An optimistic assumption is that the demodulator for user&1-d- in-phase and quadrature components) derives from as-
behaves as a linear device irrespectively of the MAI power ardMing mqlependent and uniformly distributed carrier phases for
for each received burst, provides a sequende,sfamples taken all interfering users.
at the symbol rate

B. Encoding and Interleaving
Yi =t v+, j=1...,Ls 3) User information is organized ipackets Each packet is
independently block-encoded, interleaved, transmitted over
a given sequence of slots, demodulated, deinterleaved, and
decoded. Then, packet-error probability and word-error proba-
bility (WER) coincide. Encoding and interleaving is sketched
éﬂ Fig. 1 and described in the following.

wherez; is the jth component of the signal of user &; is

the jth MAI sample, ands; is the jth additive white Gaussian
noise (AWGN) sample, i.i.d~ A(0, Ny/2). The variance of
v; depends on the numbéf of interfering users transmitting
over the current slot, which is Poisson-distributed with me

G. The channel model defined by (3) will be referred to as the Encoding: W'thO.Ut loss of generality, we consider signal-
variable-power additive noise/PAN) channel. space codeg’ obtained by the concatenation of a block code

On the contrary, a pessimistic assumption (very common GYET an abstract symbol alphabet with a signal set through a la-

the analysis of packet-radio networks [5]) is that the demodB(-':‘Iing map [30]. Le€ be a block code of lengty defined over

lator for user 1 is totally impaired by collisions. In this case discrete and finite alphabgt and letS be aD-dimensional

the demodulated sample sequence during the current slot é' %Iset (., adiscrete and;‘lnlte setof vectorﬁ (signal points)
be written as in ). Assume thatA| = |S|? and letu = {1, };.; be a se-

quence of labeling map4 — S7 of A onto they-fold Cartesian
y; = alz; +ny) j=1,...,L, (4) Product ofS by itself. Then, the codé’ is given by

wherea € {0,1} is thecollisionrandom variable, defined by ¥ = {z € R™PN: 2 = p(c),Ve = (cy,...,cn) €C}  (6)

= (5) wherep(e) = (p1(c1), ..., un{en)) and where the image of
¢; undery; is thegD-dimensional real vector
The channel model defined by (4) will be referred to as the

on—offchannel. 1i(€i) = (8q(i—1)+1s - - -+ Sq(i—1)+q)

0, if K >0
1 if K =0.

7
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(thes,;_1)4;'s are D-dimensional vectors, or signal points, in TABLE |

; ; R : : EXAMPLE OF INTERLEAVER STRUCTURE WITH
S). CodesX’ obtained in this way will be denoted briefly by M =6 D=3 q= 1AND N = 20
X=C—-u—S.

Interleaving: In general, system requirements impose

maximum transmissiomelay. Then, the interleaving depth, s1(1]2}3
i.e., the number of slots over which a coded packet (codewol so [1]2]4
is transmitted, cannot be arbitrarily large [21]. We assume tt s |1]2]5
each user codeword is interleaved and transmitted bielis-
tinct slots, we consider a particular codeword of the referen sa 11216
user and we number the slots over which this is transmitted s (1134
by m = 1,..., M. Clearly, because of the block-interferenci ss |1]3]5
model, the word error probability is independent of the actu s |1/3]6
position of signal components in the slots. Also, slots me s l114]5
contain signal components belonging to several codewor:
so that the slot lengtli,, the interleaving depttd/, and the So.111416
codesword lengtlyDN can be chosen quite freelyFor the s 1516
following analysis, all that matters is the unordered assignme snf2(3]4
of the ¢ DN signal components of the transmitted codeswol s 12135
to the corresponding/ slots. Thus for code®” — u — S, we
represent interleavers by an associated allayf sizeq N x D s 219 )6
with elements in{1,..., M} such that the’th component of su|2|4]5
the kth signal in the codesword, denoted by, is sent over s15 (2|46
the slot indexed by thék, £)th element ofM. The kth row sis 2516
of M specifies the sequence of slots over which signals s | 3|45
transmitted.
Table | gives an arrap for M = 6, D = 3,¢ = 1, and sip|3]4]6
N = 20, and an interleaver associated with For example, the S19 1356
components of signal,; are transmitted over slots 2, 3, and 6 s [415]6
as specified by the 13th row &#. By permuting arbitrarily the M
order of the signal components in each slot, we obtain equival ) o T . A s . 1.
interleavers all corresponding to the arddy(we can say that an el Il I 2 O T L B Bt
arrayM is representative of a class of equivalent interleavers 2 || 512 | S22 | S32 | Sa2 | Sup | S12a | S13a | Su4 | S150 | Si6
3 S1,3 | 85,2 | Se,2 | Sr,2 | Su,2 | Si12,2 | S13,2 | S17,1 | S18,1 | S19,1
[ll. COLLISION-RESISTANT SIGNAL SETS 4 |l 525 | 553 | Ss2 | Sez | S10a | S1az | S152 | S172 | S182 | S200
In this section we analyze the system from the point of vie 5 1t 535 | S65 | 583 | S102 | S12.3 | 5143 | S162 | $173 | S19.2 | S0
of asingle reference user. We focus on the transmissidh i 6 || sus | $73 | S0s | $108 | S155 | S15 | 5163 | S18s | 193 | S20

mensional signals € S over the on—off channel. We considel
the channel outpuy, corresponding to the transmission of a
single signals; without specifically indexing the user and, forProjectings over a(D — k)-dimensional subspace generated by
simplicity of notation, we drop the time indéx Moreover, we the D — k axes corresponding to the nonzergs. In order to
assume that the componelfts, ..., sp) of s are transmitted avoid systematic errors (i.e., detection errors even for arbitrarily
over D different slots, indexed by = 1,...,D, and we de- large SNR) in the presence bf< D collisions, we require that
note bya = (a1, . .., ap) the collision pattern over these slotsthe points inS(a) are distinct, for alky with Hamming weight
Then, we can rewrite (4) as

D
A
yj=oi(si+ny),  j=1,....D @) W(a):;o‘i>0'
J=

We assume that the receiver has perfect knowledggpérfect Th h the followina definiti
channel state information (CSl)). Then, the maximume-likelo- en, we have the foflowing definition.

hood (ML) decision rule for the detection sefis Definition: A D-dimensional signal s&t hascollision resis-
D tancek if its projections on all. D — k)-dimensional coordinate

s =arg minz ly; — as;)?. (8) subspaces hay§| points, i.e.|S(e)| = [S] for all e of weight

ses W(a) > D — k. O

This corresponds to selecting the minimum distance of the re-In this paper, we are interested in maximum collision resistant
ceived point from the points of a signal s&fa) obtained by (MCR) D-dimensional signal sets, i.e., with collision resistance
, equal toD — 1. The minimum Hamming distance of such signal
3For example, in the GSM full-rate standard, encoded packets correspond|r& bé). A simil . T din the desi
to speech frames of 20 ms are interleaved oer= 8 TDMA slots, and each = S_ musf{ . S_'m' ar requirement |s.|mpose In the design
slot contains symbols from four different packets [31]. of high-diversitysignal sets for the fading channel where the
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minimum Hamming distance between any two signal vectorsBs Construction of MCR Signal Sets

calledmodulation diversitf23], [24]. Good MCR signal sets have large squared Euclidean distance

A desirable property of interleavers is that the components@ED) between points and projected on théV (a)-dimen-
each signak in the codesword are transmitted overdistinct  gional coordinate subspace determinechbyor all e. In par-

slots. We have the following definition. ticular, we define the (normalized) minimum SED givieol-
Definition: Consider the;N x D array M associated with lided components as
an interleaver. The interleaver is MCR if all rowsAf are (not D—k
necessarily distinct) vectors from the ordered combinations set d2 2 min min (i) — 8> (12)
k I w(J) w(J)
E% 0 wCllp 8#8 =

In the following, we restrict our treatment to MCR inter+or eachk, the exponential behavior &/ Ny — oo of P(elk)
leavers. The arrap of an MCR interleaver can be generateds determined byfz, in the sense that
:gpsdgmly,ﬁ}/ selecting |:|_.d. with uniform probabilityV vec- _ Plelk) = O(e,dig/(zwo))'
€ =25 and by writing them by rows. We refer to ran
domly generated MCR interleavers as RMCR interleavers. Wnce, a practical design criterion for good MCR signal sets is
shall make use of the following fact, which is an immediate come maximized? forall k = 0,..., D —1. We now give some ex-
sequence of th8trong Law of Large Numbef29] amples of four-dimensional MCR signal sets of sigehaving

Fact 1: For givenD andM > D, consider a sequence Ofspectral efficiency 1 bit/dim.

RMCR interleavers for increasing block length with associ- ~ Example 1—The PAMS6, 4) Signal Set: A simple MCR
ated arrayM . For any giver€é € =, let fx(€) be the frac- signal set is a repetition code of lengttover the one-dimen-
tion of rows of My equal to€. Then,fx (&) =5 1/(D!(}})) as sional 16-PAM signal sefl/y/85{+1,+3,...,+15}. The

N — oo, O  resulting four-dimensional constellation with normalized
average energy per dimension, denoted by PPV4), is
made of 16 points equally spaced along the main diagonal

A. Error Probability of MCR Signal Sets of a hypercube. The minimum SED of the projections are
The error probability analysis is complicated by the fact thag? — 0,188, 42 = 0.141, d2 = 0.094 andd2 = 0.047. O

in generalS and its projection$ («) are notgeometrically uni- . )

form [32]. We cansymmetrizehe problem with respect to all Example 2—The RHG, 4) Signal Set: An MCR signal set
collision patterns of the same weight by averaging over all pde@" b€ obtained by applying a suitable rotation to a four-dimen-
sible component permutationse 1I,5. A component permu- sional hypercube with vertex coordinateisl, £1,4+1,+1). In

tationr, if applied to a vectos = (si, ..., sp), yields the per- Particular, the rotation matrix

muted vectorrs = (sx(1), - - -, Sx(p)y). Theunion bound7] on 0.4857 0.7859 —0.2012 —0.3255

the symbol error probability’(¢|k) conditioned on the number R— —0.7859 0.4857  0.3255 —0.2012 (13)
k of collided components and averaged oversale S and 0.2012 0.3255 0.4857  0.7859

7« € Ilp is given by —0.3255 0.2012 —0.7859 0.4857

. . was found in [24] to give maximum collision resistance and
P <mind — g _ to maximize the minimunproduct distancewithin a certain
Plelk) <min |S|D! 2 2 2 Plms—mdih), 1 ISI{  family of rotation matrices. The obtained signal set, denoted by
9) RH(16, 4), has minimum SE. It is interesting to note that not
allthe(D — k)-dimensional projected constellations are equiva-
where the second term of the above minimum correspondsiéat. The four one-dimensional projections have minimum SED
the error probability with random selection of a signalinand = 0.003. The six two-dimensional projections, shown in Fig. 2,
where we define the conditionphirwise error probability{7]  have three minimum SEDs, namélys86, 0.422, and0.205 and
the four three-dimensional projections all have minimum SED

D—k a2 N

Plrs — 73l) 2 0 \/5 2= I3x) — 5= | (10) = 1930 o

2No Example 3—The({@6, 4) signal set: Here, we show an ex-
ample of a general algebraic construction which enables to ob-
tain good MCR signal sets. Further details and examples can be
found in [33]. LetZ;4 be the ring of integers modults and
consider theZ,g-moduleA = Z15G, with G = [g1, g2, g3, 94]
(i.e., the set of vectors = G, with » € 76, which can be
seen as &4, 1) linear code ovelZ;¢ with generator matrix@
[34]). If the elements of7 have a multiplicative inverse i,

8CS wCllp $xs

In (10), we assume tha has unit average energy per dimen
sion and that each signal component is scaled/8ybefore
transmission, so that the SNREgN,.

Notice thatP(c|k) depends onx only through its weight
W(a) = D — k. Sincek is binomially distributed, the average
symbol error probability is given by

D _ then the minimum Hamming distance 4fis 4. The resulting
P(e) = B(D,k, Pect)P(elk). (11) MCR signal sets is obtained by applying componentwise the
k=0 mappingZ,;s — IR defined bys = 22 — 15to allz € A, and

By using (9) in (11) we obtain an upper bound B(e). by normalizing the average energy per component.
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Fig. 2. The six two-dimensional projections of RtB, 4) of Example 2. Fig. 3. The six two-dimensional projections of 5, 4) of Example 3.

The signal set can be optimized by selecti6g (e.9.,  The WERP(w) after bounded-distance error-only hard de-
with ¢ = [1,1,1,1] we obtain PAM16, 4)). The choice coding is given by [27]
G = [1,3,5,7] proves to be particularly good. The resulting

signal set, denoted by @6, 4), has minimum SEB 3.012. N
The four one-dimensional projections have minimum SED Pw)y= > P(h) (14)
= 0.047. The six two-dimensional projections, shown in Fig. 3, h=t+1

have two different minimum SEDs, namely471 and 0.377
and the four three-dimensional projections all have mmlmurlthen, the key quantity to be evaluated nexPigh).

SED= 1.647. ¢ Leta = («q,...,ap) be the collision pattern occurring
Fig. 4 showsP(c|k) versus E;, /Ny for the signal sets over theM slots spanned by the transmissionaofConsider
PAM (16, 4), RH(16, 4), and Z(16, 4), for k = 0,1,2,3. the ith detected symbo&; and the corresponding detected
The error curves of Z16,4) are more uniformly spaced signals(8,(;_1)+1,---,84i—1)+¢)- The detection error events
in the useful SNR range, thus resulting in a more gracefis,;_1),; # 8,i—1)4+;f (fori =1,... ., Nandj =1,...,q)
performance degradation as the number of collisions increasa® statistically independent if conditioned en Then, the

probability of 2 errors givenx can be written in general as

whereP(h) is the probability that ande differ in i positions.

IV. CONCATENATED CODING WITH HARD DECODING P(hla) = Z H Ple;|a) H(l — P(eilar)) (15)
In this section we evaluate the word-error probability of con- ¢ed; iCe o
catenated coding schemés= C — u — &S over the on—off
channel, wheres is a D-dimensional MCR signal set, MCR
interleaving with finite depth\/ is employed, and the receiver

q
is formed by a symbol-by-symbol hard detector (SBSHD) fol-p(ei|a) 29 H (1= P(8q(i—1)4j # 8qti—1)4i]@)). (16)

where the events; = {a; # ¢;} have conditional probability

lowed by at-error correcting decodérln the following,e € C j=1

denotes the transmitted codeswatd= (s1,...,8,x) is the

corresponding signal sequenae,= (31,...,38,~) is the se- The desired”(h) can be obtained by averagif2|a) overa
guence of detected signals at the output of the SBSHD, a@id overe € C.

a = (ay,...,ay) is the corresponding symbol sequence at the In general,P(h|a) is difficult to evaluate. Then, we shall
decoder input. compute the expectation dP(h|e) over the ensemble of all

labeling mapg: and over all sequences of random component
permutationsr € Ilp. From a standard random-coding argu-

4Schemes making use of side reliability information on the SBSHD outputd €Nt [11], therg exist a sequence of Iapeling maps and compo-
and/or error and erasures decoding are left for future investigation. nent permutations such that the resulting concatenated coding
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MCR 4-dimensional signal sets, 1 bit/dim

——— PAM(I64)
RH(16,4)
v Z(16,4)

Plelk)

40 45
for & = 3 coincide, as these signal sets have the same one-dimensional projections

Fig. 4. P(e|k) versusE, /N, for the MCR signal sets PANL6, 4), RH(16, 4), and Z(16, 4), for k = 0,1, 2, 3. The curves of PAM16, 4) and Z(16,4)

scheme performs at least as good as the average. Itis immeduteollisionsk,(;_1); is a random variable conditionally dis-
to check that the expectdd(/|ex) is given by tributed asPys p(k|c), given by

%, if max{0,D — M +¢} <
P(hla) = Z H 1- H — Plelky(i-1)+5)) Prr,n(kle) = i < k < min{c, D}
Py iCP g=1 0, otherwise.

H H P(elkyii—1)+5))

(18)
igd =1

(17) Since the slot selection for different signals is independent, the
kq@i—1)+,'s In (17) are conditionally independent. Then, by av-
eraging over the RMCR interleaver ensemble, after some al-

where P(c|k) is upper-bounded in (9) and whekg;_;),; is 9ebra we obtain

the number of collided components for the signal transmitted in

positiong(i — 1) + j of the coded sequence. Clearty(; 1),

Poye(hla) = B(N, 2,1 — (1 — P(elc))?) (19)
is a function ofa. For a given interleaver, the evaluation of (179Nhere?(e| ) is given by
is still prohibitively complex for largeV. Moreover, the result
would depend on the particular interleaver. In order to over- — _ —
come these difficulties, we shall consider the average perfor- Plele) = Z Par,p(kle)P(e|k). (20)
mance over all RMCR interleavers and an easily computable

expression which closely approximate the performanaoofl  Finally, sinceP,..(h|c) depends only on the number of colli-
MCR interleavers (we will clarify the concept of good intersionsc rather than on the particular collision patteriand since
leavers later on).

¢ is binomially distributed, we have

M
A. Average oveRMCR Interleavers Pave(h) =Y B(M, ¢, Peot) B(N, b, 1 — (1= P(c|))?).
By averagingP(h|a) over the ensemble of RMCR inter- =0

leavers we obtain an upper bound on the performance of the best

(21)
MCR interleaver. With RMCR interleaving, the slots over whicBy using (21) in (14), we obtain the desired WER average
each signas,(;_1)4, is transmitted are given by tife(: — 1)+ bound
J i [

)th row of the interleaver array, independently randomly se- For smallM/ this bound might be loose, in the sense that it
lected from the ordered combinationsSéf . Itisimmediate to is easy to find interleavers performing significantly better than
show that, for a giver of weightW () =

M — ¢, the number the average. Intuitively, good interleavers are such that, for all
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« of weight M — ¢ with ¢ > D, the number of positions |7.(a)| = NPy p(k|c), which depends ot only through its
for which kyi—1)4; = D (for j = 1,...,q) is minimum. In  weight M —c. Define Ly 2 | Ji(a)| and letH), be the number
fact, if kq(i—1)+; = D, the signals,;_1); has all collided of symbol error event$a,; # ¢} fori € Ji(a). Then, since
components and the SBSHD chooses at rangigm iy, ; € S after conditioning with respect i@ the symbol error events are

with uniform probability, so that the probability thaf # c; is  statistically independent{}, is binomially distributed as
large. Then, a good interleaver minimizes the number of “very

probable” symbol errors at the decoder input. In the random en-  P(Hx = @) = B(Lye, h, 1 — (1 = P(elk)?).  (23)

serrflble with srl_TaIIM, bagzénterleavefrs dolr_mnate tge ?\"Aeragfva/loreover, theH;, are conditionally statistically independent,
periormance. However, — oo, from Lemma < ot AP given a. Since{J(c): kK = 0,...,D} is a partition of the
pendix A, we have that

index sef{1, ..., N} forall «, the total number of symbol errors
— A — i (i _\b
]\}iln Pave(h) = B(N,h,1— (1= P(e))) éPi.i.d.(h) (22) isgiven by the sunHf = ", Hj. Then
Prooa(hla) 2 P(H = hla) (24)

whereP(e) is given in (11).P; ; q.(h) corresponds to indepen-
dent collisions, i.e., perfect interleaving and can be obvioustyan be computed easily by convolving the binomial distributions
obtained ifA/ > ¢gND. The limit (22) shows shows that thegiven in (23) fork =0, ..., D and givenc.

average interleaver performs as well as the best one for large inunfortunately, the condition tha({g) dividesV is often too
terleaving depth, and that bad interleavers in the ensemble agstrictive. Then, for generdV, M, and D, a search for opti-

asymptotically irrelevant. mized interleavers is needed. Intuitively, we expect that good
o interleavers behave as close as possible to the case \(\/ﬁére
B. Approximation for Good Interleavers divides NV, even if this condition is not satisfied. Driven by this

If the block lengthV of C satisfiesN = L(’g) for some argument, we can a}pproximaf[e the perform_ance of any good in-
integer L, a good interleaver can be explicitly constructed bierleaver by assuming the existence of an interleaver such that,
writing the elementsp of the combinations seb}] as a row foralla of weightM —c, the size o7y (a) is as close as possible
of M, for all ¢ € ®¥, and by repeating each row formed into NPy, p(k|c) (thatin general is not integer). In particular, let
this way exactlyy L times? In this way, exactly L signals are _ )
transmitted over the same set Bf out of M slots, such that Lyje = [NParp (Kle)] + exye (25)
the g signals(sy(i—1)+1, - » 84(i-1)+¢) cOrresponding to the where[-] denotes rounding to the closest integer agd € Z is
¢th symbol are transmitted over the same sefoslots. The chosen such th@;?:o Lije = Nandz,?zo |exje| is minimum.
number of symbols having signal completely collided is equahen, from the same argument leading to (24), by convolving
to N Py, p(D]c) for all patterngy of weightM —c. In thisway, - the binomial distributions defined by (23) for tiig).’s given in
the maximum number of “very probable” symbol errors oveRs) we obtain the desired approximation for good interleavers.
the ensemble of all collision patterns is minimized (a minimax As a consequence of Fact 1 in Section I, for RMCR in-
approach to the interleaving design). terleavers with largeV, any giveniZ-combination of sizeD

Example 4—Good InterleaverTable | gives an example of @PPears on the roxgs of t_he interleaver array approximately the
such situation with\/ = 6, D =3, =1, andN = (/) =20, same numb_eer/(D) of times. Then, for large block lengiii
If one collision occurs in any one of the six slots, then ex@"Y RCMR interleaver can be turned into a good interleaver (i.e.,

actly NPy p(1]1) = (3) = 10 symbols are hit in one com- &N interleaver such that its actua(h|a) is close toPyood(h|a)

ponent. If two collisions occur in any two slots, then exact{Pr all @) by simple row reordering.

NPy p(1]2) = 2(3) = 12 symbols are hit in one component  Example 5: Considert = ¢ — u — S whereC is the
and N Py, p(2]2) = (7) = 4 symbols are hit in two compo- Reed-Solomon (RS) code with parametéts, 11, 5) over
nents. If three collisions occur, nine symbols are hitin one COBF(16) andS = Z (16, 4) (in this caseg = 1). Fig. 5 shows
ponent, nine in two components, and one in three. With four ClyER versusE; /N, obtained by Monte Carlo simulation and
lisions, 4, 12, and 4 symbols are hit, respectively, in one, twglgosed-form analysis, with interleaving depdd = 8 and
and three components. With five collisions, 10 symbols are hitjp,, = 0.1. The average bound (AVE) agrees perfectly with
two components and 10 in three. With six collisions no symbede simulation (SIM) obtained by generating a different RMCR

is received. ¢ interleaver for each transmitted codesword. The bad interleaver
The WER for interleavers of the above type can be comput@§jTable Il (left) performs significantly worse than the average,
exactlyas follows. For a givew, define the index set while the hand-designed good interleaver of Table Il (right)

outperforms the average. The approximation (GOOD) obtained
Ti(@) 2 fie{l, .. N}k =ki=1..,q} via (25) is very close to the actual performance of the good
) o _interleaver. &
Jx(er) contains the indices of symbols whose corresponding .
signals have exactly collided components. By construction, EXample 6:Fig. 6 shows the WER versus, /N, for ' =
C — p — S whereC is the shortened RS code with parame-

SActually, ¢ is anunorderedset while the rows ofM areorderedvectors. ter5(210 168 43) over GF(256) andS = Z (16 4) (in this
Without loss of generality, we may assume that the elementsarke written ’ ’ ’

in lexicographic order. By permuting the rows elements, we obtain differef25€:¢ = 2)- The code information rate i& = 0.8 bit/dim.
interleavers with the same MCR property. The curves for finitel/ are obtained by the approximation for
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RS(15,11,5) over GF(16), M=8, D=4, P_;=0.1

= Bad int. (SIM)
[o] Average int. (SIM)
. Good int. (SIM)

WER

) TR NP P S Y PP LY

Ey/Ng

Fig. 5. WER versusZ, /N, for the RS-encoded scheme of Example 5, with= 8 andP..; = 0.1.

TABLE I roth and the fourth plateaus correspond to the regions where the
ARRAYS M FOR THE BAD (LEFT) AND THE GOOD (RIGHT) system is either completely noise-limited or completely inter-
INTERLEAVERS OFEXAMPLE 5 L .
ference-limited, respectively. A& becomes larger thah, the
number of plateaus and steps increases until they become indis-

8]7|6]4 2|5/ 114 tinguishable, since there are more and more ways of placing
87|64 5(316]7 collisions overM slots, each of which occurs with smaller and
sl7l6l4a 1141618 smaller probability. We observe that, by increasivig both a
sl715l3 5118l6 coding gain at intermediate SNR and a lower error floor at large
SNR are achieved, at the price of a larger delay.
817153 L]5/416 The WER obtained by the same RS code with conventional
817153 617]3]|1 binary antipodal modulation (2PAM) can be computed, for any
8171513 30287 interleaving depthi/, by one of the methods described in [35].
sl 7153 3lsl2l6 For comparison, Fig. 6 shows the caseldf = 4,16, and of
perfect interleaving. It is apparent that the use of MCR signal
8171513 Sl4]8)7 sets yields very large performance improvements with respect
816512 1|7|3)8 to conventional noncollision resistant signal sets. Such bad per-
gl6l4]2 85|67 formance of RS-coded 2PAM might be surprising, but it can be
slelalo 1l5]als easily understood if we notice that, in the case of perfect in-
5151202 AP terleaving anq Iargg SNR, the probab'lh'ty of a symbol error at
the decoder input is close to the collision probabillty,; =
716141 2|1]7)8 0.1, and that high-rate RS codes are efficient for much smaller
716141 715|118 symbol error probabilities (normally; 10~2). On the contrary,

with D-dimensional MCR signal sets, perfect interleaving, and
large SNR, the symbol error probability is closeRg) (in our

. _ case,107%).
good interleavers described above. Bdr = D = 4, the

error probability curve presents five flat regions (“plateaus” i .

and four rapidly decreasing regions (“steps”). Tiie plateau, (): Spectral Efficiency of RS-Encoded MCR Signal Sets

forc = 0,1,2,3,4, corresponds to the SNR region where the In this section we study the spectral efficiengypf RS-en-
signals experiencing ¢ collided components are wrongly de-coded MCR signal sets used over the G-MACC, in the limit for
tected with high probability, and the signals withC collided large SNR. LetS be aD-dimensional MCR signal set of size
components are correctly detected with high probability. The z&|. Then, from the MCR property, assuming that the SBSHD
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RS(210,168,43) over GF(2*), D=4, P, ;=0.1

10°
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Fig. 6. WER versu€s, /N, for the RS-encoded scheme of Example 6, with= 4, 8,16, 32, andoo (perfect interleaving) ané.,; = 0.1. For comparison,
the WER of the same RS code with conventional 2PAM is shownfot= 4, 16, andco.

makes a random choice if all components of the received sighalother words, for large SNR and block length, a codesword
are collided, we have havinge collided slots is affected by exactly,|. symbol errors.
Letr = 1 — 2¢/N be the RS code rate. From (25),

lim P(c|k) = (26)

0, if k< D
SNR—oo

if b — 1
1_1/|S|’ ifk=D. NLD|(: _>P]\4,D(D|c)7 asN — oo.
Since we are interested in the performance of long codes Wiltne
good interleavers, we shall use the WER approximation de-

scribed in the previous section, which can be achieved asymp- Lpie
totically asN increases. From the convolution of the binomial lim Z H{h=Lp.}
distributions defined by (23) and from (26), we can show that N NG Try241
= Alim HN(1—-7)/2+1< Lpe}
lim  P(hla) = B(Lpje, h,pg) 27) = L1
SNR—oo — i — <
Jim 1{@-n/e g s yio

for all a of weight M — ¢, where we defing, 2 1 — |S|~4. =H{ =7)/2 < Pu,p(Dle)}- (30)

Consider an RS code with paramet@hs N —2¢, 2t+1). Then,

as SNR— oo, the limiting WER is given by Finally, by using the above limit in (28) we get

lim lm P(w)

M Lple N—00SNR—o00
lim P(w) = B(M7 Cy PCOI) B(LD|C7h7p(1)' M
SNR—oc ; h:zt;—l = E:B(]\47 C, Pcol)l{(l — 7)/2 < PJ\LD(D|C)}~ (31)
(28) =0

In the case of perfect interleaviid/ — oo), from Lemma 2
As in [14], we may compute the WER limit for large blockof Appendix A we obtain
length and fixed code rate. Since the RS code alphabet size in-
creases withV, for fixed |S| the numbeg; of signals for each
code symbol grows to infinity a4 — co. Then lim, ... p, =1
and (the above limit holds for alP?, # (1—r) /2. If PP =(1-7)/2

with 0 < P, < 1, it can be shown that the limit d?(w) is equal
B(Lpjc,h,1) =1{h = Lp|.}. (29) to1/2).

im lim lim P(w)=1{(1-7)/2< P2} (32

1
M—ooc N—oo SNR—oo
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M=32, RS(210,210-2t,2t+1), € = 0.01
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Fig. 7. n versusG for the shortened RS family with paramet¢2d0, 210 — 2t, 2¢ + 1) over GR(256), with a four-dimensional MCR signal set of siz6,
maximum WER constraint = 10~2, and interleaving\/ = 32. The value oft is reported next to each curve.

The asymptotic spectral efficiency for large SNR, subject 6. The curve forM — oc (obtained from (34)) is shown for
a WER (i.e., packet-error) probability not larger thais given comparison.
by

: (33)
0, if Poo(w) > € Both channel models (3) and (4) fall in the clas$ffck-in-
terference channelstudied in [20]-[22]. These channels may
or may not behave ergodically (or more generallyjiiferma-

{201og]23|5| , if Poo(w) < ¢ V. OUTAGE PROBABILITY AND ACHIEVABLE RATE
n= ’ Z

whereP,,(w) is given either by (28) for finitéV, M, or by (31)
for N' — oo and finite M or by (32) whenV, M — oo. FOr iqn_stahlg depending on the delay constraint. In particular, er-
given@, there exists an optimal code ratg G) maximizing. godicity does not hold i/ < oo [21].

The maximumy versus+ can be obtained graphically, by taking™ £, the very general approach of [36] (details are given in

the envelope of all the curves defined by (33), foe [0, 1]. 5 pendix B), by letting the code block lengtfi — sc and M
In the case of perfect interleaving, from (32) and (1) We 9gleq and finite, we obtain thinstantaneous mutual informa-
explicitly the optimum code rate as tion I, of the M -slot channel spanned by the transmission of
a user codesword. Being a function of the collision pattégp,
*(G) = max{1 — 2(1 — =), 0}. (34) Iisarandom variable. Following [21], we define tinéormation
outage probabilityas

A

D. Results P,wi(R)= P(Iy < R). (35)

Fig. 7 showsn versusG for the shortened RS family with F,.;(R) is equal to the WER averaged over the random coding
parameter$210, 210 — 2¢, 2t 4+ 1) over GF(256) concatenated ensemble of rat& and over all collision patterns, fa¥ — oo
with an MCR signal set witil) = 4 and|S| = 16 (e.g., any of and fixedM < oo [37], [36]. In our systemP,,;(R) yields the
the signal sets of Examples 1, 2 and 3),foanging from0 to  limiting packet-error probability under a given delay constraint.
104, M = 32 and the desired maximum WER= 102, As From the same general approach, by letting fi¥st> oo and
expected, the optimum code ratd (7) is a decreasing function thenAM — oo, we obtain the achievable rate ergodic. This

of G. yields the limiting spectral efficiency of delay-unconstrained
Fig. 8 shows the maximum versusG for asymptotically systems.
large N, MCR signal sets wittD = 4, and|S| = 16, different In the rest of this section, we present expressions/f@r

values of M and desired maximum WER = 1072, These P,.(R), andl., under different assumptions on the user signal
curves are obtained from (31) and (33), by optimizirfgr each set (or input distribution) and on the type of decoding. Proofs
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Fig. 8. Maximumy versug for infinitely long RS codes, with a four-dimensional MCR signal set of $tzemaximum WER constrairt= 102, and different
interleaving depths. The code rate is optimized for each valig. of

are collected in Appendix C. These results serve as a baselindhe delay-unconstrained achievable rate is given by
comparison of different coding and decoding schemes.

1 &
A. VPAN Channel with Gaussian Inputs lo=FE {5 log, <1 + mﬂ : (38)

User codes are independently generated according to a
Gaussian distribution/ (0, £). With the channel model (3) and ) )
perfect CSI, the instantaneous mutual information is given by?- ON-Off Channel with Gaussian Inputs

User codes are generated as before. With the channel model

7 1 X 11 (4 E 36 (4) and perfect CSI, the instantaneous mutual information is
M = M rgz:l 5 089 + Km—g T N0/2 ( ) given by
, . . - . M—c 2&
where theK,,’s are i.i.d. Poisson-distributed with mea Iy = logy | 14+ — (39)
The exact evaluation of the outage probability is difficult if not 2M No

impossible in general. However, we can find upper and IOWWhereW(a) — M — ¢ ande is the number of collisions in the

bounds by defining two appropriate lattice random variabl%sdttema = (cu, ..., anr). Sincely is a nonincreasing func-

[29] L, and 1y, such that tion of ¢, andc is binomially distributed, the outage probability
can be computed as

P(Iyp <) 2P <ﬁ10g2(1 FEJKLE + NoJ2)) < x) |
> P(Ilo < l’) Pout(R) =1 ZB(M’ c, Pcol) (40)

c=0
and by computing thé/-fold convolution of their probability

mass distributions. We shall not give further details about thigherec’ is the largest such thatl,; > R.

method because of space limitations. Also, from Jensen’s in-The delay-unconstrained achievable rate is given by
equality we can write

1
I]w 2 - 10g2 1 —|—
2 LSM K€+ Noj2

m=1

P I, = 1_TPC°‘ log, <1 + ]ZV—8> . (41)
) (37) ’

so thatP,..(R) can be upper-bounded by the probability that- On-Off Channel, MCR Signal Sets with Soft Decoding
the right-hand side (RHS) of the above inequality is less thanin this case, user codes = ¢ — u — & are obtained
R. by randomly generating with i.i.d. components, uniformly
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distributed onA, andg with i.i.d. components, uniformly dis- The delay-unconstrained achievable rate is given by

tributed on the set of all one-to-one mappings— S9. With 1
RMCR interleaving, we obtain oo = 5 | log2 [S] = Ple)logy(|S] — 1)
1 D P _
Iy =4 {10g2 S = >~ Parp(kle)Fs(€/No, k)} (42) - B(kavPcol)H(P(elk))} (47)
k=0 k=0

where P(e¢) is given in (11).
Interestingly, in Appendix D we show that the saifijg and
I, are achieved by a decoder having no CSI. This is in agree-
ment with the result of [20], showing that for a block-interfer-
1 ence channel witd4/ — oo blocks of lengthV/M < ~c, the
log, Z exp Z

where Py p(k|c) is given in (18), and where we define

Fs(€/No, k)= Es v No capacity without CSI converges to the capacity with perfect CSI

as the ratiaV/M increases. However, the result of [20] cannot
be used in our case since it holds under an ergodic assumption

(2VE(SL(jy = 5n(i))Ni—ElSe(sy = sl (43) (M — oo and N/M finite), while our result needs no ergod-
icity (M finite and N — o0).

s’'eS 7=1

(E,.n.~[] denotes expectation with respecte uniform over E. Results
S, n; ~ N(0,No/2), andr ~ uniform overllp). The expecta-  Fig. 9 showsP,,(R) versusE;, /N, in the cases of VPAN
tion in (43) can be evaluated numerically (e.g., by Monte Carlshannel with Gaussian inputs (G—vpan, upper (UB) and lower
simulation). Again,/); depends only on the number of colli-(LB) bounds), on—off channel with Gaussian inputs (G-onoff),
sionse. Sincely, is nonincreasing ir, Py (/) can be com- MCR signals with soft decoding (MCR-soft) and MCR signals
puted by (40). with hard decoding (MCR-hard), fak = 0.8, P.,; = 0.1, and
The delay-unconstrained achievable rate is given by M = 4. Fig. 10 shows analogous results fof = 32. In the
1 D case of MCR-soft and MCR-hard, we considere= Z (16, 4).
I =5 {103;2 S| = > B(D, k, Peo)) Fs(€/No, /f)} . (44) Then,P,.;(R) in the case of MCR-hard can be compared with
k=0 the actual performance of RS-encoded schemes given in Fig. 6.
) ) . For M = 4, P,,+(R) is very close to the actual WER attained
D. On-Off Channel, MCR Signals with Hard Decoding by RS codes, while fol/ = 32 optimum coding and decoding
User codes are generated as before. The concatenatioryields a potential gain of about 3 dB at WER10~2 and 5 dB
a modulator for the discrete and finite signal sewith the at WER= 10~*.
G-MACC and with a SBSHD, conditioned on the collision pat- The spectral efficiency with finite interleaving, subject to a
terne, can be regarded as a discrete conditionally memoryleggximum outage (i.e., packet-error) probability constrajiis
channel (DMC). In order to simplify the problem, we may congiven byn = 2GR*(G), where R*(G) is the maximum infor-
sider the average of all transition probabilities with respect toation rate for whichF,,.(R) < e. Figs. 11 and 12 show
all labeling maps and component permutations, for giwett  versus@ for M = 4 and32, respectivelyE, /N, = 20 dB, and
is immediate to show that the resultiagerageDMC is sym- ¢ = 10~2. The curves labeled by “G-vpan (JLB)” are obtained

metric [1] with transition probabilities by using the Jensen’s inequality lower bound (37).
. 1— Ple|k), ifs—s The spectral efficiency with perfect interleaving is given by
Py (3]s) = { S P(elk),  fa#s. (45) 1 = 2GI..(@), wherel.(G) is I,, calculated for channel load

§qual toGG. We can compare the performance of the schemes
2 . . .considered in this paper with other simple multiple-access
the channel transition probability and from Jensens|nequal|t%/chemes such as B i%leal orthogonal ac?:eSS' 2) pslotted S)

this yields a lower bound ofy; and /.. y . ALOHA; and 3) NCDMA with SUMF or linear MMSE
We can interpret (45) as the transition probability assigr),

. o eceiver.
ment of a DMC d_ependlng on the cha_mnel stake \.€., on The spectral efficiency of ideal orthogonal access with
the number of collisiong that occurred in the transmission of T :
. . . .. Gaussian inputs is
signals. If the knowledge oft for each transmitted is avail-

From the convexity of the information density with respect t

able, we say that the decoder has perfect CSI. The instantaneous Moren = min{G, 1_} log,(1 - 28 [No)- (48) _

mutual information is given by This is also the_ s_ymmetrlc capa_\cny of the system. With
. S-ALOHA and infinite user population, the average number of

Iy = — < log, |S| — P(e|e) log,(|S| — 1) dellvered_packets per slp'g Ge’c’j [5]. With Gaussian inputs,
D the resulting spectral efficiency is

Naloha = Ge™¢ log, (1 + 2E/Np). (49)

D
- ZPM,D(/ﬂC)H(P(CVf))} (46)
k=0 Finally, NCDMA with direct-sequence spreading has spectral
whereP(e|c) is defined in (20). The resulting outage probabilitefficiencyn = N, R,/W = 2N, R/L, whereL is the number
can be computed again from (40). of chips per symbol. AsV,, — oo with N,,/L = G, under
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M=4, D=4, P,;=0.1, R = 0.8
10° .
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Fig. 9. P,.:(R) versusE, /N, for R = 0.8 bit/dim, P.o; = 0.1, andM = 4.

M=32, D=4, P_,=0.1, R=0.8

——— G-vpan (UB)
—— G-vpan (LB)

""" G-onoff

~ MCR-soft

v MCR-hard

POH[

25

30
Fig. 10. P.u:(R) versusE, /N, for R = 0.8 bit/dim,P.,; = 0.1, andM = 32.

the assumption of independent and random selection of #ed for the linear MMSE receiver we have
spreading sequences and of Gaussian inputs, the spectral

efficiency of NCDMA can be obtained in closed form from the

results of [12]. For the SUMF receiver we have

N,
G =01+ ~ megey) (51)
Thmmse = GlOg?(l + 7)
1 _ _ No
{ G= v A 10g20(1+"/) (50
Msumf = GlOgQ(l + ,Y)

The above equations giveversus in parametric form, where
the parametey is the signal-to-interference ratio at the SUMF
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M=4, £ =0.01, E,/NO =20 dB

2021

0.9

—— Gl-vpan (UB)
—— G-vpan (LB)

0.8

-------- G-vpan (JLB)
- G-onoff

0.7

-~ MCR-soft
- MCR-hard

7 (bit/s/Hz)

b

0
0 0.2 0.4 ‘ 0.6 0.8
G
Fig. 11. 5 versusG for M = 4, maximum outage probability = 10~2, andE; /Ny = 20 dB.
M=32, £ =001, E,/N0O =20 dB
2.5 T

G-vpan (UB)

—— G-vpan (LB)

weere-e- G-vpan (JLB)

‘M/WV‘/ - -- G-onoff
2 y . e MCR-s0ft i
-------- MCR-hard

1 (bit/s/Hz)

',

%

Fig. 12. 5 versusG for A/ = 32, maximum outage probability = 10—2, andE, /N, = 20 dB.

or MMSE receiver output, respectively. For a givBpy/ Ny, the
spectral efficiency limit for high channel load (i.e., f6r— oo

or, equivalently, fory — 0) is

1 1
log2  E,/No’

lim Tlsumf = lim Tmmse —
G—oo G—o0

2.5

Fig. 13 shows the spectral efficiencieg:-vpan, G-onolr,
TIMCR-soft; TTMCR-hards Torths alohas "lsumf and Thnmse Versus

G for perfect interleaving andt, /No = 20 dB. Fig. 14
shows analogous results f@h, /Ny = 30 dB. yvcr-sott @and
IMCR-hard h@ve been computed for(Z6, 4).

(52)

The spectral efficiency loss of collision-type access with re-
spect to (optimal) orthogonal access is evident. Interestingly,
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Perfect interleaving, E,/NO = 20 dB

—— G-vpan

- G-onoff

- MCR-soft

+ MCR-hard

- Orthogonal
S-ALOHA
--------- NCDMA, SUMF
——— NCDMA, MMSE

1 (bit/s/Hz)

Fig. 13. n versusG for perfect interleaving and&;, /N, = 20 dB.

Perfect interleaving, E,/NO = 30 dB

G-vpan
-+ G-onoff
- MCR-soft
- MCR-hard T
-+ Orthogonal
oo SCALOHA
T T AR NCDMA, SUMF
10 ¢ ——— NCDMA, MMSH|

12 . :" ......................

1 (bit/s/Hz)
>N

Fig. 14. 5 versusG for perfect interleaving and;, /N, = 30 dB.

S-ALOHA and the VPAN channel with Gaussian inputs have Encoded MCR signals achieve a large fraction of the max-
very similar maximunt. As G — oo, 741014 IS Vanishing while imum spectral efficiency achievable with signal sets carrying
Tla-vpan CONVErges to a positive value. This limitis hard to comt bit/dim and ideal orthogonal access (about 84% (MRC-soft)
pute. However, from Jensen’s inequality we have thatitis loweand 70% (MRC-hard) foF, /Ny = 20 dB, and about 98%
bounded by the limit spectral efficiency of NCDMA given infor both schemes fof, /Ny = 30 dB). Interestingly, there
(52). NCDMA with linear an MMSE receiver approaches opexists a range of7 such thaty,,,,; is below bothnncr-sott
timal orthogonal access fa¥ < 1, while its performance is and nvcr-nara- Then, for sufficiently large interleaving,
close to the SUMF for7 > 1. encoded MCR signals with slotted random access (without
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retransmissions) can compete with conventional CDMA with  provided that the interference signal is sufficiently faded.
SUMF receiver in terms of spectral efficiency. This so-called “capture effect” has been investigated for
S-ALOHA [39], [40] and should be taken into account in
an extension of this work.

Both the results in terms of WER of actual RS-encoded
schemes and in terms of outage probability show that the
user code information rate must be optimized depending
on the channel load?. Then, adaptive coding schemes
which vary the user code rate depending on the channel
load should be considered.

« In partially ordered reservation protocols like PRMA [1],
users access the channel randomly on the unreserved slots
and place reservations in order to transmit a sequence of
packets, then release their slots. These protocols are par-
ticularly sensitive to collisions in the first slot (the one
with random access), since these usually cause an unsuc-
cessful reservation request. Then, adding signal-space re-
dundancy in order to protect this slot might improve the
overall protocol performance, as shown in [19]. In gen-
eral, the joint optimization of partially ordered protocols
and signal-space coding is a very interesting problem.

VI. CONCLUSIONS

In this paper we studied signal-space coding and interleaving ,
for coherent slow frequency-hopped communications over a
G-MACC. We characterized signal sets and interleavers having
maximum collision resistanceand we gave some explicit
constructions. We analyzed the performance of these signal
sets concatenated with outer block coding and hard (error-only)
decoding in terms of packet-error probability and spectral
efficiency, without assuming perfect interleaving. Computer
simulations show perfect agreement with analysis. Our error
probability analysis yields some useful intuitions about the
structure of good interleavers.

Also, we obtained expressions for the information outage
probability and for the achievable (ergodic) rate of the G-MACC
under various assumptions on coding and decoding. Outage
probability yields the achievable packet-error probability with
finite interleaving and large block length. The achievable rate
yields the system spectral efficiency for large interleaving
depth.

From these results we can conclude that slow fre-
quency-hopped random access with appropriate signal-space
coding and interleaving might be a valid alternative to other
conventional multiple-access schemes, like S-ALOHA and APPENDIX A
NCDMA with SUMF receiver. In particular, the spectral effi- USEFUL LIMITS
ciency of slow frequency-hopped random access is very similar . ) i
to that of S-ALOHA, without requiring feedback and retrans- I this appendix we state two lemmas and a corollary which
mission (but at the expenses of a much longer interleavifigf €xtensively used throughout this paper. Because of space
delay). NCDMA with SUMF is suited for a high channel loadimitations and since they are mainly technical, we only sketch
with low-rate uniform traffic (its maximum spectral efficiencytn® Proofs.

is achieved forG — oo). On the contrary, frequency-hopped | emma 1: Forallz ¢ (0,1) and0 < k < D, we have
random access, S-ALOHA, and NCDMA with the MMSE

receiver achieve their maximum spectral efficiency for finite (-rM) (M(l—-r))
. - k D—k
(. Hence, these schemes are more suited for lower channel A}lgloo —(M) = B(D,k,x). 0
D

load with high-rate traffic.

We conclude by listing a few topics for further research: The proof follows by upper and lower bounding the binomial

« By comparing the MCR-hard outage probability with theoefficients using Stirling’s approximations (see [41, Appendix
WER of actual RS-encoded MCR signals we see that thehe3]).

is a significant potential coding gain of optimal schemes Lemma 2:Let f(x 1) be a piecewise-continuous
with respect to bounded-distance error-only decoding, that. ... IRDJFI R 0.;.'h'e'r; f]())r allp € (0,1), such thatf is

increases as the interleaving depth gets large. Then, MO inuous inf B(D. 0 B(D.D e have
advanced hard-decoding schemes (e.g., involving errors inuous INB(D, 0, p), ..., B(D, D, p)), we hav

and erasures) should be considered and the analysis pre- s
sented in this work should be extended to such schemesim Z B(M, ¢,p)f(Py.p(0lc), ..., Py p(D|e)

« By comparing MCR-soft and MCR-hard outage proba: =0
bilities, we observe the potential gain obtained by soft = f(B(D,0,p),...,B(D,D,p)). O
decoding. In particular, trellis codes [30], suited for soft
Viterbi decoding, could be constructed over MCR signal The proof follows by applying Lemma 1 and the Laplace—
sets. DeMoivre theorem [29], and by noting th&(D, k, p) is con-

» Actual wireless channels are affected by time- and frdinuous for allp & [0, 1].

guency-selective fading. Extensions of the results of this Corollary 1: Let f(xo,...,zp) be a continuous function
work to fading channels would be of great interest. PraqR°+! — IR, let X be a binomial random variable distributed
liminary results can be found in [38]. asP(X = c¢) = B(M, c,p), and define

« Infading channels the users are not received with the same R
power. Then, a signal burst may survive to a collision g(X) = f(Py p(0|X),..., Py p(D|X))
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and We define thenstantaneous mutual informatidi; as the limit
9(p) 2 F(B(D,0,p),....B(D,D,p)). in p_ro_bability asN — oo of the information Qensity for given
collision pattern and/. From Fact 1 in Section lll, (55), and
Then (56) we obtain
1
. P _ I]w = — 16(37 Z). (57)
Tim () L 3(p) O oTey 52
The proof follows from Chebyshev inequality [29], byThe achievable ergodic rafg, is obtained as the limit in prob-
showing that ability (if it exists) of I, asM — .
Jim - Elg(X)] = 9(p) APPENDIX C
PROOFS
and that )
Proof of (36) and (38):In this case,D = 1 andS = R.
lim E[|g(X)—g(p)|*] = 0. With the channel model (3), the collision pattern is defined by
Moo the(K1,. .., Kur), whereKg is the number of interferers in slot
Both these limits follow from the continuity of and from ¢ =1,..., M. We havepe(z|s) = N (s, Kc€ + No/2), so that
Lemma 2. I 1 ) . £ 58
5(372)—5 0g2< +m>- (58)
APPENDIX B Then (36) follows immediately. Since th&;’s are i.i.d.
ACHIEVABLE RATES Poisson-distributed with mea#, we have
The achievable rate& for a channel with input:-sequence lim Iy Z E[L]
x ~ q(z), outputy, and transition probability(y|x) satisfy M=o0

and (38) follows.

[36]
Proof of (39) and (41):Again, D = 1 andS = R. With
R<I(zy) (33)  the channel model (4), the collision pattern is defined by the
. s . ) . Y1, . e, O herea, = 0ifslot £ = 1,..., M is collided
where(z;y) is theinf-information rate defined as théiminf (e, ’_aM_)’_W ¢ IV
in probability of the normalizednformation density36] fllqn;af = 1ifitis not. We havep(z|s) = N(ags, No/2), s0
, 1o plyle)
@) = log &9 Te(5:2) = % logy(1 428 /No). (59)
Consider the case where a codeswere: (s1, ..., 8y), With Then (39) follows immediately. Since the.’s are i.i.d.

s; € S (a D-dimensional signal set), is transmitted on th@eanoulli-distributed with meartP,;, we have
G-MACC with an arbitrary deterministic MCR interleaver of lm Iy 2 E[L]
depth M slots, and denote by, the receivedD-dimensional Ms, M T LA
channel output corresponding to the transmissios; p§o that and (41) follows.

y = (#;,...,2y). For afixed collision pattern, leis(z|s) de- Proof of (42), (44), (46), and (47)in this case,S is an
n(;]tgrgée trir)\?lgg?np:; ?r:gesmzr;nerwnhhérr;mf?rgr?;;pa:a MCR D-dimensional signal set. The channel transition pdfs
W €=p ! ver whicrs | WeC. " are D-variate Gaussian

If the signalss; are selected i.i.d. ove$ according to an arbi- D

trary probability distributiong(s), the information density can pelz|s) = H N(ag, 5, No/2) (60)

be written as i

i(zyy) = Z e EM Fn(&)ie(s:, .. 8N 21y 2N,) (55) where€ = (&1,...,¢ép) € ZY. Fors uniform overS, we have
3 1

log, < >

wherefx () is the fraction of the occurrences§fn the inter- +cS

leaver array, wher&V = fn(§)N and where we define ( N ) ) ] }
(61)

Ie(s;2)= D log, S| = Es

0653-5 : L e Ve Eld |2
'1;5(81,...,SNezl,...,zNe) NO “ 1(2\/3(81 SJ)TLJ 8|31 3]| )
Jj=

Ng¢
a1 > log, pe(zilsi) ~ Bysumming over af € £¥ and dividing byD!(%!) we imme-
DNg ~ > sesPe(#il8)q(s’) " diately obtain (42). The convergence in probability gf to I,
givenin (44) follows immediately from Corollary 1 of Appendix

For all f(§) > 0, from theWeak Law of Large Numbef29], A, sincel,, is a continuous (linear) function of the probabilities

asN — oo P]\47D(/€|C) fOfk‘IO,...,D.
G(815- - BN Z1s - 2N The proof of (46) and of (47) follows the same path as that of
2l pe(2|s) 2 (8:2). (56) (42) and (44), provided that we use the symmetric DMC transi-
D % YwcsPe(z|8)a(s)] S tion probabilities (45) instead of the transition pdf (60).
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APPENDIX D
MUTUAL INFORMATION WITHOUT CSI

In this section we prove the claim made in Section V that
Iy and I, given in (46) and in (47) are obtained also if the
decoder ignores the number of collided componérftsr each
transmittedD-dimensional signal.

Let L, denote the number of signals transmitted over the slo
indexed byp € ®¥. Clearly, for each RMCR interleaver and
block lengthV we haveEMi% Ly = N. Given a collision
patterna of weightW(a) = M — ¢, all the signals suffering
from £ collisions are transmitted over a DMC with transition
probability given by (45).

The decoder is not allowed to use this information for de-
coding (no CSI). However, it can group tie, signals corre-
sponding to the> and use the fact that all the signals belongin
to the same group have the same (unknown) number of collided
components. Because of this grouping, a codesword can be seen
as a sequence aluper-symbol®f dimensionDLg, for ¢ € [1]
&M Each super-symbol is transmitted over tumer-channel 2]
obtained by the.4th extension of the original DMC.

For simplicity, we letg, = P(clk) andps, = qx/(|S| —1).
Since the DMCs treated here are symmetric, we identify theirl3]
channel transition probability matrix by its first row (the other
rows are permutations of the first). Then, the transition proba-[4]
bility of the DMC defined by (45) has first row

5
—_——
|S]—1 times (6]
The first row of the transition probability matrix of thieth ex-
tension of this DMC is given by thé-fold Kronecker product 7]

of p,, by itself, denoted bp . With no knowledge of: at the
decoder, the super-channel transition probability is a mixture ofl8]
the possible transition probabilities for= 0, . .., D, where the

(9]
mixing is with respect to the conditional distribution/ofjiven
¢, i.e., with respect tdPy; p(k|c) given in (18). The resulting [10]
transition probability of thesth super-channel is given by
A [11]
plle) = Z D, PM n(k|c). (62)
[12]

From Fact 1, with RMCR interleaving,/N *5 1/(%) as
N — oo, for all ¢. Then, the transition probab|I|t|es (62) are [13]
asymptotically equal. By letting = N/(%7) andp‘®) denoting
this common transition probability, we obtain

1 1
—_ = . T - (L)
Iy = {10g2 |S| Lhm H(p )} .

After some algebra, by applying the Laplace—-DeMoivre the{ig)
orem [29], we can write

(14]

(63)
[15]

1 (17]
im = H(p'D
hH;o 7 H(p'")

b [18]

Pele)logy (S| = 1) + lim. ;OPM,D(MC) log,

[19]

D /L

D@ = @) ) Py n(K )

k/=0

(64) [20]

1
im —H(pL
Llu ')

2025

The above limit can be computed by noting that forkal &

g (1—qu)' ™% < g (1—qu)t™®

since the relative entrop®? ((1 — gx. qx)||(1 — g&, & )) iS NON-
negative [1]. Then, for each, the term withk¥’ = & exponen-
{ally dominates the sum inside the logarithm in (64). We obtain

= Plc|e) logy(IS] ~ 1)

D
+ Z Pr p(Ele)yH(qr)-

k=0

By using the above result in (63) we obtain (46). Consequently,
also (47) can be achieved without CSI.
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