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Abstract—Maximization of the energy transfer ratio for time- low-pass channel. Specifically, he showed that the optimal
limited signals over linear channels is considered. The case of pulses are related to prolate spheroidal wave functions, and
linear channels with rational transfer function is addressed and that these signals are also optimal over the limited output time

a general procedure for the analytic solution of the maximization . N .
problem is outlined. The maximum energy transfer ratio over interval / = I. This property does not hold for all channels,

a fixed time interval is evaluated in some cases of interest. Two & We Will show in this paper. Subclasses of rational transfer
performance metrics—the energy transfer ratio and the energy function channels were considered as well as the ideal low-
intersymbol interference (ISI) ratio—are evaluated for optimal  pass channel. For instance, in [4] the optimal waveforms were
signals and compared to those of commonly used rectangular gonq for the single-pole low-pass filter and in [2] and [3] the
and sinusoidal pulses in order to determine the achievable gain. . - .
optimal waveforms were found for Butterworth filters referring
Index Terms—Band-limited channels, energy transfer opti- to the output time interval—oo, oc). In these papers, special
mization, multidimensional signals. analytic techniques were developed which can be derived from
Youla’s general approach [17].
|. INTRODUCTION Undoubtedly, the case of limited output time intervals

. . - . the most interesting because it gives the minimum achievable
OURIER analysis shows that time-limited signals sen ) . . .
o A ISl for a fixed channel bandwidti” and symbol time duration

through band-limited channels are spread in time. T?e
al

. S . It has, however, received little attention probably due to the
pulse energy dispersion is a source of performance degrada

o) . . ) ;
L . . o Ct that analytical solutions seemed unlikely. In this paper, the
which is partially recovered in many applications by equal- = . =" . . )
- . : aximization problem will be addressed for an output interval
ization techniques. These countermeasures would certainly bé . i
more efficient if used jointly with signals which have a min? — © = ;7] and for its delayed versiod = [to, fo + 7] =
J y 9 ... tg + I. The introduction of a delay, may lead to significant

This optimization problem attracted the attention of mangeductlon of the ISI without increasing the complexity of the

researchers early in the 1950’s because of its implicatio%%Stem' Delays often occur in digital communications and are

- — . managed routinely. The computation of the minimum time
for digital communications, system theory, and related fields S . .
) ; - Offset ¢y yielding the maximum transfer of energy will be
Much of this work was devoted to the ideal low-pass filtef_~ L
rried out as part of the optimization process.

on account of its natural connection with the representation Gt

band-limited signals [14], [6], [7]- A further motivation was to T.hls paper 1S organized as follow_s. _In S_ectlon Il we develop
Opasm theoretical aspects of the optimization problem concern-

provide “optimal” finite sets of orthogonal signals of limite Ing both finite and infinite output interval$. We define the

time durationZ” to be used in the design of digital signals . . .

S S ; . - energy transfer ratio and the energy ISI ratio, two figures of
for sending information in the then emerging global digital_ . . . .

merit which will be used to compare optimal and standard

communication system [13]. In these applications, the energ. nal sets. In Section Il we consider channels with rational

spread outside the intervdl = [0,7] produces dISturl:)"jmcestransfer function which are physically realizable and we find

known as intersymbol interference (ISI). Hence, the maximum . . > .
. ) . general solution for finite output time intervals. In Section
signal energy transferred at the filter output was consider we collect numerical results obtained from closed-form

an important issue in the design of good signal sets for, .. . .

- o . lutions for the ideal low-pass channel and channels with
digital transmissions. This energy transfer was measured asIne .

. ) . . . rational transfer function of order one and two. Also, we
output-to-input signal energy ratio over potentially different

time intervals (in this paper we denote Band.J the input and compute the energy transfer ratio and the energy ISl ratio for

S . . the optimal, the “rectangular,” and the “sinusoidal” signal sets.
output time interval, respectively). All classical works refer tq.. . . .

o . X . inally, Section V is devoted to conclusions and comments as
the unlimited output time interval = (—o0,o0) and, with

this assumption, Slepian [14] solved the problem for the ide\gF” as remarks on possible applications.

. : _ II. GENERAL RESULTS
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Whenevery(t) is the output of a linear channel with impulsewith a positive-definite kernel, as defined in (3). The greatest

responsei(t, 7) and input signak:(t) € L*(I), we have eigenvalue\[z, J, k] gives the maximum energy transfer ratio.
WhenJ = to + I, the optimization procedure involves two
y(t) = /h(t, mx(r)dr, teR (1) steps. Firstt is fixed and the optimum is computed by solving

I

the Fredholm integral equation (5), then the bigsis found
The energy ofy(t) included inJ C R can be expressed as asing the following proposition.

quadratic integral form inc(¢ . .
Proposition 2.1: The solution of Problem 1 whenw =

)
1] = / (B2 dt = //ICJ(t,T)x(t)x(T) dtdr (2) to+1Iisgiven by anormalized eigenfunctiort) of K (t, )
J IJT defined in (3)
where the energy kernel is defined as the integral
/ Kot D)a(r)dr = Ma(t),  tel (6)
Ky(t,7) = / h(0, )6, 7) db. 3) I
. ! ) and ¢, is the minimum nonnegative value obtained from the
Quadratic forms are always present when we consider thg,jition
energy of signals connected by linear transformations such

as filt_ering. The fi_Itered_ sig_nals are spread in time,_ and the y(to)? = y(to + 1) (7)
resulting energy dispersion is usually an unwanted side-effect.
Two suitable measures for this effect are #eergy transfer Proof: In this case the kernel is

ratio and theenergy ISl ratio o+ T
Kylu,v) = / h(t, w)h(t,v) dt.

Definition 1: The energy transfer ratiofrom I to .J for a \
Q

channel with impulse respong&t, 7), input z(¢),¢ € I, and

outputy(t),t € J, is defined as Equating to zero the derivative of the output enefy]
&[] with respect totq
Az, J,h] = .
8[[ ] g to+T
The energy ISl ratiois defined as aty /r/r wlu)e(v) /tg Al w)h(tv) dducho =0
_ Erlyl - &5[y] - _
nlz, J, h] = TSy where the contributions due to the derivativesagi:) and

z(v) with respect tofg can be neglected because

WhenJ = I, the energy transfer ratio is defined in such a way Dw(v) [HoFT
that the greater the ratio, the greater the energy passing the //x(u)—/ h{t,w)h(t,v) dt du dv
IJ1

filter. Hence, for channels with additive noise, optimization dto Jr,

of thls_ figure increases the S|_gnal—to—n0|se ratio. The energy _ //x(u) 0z (v) K.y (u, v) dudv

ISI ratio, on the other hand, is a measure of the amount of rJr dto

ISI because it directly compares the energy included in the B dz(v) , A0 2,

signaling time interval with the energy spread outside it. - )‘/Ix(v) dto dv = 2 9t /I(x(v)) dv=0. (8)

The impulse respons&(t, 7) is normalized to obtain the ) N )

condition Thus we get the following necessary condition for a maximum:

max Az, J,h] < 1. 4) y(to + 1) — y(tg)? = 0. 9)

xCL2(R)

If the channel is time-invariant with impulse responséhis equation may have more than one solution, which may be
h(t — 7) and Fourier transformH(f) = F{h(6)}, then either positive or negative. As we are interested in the smallest
Parseval’s identity implies that constraint (4) is equivalent @elay, we keep the smallest nonnegative valuetfor I

max; [H(f)|* < 1. In the light of the above assumptions and pemarks: In view of Proposition 2.1 is a characteris-
definitions, the optimization problem we are concerned W"tlib figure of every time-invariant linear channel. It can be
can be stated as follows. conveniently assumed as a measure of the delay of a digital

Problem 1: Given a linear channel with impulse responsgignal instead of the commonly used group delay. Moreover, in
h(t,7), find a signalz(t) € L2(I) with fixed energy¢;[z] = £ contrast to the group delay, does not depend on frequency.
which gives the maximump; of Alz, J, Al.

: . . A. Time-Invariant Linear Channels
Necessary, and in many cases sufficient, conditions charac-

terizing any solution:(t) are already known [4], [8]. In fact, a The impulse_response of a time-inv_ariant_linear chann_el is
solution to Problem 1 is a signalt) satisfying the following /(7), thus the input—output relationship (1) is a convolution,

Fredholm integral equation of the second kind and the kemel (3) is characterized using a Fourier transform
whenJ = R
Kt wz(u) du = \x(t), tel (5)
/1 g (8 w)z(w) () Ki(u,v) =k(u—v) and k(r)=F{|H(f)|’}.
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Proposition 2.2: With the assumptions of Proposition 2.1, Our aim is to find the sequences of eigenfunctiop&) and
if h(t) is an even function of, thenty = 0 is the minimum eigenvalues),, which satisfy the Fredholm integral equation
delay that gives the maximum energy transfer. Additionallpf Problem 1. The case of an infinite output time interval

we havex(t) = (T —t) andy(t) = y(T — ¢t). has been settled by several authors [13], [14], [2], [4] who
Proof: We show that if¢, = 0, the condition (7) is developed various techniques based on the common principle
satisfied. First, ifto = 0 and h(t) = h(—t), we have that commuting operators admit the same set of eigenfunctions
T [1]. In particular, if H(s) has simple poles, Youla's solution
Ki(u,v) =/ h(t — w)h(t —v)dt [17] (see Appendix B) exploits the rational property of the
OT transfer function and reduces the labor for solving a transcen-
- / h(u — t)h(v — t) dt dental equation which cannot be further simplified. Although
0 Youla’s simplification does not apply to finité, most of the

arguments still work if combined with Franks’ approach [3].

T
:/0 Wu—=T+t)h(v =T +1)dt The method results in a three step program.

=Ky(T —u,T —w). Step 1: Find a differential operator which commutes with the
Then, if z(¢) is a solution of (6), so ix(T — t) Fredholm integral operator.
T Step 2: Obtain a candidate eigenfunction solving a differen-
/ Kt w)z(T —u) du tial equation.
0 - Step 3: Obtaip a transcendental quation for. the. eigenvalues
_ / KT — 4,7 — w)a(T — ) du substituting the candidate eigenfunction into (5).
OT Now let us describe each step of this program in detail.

= / KT — t,w)z(uw) du = da(T — t). Step 1: Given thatJ = [0, T,], the kernel;(¢,7) can be
0 written as a difference of the kern&l..(|t — 7|) for infinite
Therefore,z(I" — t) can only differ fromz(t) by a constant .J and a residueC.,.s(t, 7), that is,
factor which must bel on settingt = 7/2. Hence,z(t) =
z(T — t) and we have

y(T —t) = /0 z(T)WMT —t —71)dr

Ki(t,7) = Koo(|t = 7]) — Kres(t,7)

where

T ICOO(|t—T|)=/Ooh(9—t)h(9—7)d9,
:/ H(T = TYR(T —t— 1) dr 0 P
0 Kres(t,7) = / h(6 — t)h(6 — 7) db,

T
_ /0 w(u)h(u — t) du = y(t)

which holds for anyt. In particular, equalityy(7)) = 4(0) )
together with condition (7) yieldg = 0 as minimum delay. K(s) = H(s)H(—s) = N(s®)

O D(s?)

This theorem shows that for time-invariant linear channe(l;nd can be expressed by means of exponentials depending
with time-symmetric (even) impulse response the maximug}“y on the roots ofP(s).
energy transfer over a finite output intervalk= ¢, + I occurs
for ty = 0. Although these transfer functions are not physicallykoo(“ _ TD:/OO h(8 — Yh(6 — 1) db
0

The time-invariant kernek.(|¢ — 7|) has Laplace transform

realizable, they include important filters such as the ideal low-
pass filter. Therefore, Slepian’s optimal solution fbe= 1 is

. R AL tag)0—ait—agT
also optimal forJ = tq + I with 5 = 0. —/mx{”} ZAzAJC e
TS g

I1l. CHANNELS WITH RATIONAL TRANSFER FUNCTIONS - _ﬂe(wﬁ%)(mm{tﬂ})—mt—aﬂ
. . . . . — o+«

In this section we consider channels with a rational transfer #J ‘ !
function and solve Problem 1 for a finite output time interval _No A4y S | S50 (1)
J =10,T,]. Let the filter rational transfer function be given —~  ai+ o
as a Laplace transform ?

A? AA; eitoy
14+ h coid b, 5™ M S 22 elt=7l _o kb e el
H(s) = £{h(r)} = L s ot hms™ M) 2 5 2 e
X | 1+918+"'+gn8" P(S) i 1<J

with » > m, and let us assume thaf(s) has simple poles « COSh<Oéi — It — T|> (10)
ay, -+, q,. The impulse response is consequently 2

_ . ot where the clearly time-invariant expression has been obtained
h(t) = u(t) ;Aie by using the identity

whereu(t) denotes the unit step function. 2max{t, 7=t — 7|+t +T.
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The residuel,..(¢t,7) can also be expressed as a sum of Step 2: Let +o4,---,

exponentials

A A Q. Q —Q; QT
Kres(th) = Z [o'N] + o ( 7+ j)T " ’
R J

and it is clearly not time-invariant.

Let D(d?/dt?) denote a linear differential operator associ-
ated to the denominator @€ (s), then the following properties

of Koo(|t — 7|) and K,es(t,7) can be derived.

2023

+o, be the2n roots of the charac-
teristic equation
1
D(s*) — XN(SQ) =0.

Then the eigenfunctions fdt (¢, ) are of the form

(t)

n

= Z[Céeait =+ Dge_ait],

i=1
Step 3: Substitute the candidate eigenfunction of the form

tel.  (11)

1) K.o(|t—7|) possesses continuous derivatives of all ordét1) into (5) and obtain the following homogeneous linear

for t # 7.

2)
d2

3)
d2
D <E>Kres(t, 7') =0.
4) From the van der Pol and Bremmer breakup [9]

Aa(t) = /0 Koot — 7)a(r) dr + [ Koolr — 8)2(r) dr

_ /0 ’ Kres(t, 7)a(7) dr,

of (5) and the continuity properties &f..(9) it follows

tel

that z(¢) possesses continuous derivatives of all ordefg, , — 1,

in the open intervall.

system of2n equations in the2n unknownsCy, Dy, £ =

Aje(ag +0’4)T
(i + o) (i + 00)

A ~
Cé((%‘ + a;)(a; — o¢)

Sastan T, A (e( a;+o)T _ 1))
(i + aj)(a; — o¢)

o

” (12)

7 (ai +aj)(a;+o0) (i + ;)i —

_leita)T, N 1)) _
{ (i + )y +o0) )

,n. Looking for nonzero solutions, the determi-
nant of the coeff|C|ent matrix must be zero, a condition which

O'é)

5) Following [4], let us consider the differential operato;e|ys the transcendental equations for the eigenvalues. Fi-

1- D(dt2 )] which, applied to the integral equation

A¢@>=1£ Koot = 7)(7) dr

produces the differential equation

o) = [ K= iy an
(5 )vto

6) Since the operatdi — (dfz)] leaves the integral

nally, the nonzero solution of the system gives the coefficients
characterizing the eigenfunctions up to a scale factor.
As an illustrative example, we apply the above procedure
to the single-pole linear channel.
Example 1—Single-Pole Linear Channel and Finite The
transfer function of this channel is
1
H(s)= —
) = 15w
where W is the 3-dB bandwidth. The impulse response for
this channel is

h(t) = 2nWu(t)e 2™V

T wherew(t) denotes the unit step function. The Laplace trans-
/ Kres(t, 7)00(7) d7 form of the energy kernel fod = R is the ratio of the two
0 polynomials:
unchanged, it follows that the same differential operator 9

applied to the integral equation fof =
the differential equation

{1 - D(ﬁﬂ Aa(t) = Ant) — N<;—;>a:(t)

that is,

(o))

[0,7,] yields

5

(2nW)2°
Let us assume that input signals have durafioand the finite
output time interval is/ = [0, 7,]. Hence the energy kernel

N(s*)=1 and D(s*)=1

7,
K{t,7)= / 2 Wu(h — t)cfQWW(H*t)
0

x 2rWu(f — e~ W=7
= aW [C—QWW/’|t—T| _ e?TrVV(t—I—‘r—QTO):I
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is certainly not time-invariant. However, we may specializé&/hen 7, = T, it is better to solve the original equation,
general formulas or apply Franks’ method [4]. In both casesbtaining
taking the second derivative of the equation

tan (20 WT2,) = —2,.
T
M (t) :/ P(r)mW [em 2 Wit=rl _ 2=W(thr=2L.)] g The real eigenfunctions are
’ (13) P (t) = Alz, cos (20WTz,) + sin (20W T z,)]

we obtain the differential equation with the normalizing factor

A2 (¢ _ | 1 cos(dnWTz,)

PO (om W 2p(0) + AR )00, i B
The characteristic equation of this linear differential equation (1 — Zﬁ) sin (4nWTz,) —1/2
1S B &7W z,

52 1 . . . .
l1-——-=-=0. Once z, is known, the corresponding eigenvalyg is ob-
(27W)H2 A .
tained as
The roots are purely imaginary \ o= 1
1 1422
o =12 jWz, with z = N 1 Results for2W1T = 1,2,4 are reported in Table I, where we

considered rectangular and sinusoidal pulses (see Section V)

and the complex form of the eigenfunctions is as well as optimal signals. All input signals have unit energy.

B(t) = CLe2miW=t | ) 2miWat Both the energy tran;fer ratio and_ thg energy ISI ratio have
been evaluated for different combinations of the parameters.
while the real form is The results show the performance enhancement of optimal

versus standard waveforms.

We also observe that two joint positive effects occur opti-
Substituting one of these expressions into (13), we obtain {§iZing overJ/ = I. First, the energy passing through the filter
» the following transcendental equation: included in the time interval is increased, and secondly, the

amount of interfering energy is decreased.

P(t) = Ccos (20Wzt) + D sin (20 W 2t).

[C_MW(TO_T) (14 22) + (1= 22)] sin (2rWT2,)
+22, cos (2nWTz,) = 0. A. Thety + I Case

. . . . .In this section we give a solution of Problem 1 for channels
Let us rewrite this transcendental equation using the paramefit, 5 rational transfer function taking the offse} into
representation for sine and cosine ’

account. Let us considey = [to,t0 + T]. Consequently,
. 2tan (nWTz,) Ks(t,7) is not time-invariant and it can be written as a
sin (20WTz,) = 5 difference
1+ tan“(wWT2,)
1 — tan?(aW Tz, = — —
cos (2 W) = L= 1R L) Kt ) = Kot =) = Kees(t,7)

2
1+ tan”(rWTz,) where Ko(t, 7) is obtained as follows:

to get the equation o0
Ko(lt—7]) = / e —t)h(6 — 1) de

tan?(7WT'z,) "
1_“2—’_ —AmW(T,—T) 1+«2 — = A plaita)—ait—ayT
_< Znte (1422) tan(rWTz,)—1=0 = Joctons > Aidje o
Zn max {to,t,7} 5
AzA a;4a;)(max TV —ajt—aT
which splits into two “simpler” equations =)= +; elasta;)(max{to,t, 7} —ast—a;
g T
1— 22 e 4mW (To=T) (1 4 ,2
tan(nWTz,) = n 5 (1+2) and
Zn -
N 1— 22 4 e—4nW (To=T) (14 22) 2 1 Kres(t, 7) = /tO-I—T h(6 —t)h(8 — ) db, t,7 € [0,7]
2 The kernel Ko(|t — 7|) assumes two forms, depending on

) ) whethert, < max{t,7} or to > max{¢,7}, which are either
Note that wheril,, — oo, we obtain Youla’s solution [17]

AiAj  eitoiy, o misei gy
Zan—1 = cot (TWTz2,_1), h 1.9 Ko(ft =) = - Z a; + Oéjc ) i 7
= R %,
2on = —tan (mWTzay,),

) “y”

to < max{t,7} (14)
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TABLE |
ENERGY TRANSFER FOR ASINGLE-POLE Low-Pass FILTER WITH

“OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNALS.
NoOTE THAT A = £; SINCE WE AsSUMEE; = 1
[Waveforms  [i] = A t | €r g )]
2WT =1
Rectang. 1 0.695 0.549 26.5
Sine 1 0.666 0.579 14.9
Opt.on I 1| 0787 0.6172 0.680 06172 | 102
Opt.onto+17 | 1| 0720 0.6683 0.121 | 0.7027 0.6586 6.7
Opt. on R 1| 0638 0.7105 0.7105 0.5824 | 22.0
2WT =2
Rectang. 1 0.8410 0.7620 | 104
2 0.5497 0.4830 | 13.8
Sin(rt) 1 0.8510 0.8254 3.1
Sin(2rt) 2 0.5794 0.5398 7.3
Opt.on [ 1104347 0.8410 0.8598 0.8410 2.2
21 0.8847 0.5609 0.5969 0.5609 6.4
Opt.onty+7 | 1| 0408 0.8591 0.133 | 0.8650 0.8516 1.6
2108324 05860 0.117 | 0.6139 0.5860 48
Opt.on R 1]0.3834 0.8718 0.8718 0.8233 5.9
2107875 0.6172 0.6172 05395 | 144
2WT =4
Rectang. 1 0.9204 0.8806 4.5
2 07619 0.7224 5.5
3 0.6164 0.5832 5.7
4 0.4831 0.4496 7.4
in(rmt) 1 0.9500 0.9456 | 0.46
Sin(2xt) 2 0.8255 0.8127 | 1.57
in(37t) 3 0.6767 0.6583 2.8
Sin(4rt) 4 0.5398 0.5199 3.8
Opt.on I 1] 0.2318 0.9490 0.9526  0.9490 0.4
2 | 0.4653 0.8220 0.8329 0.8220 1.3
3107013 0.6703 0.6870 0.6703 2.5
4109400 0.5309 0.5499 0.5309 3.6
Opt.onty+17 | 102243 09519 0.067 | 09553 0.9519 | 0.36
2104506 0.8312 0.067 | 0.8405 0.8312 1.1
3106822 06824 0.067 | 0.6971 0.6824 2.2
4109197 05417 0.067 | 0.5600 0.5417 34
Opt.on R 1]0.2161 0.9553 0.9553 0.9441 1.2
2104347 0.8410 0.8410 0.8094 3.9
3106574 0.6982 0.6982  0.6560 6.4
4 0.8847 0.5609 0.5909 0.5205 7.7
or
Kot — ) = 32 B lestaro-a-ar
i o; + ay

It follows that if ¢,7 € [to, 7] then eigenfunctions over this
interval must have the form (11) and this is maintained over the *
whole interval[0, T']. The conclusion is that the eigenfunctions

to > max{t,7}.

2025

Hence we obtain the equations
[(1-22) + e~ Wton (1+ 22)] tan 22, WT' + 22, = 0
e~ Wton gin? 272, WT — sin’ 272, Wton = 0
where we wroté,,, for ¢ty as the optimal delay which depends
on the ordem of the eigenvalue\, = 1/(1 + 22).
These two equations suggest an iterative method for calcu-
lating t¢,, and z,,. Starting with a tentative value aﬁo), near
to the value obtained faf,,, = 0, from the first equation we
estimateté;) as
-1
t&) = In

—228” cot 2m 2, WT — (1 — [z,(LO)]Q)
47W .

1+ [2)°

Then we substitute into the second equation and solvelfor
We computetéi) using the first equation, and so on.

IV. NUMERICAL RESULTS

Numerical computation of eigenvalues and eigenfunctions
is generally a critical issue because of possible numerical
instability. This motivates resorting to analytic solutions in
special cases to check the accuracy of the numerical results
obtained. The computation of the eigenvalues is amenable to
the solution of a transcendental equation.

We will consider the calculation of eigenvalues and eigen-
functions for channels with rational transfer functions, defining
the Shannon dimension of a band-limited and time-limited
transmission system & T = ¢ [13]. We explicitly con-
sider three cases = 1,2,4, which represent the situations
frequently occurring in present-day and will occur in future
communication systems, and we compute the energy transfer
ratio and the energy ISl ratio for each signal. Both figures are
also evaluated for standard base signal sets which are currently
used in digital communications. In particular, we will refer to
“rectangular” and “sinusoidal”’ sets, namely,

(21(t) = w(t) —u(t —T)
x2(t) = w(t) — 2u(t = T/2) +u(t = T)
xa(t) = u(t) — 2u(t —T/4) +2u(t = 3T/4) —u(t —1T)
z4(t) = u(t) — 2u(t — T/4) + 2u(t — T/2)
—2u(t —3T/4)+u(t —T)

(“rectangular” set) (15)

have the same form as fég = 0 and the eigenvalues aregpg

obtained from the same equation with as a parameter.
Finally, optimal ¢, and X's are obtained from the system

composed of (12) and the equation

y(to)? = y(to +T)°
as required by Proposition 2.2.

Example 1 (cont.):For instance, in the case of a first-order
filter, the received signaj(¢) evaluated at timeg andto+ 7

¥

gives

y(to)
to+T)

= Ae

= Asin 272, Wtg

—2Wto gin 272, WT.

z1(t) = V2 sin(nt/T)[u(t) — u(t — T)]
zo(t) = V2 sin(2nt/T)[u(t) — u(t — T)]
z3(t) = V2 sin(3nt/T)[u(t) — u(t — T)]
z4(t) = V2 sin(drt /T [u(t) — u(t — T)]
(“sinusoidal” set). (16)
Tables I-lll report numerical results obtained by the analytic

methods proposed.
Table | contains the energy transfer ratifs, £, and the
energy ISI ration for the single-pole linear filter with the
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TABLE I TABLE 1lI
ENERGY TRANSFER FOR THEIDEAL Low-Pass FILTER WITH ENERGY TRANSFER RATIO FOR A SECOND-ORDER BUTTERWORTH FILTER
THE*OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNAL SETS WITH “OPTIMAL,” “R ECTANGULAR,” AND “SINUSOIDAL” SIGNAL SETS
Optimal signal set Optimal signal set
J=R J=1 J=R J=1

it ec=1]c¢c=2|c=4|c=1]|c=2|c=4 il c=1 c=2 c=4 c=1 c=2 c=4

1] 0.7833 | 0.9810 | 0.9999 | 0.6135 | 0.9623 | 0.9998 1] 0.75470 | 0.93740 | 0.99130 | 0.49238 | 0.88189 | 0.98727
2 0.7515 | 0.9878 0.5630 | 0.9757 2 0.67670 | 0.93960 0.50027 | 0.91222
3 0.9530 0.9083 3 0.80590 0.73270
4 0.7379 0.5323 4 0.60510 0.50016

Rectangular signal set Rectangular signal set
1] 0.7737 | 0.9028 | 0.9499 || 0.5908 | 0.8315 | 0.8556 1| 0.74071 | 0.88838 | 0.94372 | 0.37714 | 0.71722 | 0.85929
2 0.6446 | 0.8557 0.4578 | 0.7735 2 0.59304 | 0.83305 0.39960 | 0.74630
3 0.7340 0.6328 3 0.68612 0.58773
4 0.5531 0.3580 4 0.49996 0.40489
Sinusoidal signal set Sinusoidal signal set

1] 0.6984 | 0.9701 | 0.9980 || 0.5323 | 0.9111 | 0.9184 1] 0.69087 | 0.92025 | 0.99003 | 0.37716 | 0.83177 | 0.97911
2 0.6327 | 0.9892 0.4463 | 0.9074 2 0.61162 | 0.93097 0.44046 | 0.88587
3 0.9404 0.8251 3 0.77576 0.69465
4 0.5836 0.3732 4 0.55628 0.47185

optimal, “rectangular” and “sinusoidal” signal sefsis chosen Made to the class of linear filters with rational transfer func-
asto+1 in order to maximize, with respect td,. The results tions. We have shown that the computation of the eigenvalues
show that the performance of the “sinusoidal” signal set is vefn be traced back to the solution of a transcendental equa-
close to that of the optimal set for= 2 and4 in terms ofé;  tion. We have also shown that the eigenfunctions are linear
and &;. A larger difference is observed for the “rectangular¢ombinations of possibly complex exponential time functions
signal set. Focusing on the energy ISI ratio, we note a larg#ith exponent coefficients which are algebraic functions of
advantage in using the optimal signal set. the eigenvalues. We have also computed eigenvalues and

Tables Il and Il report the energy transfer ratio for th&igenfunctions by direct numerical integration and numerical
ideal low-pass filter and the second-order Butterworth filtepPtimization. The agreement between the results obtained with
respectively, with the optimal, “rectangular” and “sinusoidalthe two methods validates the “numerical” technique, which is
signal sets. The energy transfer ratios for the optimal sigriyfeferable or unavoidable when dealing with complex rational
sets have been calculated by using the analytic results obtaitf@@sfer functions.

in Section Il and the appendices. Knowing the form of the eigenfunctions is also important for
_ _ practical implementation. It may be easier to generate linear
A. Numerical Integration combinations of exponential and trigonometric functions rather

When the integral equation (5) is not analytically solvablthan to interpolate inaccurate samples obtained by numerical
or algebraic manipulations are too hard, we revert to diretegrations.
numerical methods. One simple technique consists in substiFinally, we introduced the energy ISI ratio, a second figure
tuting the integral in (5) by its rectangular approximation. Wef merit besides the classical energy transfer ratio, which

then get the following matrix eigenvalue problem: is significant if the optimization aims at reducing ISI. In
N conclusion we will discuss an important feature of optimal
Z Kty ti)z(t) At = \x(t;), j=1,2--- N. signals which may affect the design of multidimensional signal
i=1 sets.

The convergence of the sampled valugs;) depends on the o - Appjication to Multidimensional Modulations
number and location of the nodéss which can be selected

in two ways: either matched to the kerrgly (¢, 7) or simply A possible application of the signals which solve Problem

uniformly on the intervall. For further reference on this! iS the definition of a base signal s¢y(f)}iL, with
subject see [10]. € [0,77] in multidimensional modulations. The set af

signals{s;(t)}}L, is generated from the set afdimensional
V. COMMENTS AND REMARKS {X;})1, as

In this paper we have considered the problem of computing n
sets of signals which convey the maximum amount of energy s;(t) = Z-Tv‘,ﬂ/)i(t), j=1---'M
included in the signaling time interval. Reference has been i=1
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wherez;; is theith component o ;. The orthogonal base sig-(5) is

nalse;(t) are attenuated and rotated in different ways through sin2r W (u — v)]
the channel. Hence, the received signals, which are corrupted Kylu,v) = ————————=.
by noise and ISI, are also asymmetrical. To get rid of these dis-
tortions, we can use orthogonal eigenfunctions — obtained~unctions satisfying (5) were obtained by the observation that
as the solution of Problem 1 with = I—as base signals the integral operator

conveniently rescaled so as to have enerdigs;. At the

T
channel output, the received signals T : p(t) _>/ Kt m)p() dr
0

w(u—v)

$i(t) = / h(t — ) () dr and the differential operator
J

D:p(t) — [HT — )’ ()] — 4x?W2H(T — )p(t)
are orthonormal. In fact we have

commute. Hence, both operators have the same eigenfunctions

/ ¢i(t)p;(t) dt which are a scaled and translated version of prolate spheroidal
J wave functions. An extensive account of the analytic and
= / /z/;j(u)h(t —u) du/z/)i(v)h(t —v)dvdt asymptotic properties of these functions and related eigenval-
JJr I ues is given in [6], [7], [13], and [14].
_ //1/)/'(1»)1/1‘(0)/ h(t — Wh(t — v) dt dv du When the output time interval has finite duratidh the
1 ’ 7 kernel can be expressed by using sine and cosine integral
= [ [ Katwoyisute) doa e
e K () = STV =) i W) — Cin (4mW0)

272 (u — v)
— Cin (4aW (T — ) + Cin (daW (T — v))]

Therefore, the set of signals that convey the maximum energy sin (QZW(“ —v))
over the time interval gives also the minimum ISI, preserves 2m2(u — )
orthogonality, and, on suitable rescaling, maintains the sym- + 81 (4rW(T — w)) + Si(dnW (T — v))]
metry of then-dimensional point constellations. Thus further

o . . where
use of equalization will make ISI negligible.

=X /I%(v)%(v) dv = 4.

[Si(4nWu) + Si(4n W)

xr 1 _
Cin(a:)z/ ﬂdtzfy—i—lnx—Ci(x)
B. Conclusion 0 t

The results provided in this paper show that optimization is and Si(z) = / % dt.
convenient for several reasons. 0

1) With respect to standard solutions, observed gains are= 0.577 is the Euler constant. Comparative numerical results

not marginal. are given in Table II.
2) Optimal signals preserve orthogonality after filtering.
3) Forlarge2W T sinusoidal pulses are nearly optimal from APPENDIX B
the ISI and energy transfer points of view, but they do YOULA'S PROCEDURE [17]

not_ maintajn the origin_al orthogonality aft(_ar filtgring. 1) Setk(s) = H(s)H(—s)
4) Using optimal base signals we can design signal sets
for multidimensional modulations preserving symmetry with m < n

at the .rece|ver Input. _ _ ' 2) Let £u;, ¢ = 1,---,n be the roots ofD(s?) = 0
transfer over a finite interval certainly deserves further in- g < Re i; < Re pin... < Re p,, and set

vestigation. Future work should focus on nonlinearity effects, . N
fading, and other impairments which affect cable and mobile DH(s) — : ‘ D—(s) = : o
channels. () =[](s+m) (s) = [[(s = ma)-

= N(s?)/D(s?). Let 2m and
2n be the degrees olN(s?) and D(s?), respectively,

=1 =1

3) Let o;(\) be the roots ofN(s?) — AD(s?) = 0 with
positive real part and set

The ideal low-pass channel with bandwidkii was con- z;(A) = exp(—ai()\)T)w,
sidered as a “hard" frequency limiter [13] in the search for D¥(ai()
a rigorous proof of Shannon’s heuristic that the dimension of 4) Find the roots\® r=1.2...
a set of time- and frequency-limited signals is approximately ’ L
2WT [12]. The input pulse is defined ovér= [0, 7] and for
infinite output time interval the kernel of the integral equation det ([(1 £ (—1)2;(A\)(oi(N) 17, —y) = 0.

ii=1

APPENDIX A
THE IDEAL Low-PAss CHANNEL

t=1,---,n.

-, of the following two
transcendental equations:
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Since AF) are positive real numbers, without loss ofAfter some calculations, we get two transcendental equations
generality we can assume®) > )\fﬁ)l for =
5) The eigenfunctions are found by solving the linear

equation system ’
q y em2WET (52 /3y~ 1)(2% — /32 + 1) cos(n2WT)

n—1

Z (1+ (—1)ja:i()\1(,i))) (Ui()\,(,i)))jpj —0, +(22 + V22 — 1)(2® — V22 + 1) sin(xzWT))
j=0 —(22+ V22 = 1)(22 + V22 4+ 1) cos(nzWT)
i=1l,n +(22 + V22 4+ 1)(2* = V22 — 1)sin(mzWT) = 0
in the unknown coefficients; and can be written as eI W2 4 V22 — 1)(27 — V22 + 1) cos(mzWT)
DH(s) Znilpﬂsj —(22 = V22 = 1)(2% — V22 4 1) sin(n2WT))
-Tr(t):’cil o 7):1727"" —(2—’—\/5 +1)(2—\/§ —1) ( WT)
N(SQ) _ )\gj:)D(SQ) 4 4 4 4 COS(TT2

—(22 + V22 — )22 + V224 1) sin(rzWT) = 0.
Each z,.(¢) turns out to be a linear combination of

exponentials in|¢|.

Let z, denote the sequence of roots in increasing ofder

APPENDIX C 71 < -+ < 2z, < ---, to which corresponds the eigenvalue
SECOND-ORDER BUTTERWORTH FILTER An = 1/(1 + %) and the eigenfunction
Butterworth filters are better characterized Kys) and the
transfer function can be obtained, with the condition that the Tn(t) = APt 472l
real part of the roots of(s) is negative, from

+A362]77Wzn|t| +A46*2]77W5n|t|
1

(=)= 1 1
1+s%/(2nW) Finally, let us consider the finite output intervéil= 1. Let oy
whereWV is the 3-dB bandwidth. Let us apply Youla’s proceand o, denote the roots ab*(s) ando;, ando, as defined

glure by way of example to recall a solution for infinite ogtpqh (17). From (12) we get a homogeneous linear system with
interval. Later we will apply our procedure to solve for fm'tecoeﬁicients determinah = |B;;| where

output interval.
We have obviously

K(s)=H(s)H

2 2 4 4 B = 1 By = 1
N(s“y=1 and D(s*)=1+4s*/(2xW) . 2=
1 1
and Bz = By =
+ \/_ S g2 o1 + 01 1 + 02
D =14+V2e—o + ———
(8) =1+ V2 + TP By L By o L
s s gy — 01 o — O
D (s)=1-V2—— + . 1 1
( ) 27TW (27TW)2 B23 = B24 =
. a2+ 01 2 + 09
The rootse; of the equation
4 Bgl — eQﬂ'zVVT|: 1 + 1
1145 -0 200 (a1 +01)  200(0q — o1)
(2mW)* 1 1 }
depend on the eigenvalu@s Since\ < 1 we have (a1 + ) +01) (a1 +az)(ar —o1)
, 1 T 1
o1 =E£2j7Wz, W1 —eT___— 4 e
' / wherez = {/ — — 1. a7) 20 (o — 01) (o + az)(ar — 01)
g2 = i27TWZ, A ) 1 1
2o = 62]7TZW’T|:
Using o; ando» both with positive signs we may define 201(cq +o1) 201 (o —01)
1 1
o L — V22 — 22 — _ }
_ j2rmzWT -
T =€ —1+j\/§z—22 (al—i—ag)(?l +o1) (al—i—ag)(ai—rfl)
) . 2 _ea1T + eagT
To = C_QWZWTﬂ 2@1(@1 — 0'1) (al + ag)(al — 0'1)
1 + \/iz + ZQ 2rzWT 1 1
by means of which we write out two determinants, one forB33 = {2041(@1 +o1)  2a1(ag —oy)
each choice of sign (upper or lower): 1 1
1Fz1) (1xz)2j7nWz (wta)(ar+o1)  (on +on)(an — 01)}
Ai = . o T 1 a T 1
—¢ 1 + e 2

(1Fz2) (LE:a)2nWz 201 (0 — 01) (a1 4+ az)(cq — 1)
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_ = 2ymzWT

1 1
Biy=¢ +

{2041(041 +o1)

2061(061 — 0'1)

B 1 B 1 }
(a1 +az)(oq +o01) (o1 + a)(ae —o1)

_COqT 1 + CO(QT 1
200 (g — 1) (a1 4+ az)(cq — o1)
. 1 1
B41 —_ CQWZW/T|:
2061(061—’—0’1) 2061(061 —0'1)

1 _ 1 :|
(1 + ao){ag +01) (a1 + as)(e —01) [1

_CQIT; 4 et 1 [2]
2a1 (a1 — 01) (a1 + a2)(og — o1)
S 1 1
B — 62]77zW/T|: + [3]
42 2@1(@1 +O’1) 2@1(@1 —0'1)

(4]

_ 1 _ 1 :|
(1 +ag)(ar +01) (1 +az)(az —01)

[5]
_COqT 1 + CO(QT 1
2041(041 — 01) (Oél =+ 062)(061 — 01) 6]
; 1 1
Bya — G—QWZW/T|: +
43 2@1(@1+O’1) 2@1(@1 —0'1)

(7]

1 _ 1 }
(a1 +az)(oq +01) (01 + a)(ae — o1) (8]
1 [9]
(a1 + a2)(oqg — o7)
1 1
{2al(a1 +O’1)

a T 1

C(sz
2041(041 - 01)

B44 — C—QjﬂzVVT [10]

2@1(@1 — 0'1)

3 1 3 1 } [11]
(a1 +az)(oq +01) (01 + a)(ae — o1) [12]
1 1
_COqT + CO(QT .
2041(041 —01) (041 +062)(Oé1 —01) (13]
(14]
ExpandingA, from the conditionA = 0 we get the transcen-
dental equation [15]
2rzWT 2 2 [16]
e (2% + V22 +1)(2% — 1) cos 2mzWT
+V22(2% + V22 + 1) sin 272 W T [17]

+ 7 FEWI(2 — /22 — 1)(2% + 1) cos 202W T
+V22(2% = V22 + 1) sin202WT| + 2(z* +1) =0

2029

whose sequence of roots yields the eigenvalues for the output
finite interval. Finally, the eigenfunctions are of the form

.’En(t) —_ 0162]77‘/1/ Zpt + Dle—Qgﬂ-W Znt
+02627TW Znt + D26—27TW znt'

The results of this appendix have been used to compute the
entries of Table Il
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