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Abstract—Maximization of the energy transfer ratio for time-
limited signals over linear channels is considered. The case of
linear channels with rational transfer function is addressed and
a general procedure for the analytic solution of the maximization
problem is outlined. The maximum energy transfer ratio over
a fixed time interval is evaluated in some cases of interest. Two
performance metrics—the energy transfer ratio and the energy
intersymbol interference (ISI) ratio—are evaluated for optimal
signals and compared to those of commonly used rectangular
and sinusoidal pulses in order to determine the achievable gain.

Index Terms—Band-limited channels, energy transfer opti-
mization, multidimensional signals.

I. INTRODUCTION

FOURIER analysis shows that time-limited signals sent
through band-limited channels are spread in time. The

pulse energy dispersion is a source of performance degradation
which is partially recovered in many applications by equal-
ization techniques. These countermeasures would certainly be
more efficient if used jointly with signals which have a min-
imal energy spread outside the signaling interval by filtering.
This optimization problem attracted the attention of many
researchers early in the 1950’s because of its implications
for digital communications, system theory, and related fields.
Much of this work was devoted to the ideal low-pass filter
on account of its natural connection with the representation of
band-limited signals [14], [6], [7]. A further motivation was to
provide “optimal” finite sets of orthogonal signals of limited
time duration to be used in the design of digital signals
for sending information in the then emerging global digital
communication system [13]. In these applications, the energy
spread outside the interval produces disturbances
known as intersymbol interference (ISI). Hence, the maximum
signal energy transferred at the filter output was considered
an important issue in the design of good signal sets for
digital transmissions. This energy transfer was measured as the
output-to-input signal energy ratio over potentially different
time intervals (in this paper we denote byand the input and
output time interval, respectively). All classical works refer to
the unlimited output time interval and, with
this assumption, Slepian [14] solved the problem for the ideal
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low-pass channel. Specifically, he showed that the optimal
pulses are related to prolate spheroidal wave functions, and
that these signals are also optimal over the limited output time
interval . This property does not hold for all channels,
as we will show in this paper. Subclasses of rational transfer
function channels were considered as well as the ideal low-
pass channel. For instance, in [4] the optimal waveforms were
found for the single-pole low-pass filter and in [2] and [3] the
optimal waveforms were found for Butterworth filters referring
to the output time interval . In these papers, special
analytic techniques were developed which can be derived from
Youla’s general approach [17].

Undoubtedly, the case of limited output time intervalis
the most interesting because it gives the minimum achievable
ISI for a fixed channel bandwidth and symbol time duration

. It has, however, received little attention probably due to the
fact that analytical solutions seemed unlikely. In this paper, the
maximization problem will be addressed for an output interval

and for its delayed version
. The introduction of a delay may lead to significant

reduction of the ISI without increasing the complexity of the
system. Delays often occur in digital communications and are
managed routinely. The computation of the minimum time
offset yielding the maximum transfer of energy will be
carried out as part of the optimization process.

This paper is organized as follows. In Section II we develop
basic theoretical aspects of the optimization problem concern-
ing both finite and infinite output intervals. We define the
energy transfer ratio and the energy ISI ratio, two figures of
merit which will be used to compare optimal and standard
signal sets. In Section III we consider channels with rational
transfer function which are physically realizable and we find
the general solution for finite output time intervals. In Section
IV we collect numerical results obtained from closed-form
solutions for the ideal low-pass channel and channels with
rational transfer function of order one and two. Also, we
compute the energy transfer ratio and the energy ISI ratio for
the optimal, the “rectangular,” and the “sinusoidal” signal sets.
Finally, Section V is devoted to conclusions and comments as
well as remarks on possible applications.

II. GENERAL RESULTS

In this study we consider square-integrable functions
over the real axis . The energy of

included in the interval is given by the integral
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Whenever is the output of a linear channel with impulse
response and input signal , we have

(1)

The energy of included in can be expressed as a
quadratic integral form in

(2)

where the energy kernel is defined as the integral

(3)

Quadratic forms are always present when we consider the
energy of signals connected by linear transformations such
as filtering. The filtered signals are spread in time, and the
resulting energy dispersion is usually an unwanted side-effect.
Two suitable measures for this effect are theenergy transfer
ratio and theenergy ISI ratio.

Definition 1: The energy transfer ratiofrom to for a
channel with impulse response , input , and
output , is defined as

The energy ISI ratiois defined as

When , the energy transfer ratio is defined in such a way
that the greater the ratio, the greater the energy passing the
filter. Hence, for channels with additive noise, optimization
of this figure increases the signal-to-noise ratio. The energy
ISI ratio, on the other hand, is a measure of the amount of
ISI because it directly compares the energy included in the
signaling time interval with the energy spread outside it.

The impulse response is normalized to obtain the
condition

(4)

If the channel is time-invariant with impulse response
and Fourier transform , then

Parseval’s identity implies that constraint (4) is equivalent to
. In the light of the above assumptions and

definitions, the optimization problem we are concerned with
can be stated as follows.

Problem 1: Given a linear channel with impulse response
, find a signal with fixed energy

which gives the maximum of .

Necessary, and in many cases sufficient, conditions charac-
terizing any solution are already known [4], [8]. In fact, a
solution to Problem 1 is a signal satisfying the following
Fredholm integral equation of the second kind

(5)

with a positive-definite kernel, as defined in (3). The greatest
eigenvalue gives the maximum energy transfer ratio.

When , the optimization procedure involves two
steps. First, is fixed and the optimum is computed by solving
the Fredholm integral equation (5), then the bestis found
using the following proposition.

Proposition 2.1: The solution of Problem 1 when
is given by a normalized eigenfunction of

defined in (3)

(6)

and is the minimum nonnegative value obtained from the
condition

(7)

Proof: In this case the kernel is

Equating to zero the derivative of the output energy
with respect to

where the contributions due to the derivatives of and
with respect to can be neglected because

(8)

Thus we get the following necessary condition for a maximum:

(9)

This equation may have more than one solution, which may be
either positive or negative. As we are interested in the smallest
delay, we keep the smallest nonnegative value for.

Remarks: In view of Proposition 2.1, is a characteris-
tic figure of every time-invariant linear channel. It can be
conveniently assumed as a measure of the delay of a digital
signal instead of the commonly used group delay. Moreover, in
contrast to the group delay, does not depend on frequency.

A. Time-Invariant Linear Channels

The impulse response of a time-invariant linear channel is
, thus the input–output relationship (1) is a convolution,

and the kernel (3) is characterized using a Fourier transform
when

and
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Proposition 2.2: With the assumptions of Proposition 2.1,
if is an even function of, then is the minimum
delay that gives the maximum energy transfer. Additionally,
we have and .

Proof: We show that if , the condition (7) is
satisfied. First, if and , we have

Then, if is a solution of (6), so is

Therefore, can only differ from by a constant
factor which must be on setting . Hence,

and we have

which holds for any . In particular, equality
together with condition (7) yields as minimum delay.

This theorem shows that for time-invariant linear channels
with time-symmetric (even) impulse response the maximum
energy transfer over a finite output interval occurs
for . Although these transfer functions are not physically
realizable, they include important filters such as the ideal low-
pass filter. Therefore, Slepian’s optimal solution for is
also optimal for with .

III. CHANNELS WITH RATIONAL TRANSFER FUNCTIONS

In this section we consider channels with a rational transfer
function and solve Problem 1 for a finite output time interval

. Let the filter rational transfer function be given
as a Laplace transform

with , and let us assume that has simple poles
. The impulse response is consequently

where denotes the unit step function.

Our aim is to find the sequences of eigenfunctions and
eigenvalues which satisfy the Fredholm integral equation
of Problem 1. The case of an infinite output time interval
has been settled by several authors [13], [14], [2], [4] who
developed various techniques based on the common principle
that commuting operators admit the same set of eigenfunctions
[1]. In particular, if has simple poles, Youla’s solution
[17] (see Appendix B) exploits the rational property of the
transfer function and reduces the labor for solving a transcen-
dental equation which cannot be further simplified. Although
Youla’s simplification does not apply to finite, most of the
arguments still work if combined with Franks’ approach [3].
The method results in a three step program.

Step 1: Find a differential operator which commutes with the
Fredholm integral operator.

Step 2: Obtain a candidate eigenfunction solving a differen-
tial equation.

Step 3: Obtain a transcendental equation for the eigenvalues
substituting the candidate eigenfunction into (5).

Now let us describe each step of this program in detail.
Step 1: Given that , the kernel can be

written as a difference of the kernel for infinite
and a residue , that is,

where

The time-invariant kernel has Laplace transform

and can be expressed by means of exponentials depending
only on the roots of .

(10)

where the clearly time-invariant expression has been obtained
by using the identity
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The residue can also be expressed as a sum of
exponentials

and it is clearly not time-invariant.
Let denote a linear differential operator associ-

ated to the denominator of , then the following properties
of and can be derived.

1) possesses continuous derivatives of all order
for .

2)

3)

4) From the van der Pol and Bremmer breakup [9]

of (5) and the continuity properties of it follows
that possesses continuous derivatives of all orders
in the open interval .

5) Following [4], let us consider the differential operator
which, applied to the integral equation

produces the differential equation

6) Since the operator leaves the integral

unchanged, it follows that the same differential operator
applied to the integral equation for yields
the differential equation

that is,

Step 2: Let be the roots of the charac-
teristic equation

Then the eigenfunctions for are of the form

(11)

Step 3: Substitute the candidate eigenfunction of the form
(11) into (5) and obtain the following homogeneous linear
system of equations in the unknowns

:

(12)

for . Looking for nonzero solutions, the determi-
nant of the coefficient matrix must be zero, a condition which
yields the transcendental equations for the eigenvalues. Fi-
nally, the nonzero solution of the system gives the coefficients
characterizing the eigenfunctions up to a scale factor.

As an illustrative example, we apply the above procedure
to the single-pole linear channel.

Example 1—Single-Pole Linear Channel and Finite: The
transfer function of this channel is

where is the 3-dB bandwidth. The impulse response for
this channel is

where denotes the unit step function. The Laplace trans-
form of the energy kernel for is the ratio of the two
polynomials:

and

Let us assume that input signals have durationand the finite
output time interval is . Hence the energy kernel
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is certainly not time-invariant. However, we may specialize
general formulas or apply Franks’ method [4]. In both cases,
taking the second derivative of the equation

(13)

we obtain the differential equation

The characteristic equation of this linear differential equation
is

The roots are purely imaginary

with

and the complex form of the eigenfunctions is

while the real form is

Substituting one of these expressions into (13), we obtain for
the following transcendental equation:

Let us rewrite this transcendental equation using the parametric
representation for sine and cosine

to get the equation

which splits into two “simpler” equations

Note that when , we obtain Youla’s solution [17]

When , it is better to solve the original equation,
obtaining

The real eigenfunctions are

with the normalizing factor

Once is known, the corresponding eigenvalue is ob-
tained as

Results for are reported in Table I, where we
considered rectangular and sinusoidal pulses (see Section IV)
as well as optimal signals. All input signals have unit energy.
Both the energy transfer ratio and the energy ISI ratio have
been evaluated for different combinations of the parameters.
The results show the performance enhancement of optimal
versus standard waveforms.

We also observe that two joint positive effects occur opti-
mizing over . First, the energy passing through the filter
included in the time interval is increased, and secondly, the
amount of interfering energy is decreased.

A. The Case

In this section we give a solution of Problem 1 for channels
with a rational transfer function, taking the offset into
account. Let us consider . Consequently,

is not time-invariant and it can be written as a
difference

where is obtained as follows:

and

The kernel assumes two forms, depending on
whether or , which are either

(14)
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TABLE I
ENERGY TRANSFER FOR ASINGLE-POLE LOW-PASS FILTER WITH

“OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNALS.
NOTE THAT � = EJ SINCE WE ASSUME EI = 1

or

It follows that if then eigenfunctions over this
interval must have the form (11) and this is maintained over the
whole interval . The conclusion is that the eigenfunctions
have the same form as for and the eigenvalues are
obtained from the same equation with as a parameter.
Finally, optimal and ’s are obtained from the system
composed of (12) and the equation

as required by Proposition 2.2.

Example 1 (cont.):For instance, in the case of a first-order
filter, the received signal evaluated at times and
gives

Hence we obtain the equations

where we wrote for as the optimal delay which depends
on the order of the eigenvalue .

These two equations suggest an iterative method for calcu-
lating and . Starting with a tentative value of , near
to the value obtained for , from the first equation we
estimate as

Then we substitute into the second equation and solve for.
We compute using the first equation, and so on.

IV. NUMERICAL RESULTS

Numerical computation of eigenvalues and eigenfunctions
is generally a critical issue because of possible numerical
instability. This motivates resorting to analytic solutions in
special cases to check the accuracy of the numerical results
obtained. The computation of the eigenvalues is amenable to
the solution of a transcendental equation.

We will consider the calculation of eigenvalues and eigen-
functions for channels with rational transfer functions, defining
the Shannon dimension of a band-limited and time-limited
transmission system as [13]. We explicitly con-
sider three cases which represent the situations
frequently occurring in present-day and will occur in future
communication systems, and we compute the energy transfer
ratio and the energy ISI ratio for each signal. Both figures are
also evaluated for standard base signal sets which are currently
used in digital communications. In particular, we will refer to
“rectangular” and “sinusoidal” sets, namely,

(“rectangular” set) (15)

and

(“sinusoidal” set). (16)

Tables I–III report numerical results obtained by the analytic
methods proposed.

Table I contains the energy transfer ratios, , and the
energy ISI ratio for the single-pole linear filter with the
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TABLE II
ENERGY TRANSFER FOR THEIDEAL LOW-PASS FILTER WITH

THE“OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNAL SETS

optimal, “rectangular” and “sinusoidal” signal sets.is chosen
as in order to maximize with respect to . The results
show that the performance of the “sinusoidal” signal set is very
close to that of the optimal set for and in terms of
and . A larger difference is observed for the “rectangular”
signal set. Focusing on the energy ISI ratio, we note a larger
advantage in using the optimal signal set.

Tables II and III report the energy transfer ratio for the
ideal low-pass filter and the second-order Butterworth filter,
respectively, with the optimal, “rectangular” and “sinusoidal”
signal sets. The energy transfer ratios for the optimal signal
sets have been calculated by using the analytic results obtained
in Section III and the appendices.

A. Numerical Integration

When the integral equation (5) is not analytically solvable
or algebraic manipulations are too hard, we revert to direct
numerical methods. One simple technique consists in substi-
tuting the integral in (5) by its rectangular approximation. We
then get the following matrix eigenvalue problem:

The convergence of the sampled values depends on the
number and location of the nodes’s which can be selected
in two ways: either matched to the kernel or simply
uniformly on the interval . For further reference on this
subject see [10].

V. COMMENTS AND REMARKS

In this paper we have considered the problem of computing
sets of signals which convey the maximum amount of energy
included in the signaling time interval. Reference has been

TABLE III
ENERGY TRANSFER RATIO FOR A SECOND-ORDER BUTTERWORTH FILTER

WITH “OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNAL SETS

made to the class of linear filters with rational transfer func-
tions. We have shown that the computation of the eigenvalues
can be traced back to the solution of a transcendental equa-
tion. We have also shown that the eigenfunctions are linear
combinations of possibly complex exponential time functions
with exponent coefficients which are algebraic functions of
the eigenvalues. We have also computed eigenvalues and
eigenfunctions by direct numerical integration and numerical
optimization. The agreement between the results obtained with
the two methods validates the “numerical” technique, which is
preferable or unavoidable when dealing with complex rational
transfer functions.

Knowing the form of the eigenfunctions is also important for
practical implementation. It may be easier to generate linear
combinations of exponential and trigonometric functions rather
than to interpolate inaccurate samples obtained by numerical
integrations.

Finally, we introduced the energy ISI ratio, a second figure
of merit besides the classical energy transfer ratio, which
is significant if the optimization aims at reducing ISI. In
conclusion we will discuss an important feature of optimal
signals which may affect the design of multidimensional signal
sets.

A. Application to Multidimensional Modulations

A possible application of the signals which solve Problem
1 is the definition of a base signal set with

in multidimensional modulations. The set of
signals is generated from the set of-dimensional

as
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where is the th component of . The orthogonal base sig-
nals are attenuated and rotated in different ways through
the channel. Hence, the received signals, which are corrupted
by noise and ISI, are also asymmetrical. To get rid of these dis-
tortions, we can use orthogonal eigenfunctions — obtained
as the solution of Problem 1 with — as base signals
conveniently rescaled so as to have energies . At the
channel output, the received signals

are orthonormal. In fact we have

Therefore, the set of signals that convey the maximum energy
over the time interval gives also the minimum ISI, preserves
orthogonality, and, on suitable rescaling, maintains the sym-
metry of the -dimensional point constellations. Thus further
use of equalization will make ISI negligible.

B. Conclusion

The results provided in this paper show that optimization is
convenient for several reasons.

1) With respect to standard solutions, observed gains are
not marginal.

2) Optimal signals preserve orthogonality after filtering.
3) For large sinusoidal pulses are nearly optimal from

the ISI and energy transfer points of view, but they do
not maintain the original orthogonality after filtering.

4) Using optimal base signals we can design signal sets
for multidimensional modulations preserving symmetry
at the receiver input.

In conclusion, the search for signals with a maximum energy
transfer over a finite interval certainly deserves further in-
vestigation. Future work should focus on nonlinearity effects,
fading, and other impairments which affect cable and mobile
channels.

APPENDIX A
THE IDEAL LOW-PASS CHANNEL

The ideal low-pass channel with bandwidth was con-
sidered as a “hard“ frequency limiter [13] in the search for
a rigorous proof of Shannon’s heuristic that the dimension of
a set of time- and frequency-limited signals is approximately

[12]. The input pulse is defined over and for
infinite output time interval the kernel of the integral equation

(5) is

Functions satisfying (5) were obtained by the observation that
the integral operator

and the differential operator

commute. Hence, both operators have the same eigenfunctions
which are a scaled and translated version of prolate spheroidal
wave functions. An extensive account of the analytic and
asymptotic properties of these functions and related eigenval-
ues is given in [6], [7], [13], and [14].

When the output time interval has finite duration, the
kernel can be expressed by using sine and cosine integral
functions

where

and

is the Euler constant. Comparative numerical results
are given in Table II.

APPENDIX B
YOULA’S PROCEDURE [17]

1) Set . Let and
be the degrees of and , respectively,

with .
2) Let be the roots of

ordered according to the increasing positive real part
and set

3) Let be the roots of with
positive real part and set

4) Find the roots of the following two
transcendental equations:
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Since are positive real numbers, without loss of
generality we can assume .

5) The eigenfunctions are found by solving the linear
equation system

in the unknown coefficients and can be written as

Each turns out to be a linear combination of
exponentials in .

APPENDIX C
SECOND-ORDER BUTTERWORTH FILTER

Butterworth filters are better characterized by and the
transfer function can be obtained, with the condition that the
real part of the roots of is negative, from

where is the 3-dB bandwidth. Let us apply Youla’s proce-
dure by way of example to recall a solution for infinite output
interval. Later we will apply our procedure to solve for finite
output interval.

We have obviously

and

and

The roots of the equation

depend on the eigenvalues. Since we have

where (17)

Using and both with positive signs we may define

by means of which we write out two determinants, one for
each choice of sign (upper or lower):

After some calculations, we get two transcendental equations
for

Let denote the sequence of roots in increasing order
to which corresponds the eigenvalue

and the eigenfunction

Finally, let us consider the finite output interval . Let
and denote the roots of and and as defined
in (17). From (12) we get a homogeneous linear system with
coefficients determinat where
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Expanding , from the condition we get the transcen-
dental equation

whose sequence of roots yields the eigenvalues for the output
finite interval. Finally, the eigenfunctions are of the form

The results of this appendix have been used to compute the
entries of Table III.
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