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On the Decay of the Determinants of Multiuser
MIMO Lattice Codes

Jyrki Lahtonen, Roope Vehkalahti, Hsiao-feng (Francis) Lu, Camilla Hollanti, and Emanuele Viterbo

Abstract— In a recent work, Coronel et al. initiated the study
of the relation between the diversity-multiplexing tradeoff (DMT)
performance of a multiuser multiple-input multiple-output (MU-
MIMO) lattice code and the rate of the decay of the determinants
of the code matrix as a function of the size of the signal
constellation. In this note, we state a simple but general upper
bound on the decay function and study the promising code
proposed by Badr & Belfiore in close detail. We derive a lower
bound to its decay function based on a classical theorem due to
Liouville. The resulting bound is applicable also to other codes
with constructions based on algebraic number theory. Further,
we study an example sequence of small determinants within the
Badr–Belfiore code and derive a tighter upper bound to its decay
function. The upper bound has certain conjectural asymptotic
uncertainties, whence we also list the exact bound for several
finite data rates.

I. BACKGROUND AND THE DECAY FUNCTION

Assume that we are to design a system for U simultaneously
transmitting synchronized users, each transmitting with nt
transmit antennas and, for simplicity so that we end up with
square matrices, over Unt channel uses. We can describe each
user’s signals as nt × Unt complex matrices. A multiuser
MIMO signal is then viewed as a Unt×Unt matrix obtained
by using the signals of the individual users as row blocks. So
each user is occupying nt rows in this overall transmission
matrix.

Any study of DMT questions calls for a scalable set of finite
signal constellations. For the sake of convenience most authors
assume that the signal sets of individual users are carved out
from a user specific lattice Lj ⊂Mnt×Unt

, j = 1, . . . , U .
When studying DMT questions it is natural to assume that

each user is maximally using the degrees of freedom available
to him/her. Therefore, the lattices of the individual users
should be of full rank n = 2Un2

t , so that each user’s signals
consist of integral linear combinations of n user specific basis
matrices. A natural scaling parameter is the range of the
integer coefficients. We assume that the range is parameterized
by a natural number N . Specifically, for the jth user, let
Bj,1, · · · ,Bj,n be a basis for the lattice Lj of the jth user.
Then the code associated with the jth user is given by

Xj =

{
Xj =

n∑
i=1

biBn,i : bi ∈ Z,−N ≤ bi ≤ N

}
(1)

where each coefficient bi, i = 1, . . . , n, can be freely chosen
from the interval [−N,N ]. Alternatively, an N -PAM coor-
dinate set could be used. What is essential for our study is
that the set of available signals for a certain user is of the
order O(Nn). Our bounds are blind to constant multipliers, so

for example using a spherically shaped signal set instead will
not matter. A QAM-oriented reader may then view encoding
as linear dispersion of n

2 = Un2
t independently chosen N2-

QAM symbols. On the other hand, each user may transmit at a
different rate or, equivalently, have his/her own rate parameter.
We denote these by N1, N2, . . . , NU , and by Lj(Nj) the finite
signal constellation obtained by restricting the coefficients of
the basis matrices of lattice Lj to have absolute value at most
Nj .

Typical values of Nj are set in terms of the DMT. Assume
that the jth user transmits at the multiplexing gain rj . It in
turn means that the size of Xj equals

|Xj | = SNRrjUnt .

Note that by definition |Xj | = (Nj)
n and n = 2Un2

t . Hence
to achieve multiplexing gain rj for the jth user we have to set

Nj = SNR
rj
2nt . (2)

We will discuss the code Xj in greater detail when we examine
the DMT performance of the Badr-Belfiore code in Section IV.

An important class of error events is formed by those,
where the receiver is about to make an error in estimating
every user’s signal. This is dominating the system perfor-
mance in some cases, because with even a relatively well
designed code the channel state may make the received linear
combination of individual error vectors cancel each other
out to a significant extent. Such a cancellation is easier to
arrange when all the users are using a large codebook at the
same time corresponding to the cases, where all the users
are transmitting at a relatively high rate. The standard PEP-
driven space-time analysis shows that the probability of such
an error event can be related to the determinant of the matrix
X := M(X1, X2, . . . , XU ) =

(
XT

1 XT
2 · · · XT

U

)T
, where

the nt × Unt block Xj from user #j is a non-zero matrix
∈ Lj . The following quantity is then of interest:

D(N1, N2, . . . , NU ) = min
Xj∈Lj(Nj)\{0}

|detM(X1, . . . , XU )| .

As a natural special case, when all the users are transmitting at
exactly the same rate, we give special attention to the function

D(N) = D(N1 = N, ..., NU = N).

We call both these functions the decay function of the MU-
MIMO code (Lj), j = 1, . . . , U . We have tacitly made the
assumption that the code designer has provided us with a
form of a generalized rank criterion stating that the matrix
M(X1, X2, . . . , XU ) has full rank, whenever all the blocks
Xj , j = 1, 2, . . . , U , are non-zero. Under the (generalized)
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rank criterion the decay function will then only take non-zero
values.

Is this a misnomer? After all, in the single user MIMO code,
lattices within cyclic division algebras such as the Golden
code and the Golden+ code enjoy the so called non-vanishing
determinant (NVD) property stating that there is an absolute
constant ω > 0 with the property that D(N) > ω for all
values of N . In [1] it was shown that the NVD-property
guarantees the DMT-optimality of a single user code. As we
shall see shortly, this is not possible in the multiuser case, and
the determinants will necessarily tend toward zero (under the
assumption of the generalized rank criterion1).

A natural goal for the research in MU-MIMO channels
would be to have at hand both an explicit criterion guaran-
teeing the DMT-optimality of the family of lattices (Lj), j =
1, 2, . . . , U , and a class of constructions meeting this criterion.

Progress in these questions has been made in [4], [3], [2],
and it is easy to believe that a condition expressed in terms of
the decay function is also out there [4]. In this note we state
some interesting results from [5] about the available decay
functions of all MU-MIMO lattice codes in general. Based on
them, and as the main contribution of this paper, we study in
particular the decay function of the code proposed by Badr &
Belfiore (BB-code, in short).

What kind of decay functions should one expect? We have
shown in [5] that inverse polynomial decay is forced upon us.
All our upper and lower bounds for D(N) are of the form
CN−δ, where δ > 0 is a real constant.

Definition 1.1: If the decay function of a MU-MIMO code
has an upper bound of the form D(N) ≤ CuN

−δ1 , we say
that the determinants of this code decay with exponent at least
δ1. Similarly, if the decay function has a lower bound of the
form D(N) ≥ C`N−δ2 , then we say that the decay exponent
is at most δ2. Finally, if for a particular code we find lower
and upper bounds of the form C`N

−δ ≤ D(N) ≤ CuN
−δ,

we say that the determinants of this code decay with exponent
δ.

Of course, asymptotically we prefer a code with a smaller
decay exponent. Equivalently, we say that the code decays
with exponent δ whenever limN→∞− logD(N)

logN = δ.
As a word of caution, it is not at all clear that any code has

a well defined decay exponent. For example, it may be that
one only gets results for limes superior or limes inferior here.

One of our main results is to show that in the case of the
BB-code we can find positive constants C` and Cu such that
for this promising code we have the bounds

C`
N2
≤ D(N) ≤ Cu

N5/3
.

We also give reasoning for our conjecture that, asymptotically,
for very large N we expect δ = 2. In other words the
determinants decay by the inverse square law. We view this as
good news for the BB-code. Its decay function is under control
in this sense. It would not surprise us if further work on this

1It has been shown that in order to design DMT-optimal MAC codes, one
does not necessarily need to keep up with the generalized rank criterion. It
is enough to satisfy the so-called conditional NVD property, see [2], [3] for
details. Naturally for such codes D(N) = 0, so they are not of interest here.

topic would show that the inverse square decay is essentially
the best possible when U = 2 and nt = 1.

Let us now state two theorems from [5] that will be used for
studying the BB-code. Both theorems are based on the pigeon
hole principle.

Theorem 1.1: (Pigeon hole bound, multiantenna case) For
any full-rate U -user code, each user transmitting with nt
antennas, there exists a constant K > 0 such that

D(N1 = N,N2 = N3 = · · · = NU = 1) ≤ K

N (U−1)nt
.

In other words, the determinants of any full-rate U -user nt-
antenna code decay with exponent at least (U − 1)nt.

Theorem 1.2: (Pigeon hole bound, single antenna case) For
any full-rate U -user code (L1,L2, . . . ,LU ) with nt = 1 there
exists a constant K > 0 such that

D(N1 = N,N2 = N3 = · · · = NU = 1) ≤ K

NU−1
.

In other words the determinants of any single transmit antenna
full-rate U -user code decay with exponent δ ≥ U − 1.

II. A LOWER BOUND TO THE DECAY OF THE
BADR–BELFIORE CODE

Let us recall the code construction from [6]. See also
equation (49) in [4]. This promising code is expressed in
terms of certain algebraic number fields. Everything happens
inside the field E = Q(i,

√
5). We shall also encounter its

subfields F1 = Q(i), F2 = Q(
√

5) and F3 = Q(i
√

5).
The respective rings of algebraic integers of these quadratic
fields are O1 = Z[i], O2 = Z[τ ] and O3 = Z[i

√
5], where

τ = (1 +
√

5)/2 is the golden ratio. The ring of integers
OE = Z[i, τ ] of E then consists of numbers of the form
(a+ bi) + (c+ di)τ , where a, b, c, d are any rational integers.

The Galois group G = Gal(E/Q) has four elements:
1G; ρ : i 7→ −i,

√
5 7→

√
5; σ : i 7→ i,

√
5 7→ −

√
5, and

µ = σρ = ρσ : i 7→ −i,
√

5 7→ −
√

5. The respective fixed
fields of σ, ρ and µ are F1, F2, and F3.

We are now ready to describe the BB-code. It fits into our
general framework with parameters U = 2 and nt = 1 so it is
a single-antenna two-user code. Both users linearly disperse
two Gaussian integers. User #j first combines the Gaussian
integers z1j , z2j ∈ O1 into an element xj = z1j + z2jτ of
the ring OE . Then the users’ encoding methods differ a little
bit, and user #1 transmits the vector (x1, σ(x1)), whereas the
user #2 transmits the vector (γx2, σ(x2)). In [6] and [4] it is
explained that the choice γ = i results in a code that satisfies
the generalized rank criterion. In other words, the composite
matrix

X =
(

x1 σ(x1)
γx2 σ(x2)

)
(3)

is invertible, whenever both x1 and x2 are non-zero.
Following [4], the determinant under study here is

det(X) = x− γσ(x) = x− iσ(x),

where x = x1σ(x2). Next we describe our finite constellations
more precisely. Let (aj , bj , cj , dj) ∈ Z4 correspond to the
signal transmitted by user #j, j = 1 or j = 2. In other words,
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z1j = aj + ibj and z2j = cj + idj . Then the constellations
L1(N) and L2(N) are obtained from the above constructions
by restricting the integer coefficients aj , bj , cj , dj (j = 1 or
2) into the range [−N,N ].

The determinant will now be of the form

det(X) = (R+ Sτ) + (T + V τ)i,

where R,S, T, V are quadratic homogeneous polynomi-
als with integer coefficients in the 8 integer unknowns
a1, a2, b1, b2, c1, c2, d1, d2. The result stating that det(X) 6= 0
can be rewritten in the form that these four polynomials cannot
vanish simultaneously, unless the input from one of the users
is all zeros. As we shall see, our estimate on the decay rate
will depend on the size of the integer coefficients R,S, T, V .
We note the following obvious lemma without proof.

Lemma 2.1: There exists a constant K1 > 0 such that for
all x1 ∈ L1(N1), x2 ∈ L2(N2) we have the upper bounds
|S| < K1N1N2 and |V | < K1N1N2.

We remark here that further limiting the choices of the
inputs of individual users (for example to the ideal of the
ring of integers of E used in the construction of the Golden
code) amounts to placing a family of congruences that the
input vector (a, b, c, d) must satisfy. This will not change
anything in what follows. After all, then the desired single
user constellation will be a subset of a set of the form L(αN),
where α > is a constant that does not depend on N . Thus our
estimates will also be valid for such constellations, because
the contribution from α can be absorbed into the coefficient
K1 (by replacing it with another positive constant). Neither
will replacing i with another non-norm element γ affect our
conclusions — albeit naturally all the calculations have to be
carried out separately for each γ.

We already know from the pigeon hole bound that for some
constant C the decay function of the BB-code has an upper
bound of the form D(N1, N2) ≤ K/max{N1, N2} for some
constant K > 0, i.e., the determinant decays with exponent at
least δ ≥ 1.

For a badly chosen code the decay could be very fast indeed.
We shall next show that the number theoretic structure of the
BB-code can be used to derive an inverse polynomial lower
bound. Thus this code is promising in the sense that it belongs
to a class of MU-MIMO codes with inverse polynomial decay.

A. Approximating τ by rational numbers

It is known that it is impossible to approximate algebraic
integers too well by rational numbers in the sense made precise
by the following result by Liouville2. Similar methods have
been used in e.g. [7], [8].

Theorem 2.2: ([9, p.146], Liouville’s approximation theo-
rem) Let θ be a real algebraic number of degree n ≥ 2. Then
there is a positive constant C(θ), depending only on θ, such

2For more general real algebraic numbers one should asymptotically use
a deep result due to K. F. Roth stating that the exponent n can be replaced
with an exponent of the form 2 + ε for any ε > 0. The price one pays when
doing this is that one no longer has any means of estimating the constant in
the numerator. For asymptotic work Roth’s result is obviously superior.

that for all integers h and k with k > 0 we have∣∣∣∣θ − h

k

∣∣∣∣ > C(θ)
kn

.

As an immediate corollary we get the following.
Corollary 2.3: There exists a constant C such that for all

integers h and k with k > 0 we have |kτ − h| > C
k .

As a corollary of Lemma 2.1 and Corollary 2.3 we get our
main result:

Theorem 2.4: There exists a constant K > 0 such that for
all sufficiently large N1, N2 we have D(N1, N2) ≥ K

N1N2
. In

particular as N →∞, we get a decay estimate D(N) ≥ K
N2 .

In other words the decay of the BB-code has a lower bound
corresponding to an estimate of the decay exponent δ ≤ 2.

We want to remark that the result of Corollary 2.3 is
essentially the best possible. For example, it is impossible to
replace the exponent 1 of the parameter k in the denominator
with a larger number. This is because a simple application of
the pigeon hole principle tells us that there are infinitely many
integer pairs (h, k) such that |kθ − h| < 1

k for any irrational
real number θ.

III. MORE ON THE DECAY EXPONENT OF THE
BADR–BELFIORE CODE

We already know that the decay exponent of the BB-code
is in the interval [1, 2]. As the pigeon hole bound has the air
of suboptimality, we seek to replace it with something tighter
for this specific code.

A. An example sequence of small determinants in Badr–
Belfiore code

In this section we study a sequence of determinants appear-
ing in the BB-code that converges towards zero. The example
utilizes the fact that, within the ring O2, there are arbitrary
small numbers. For example, because |2 −

√
5| ≈ 0.2369 <

1/4, its powers (2−
√

5)n = an−bn
√

5 can be made as small
as required.

Let us consider the case x2 = 1 and x1 = a+ b
√

5i, where
a, b ∈ Z. Then x = x1, σ(x) = a − b

√
5i, so det(X) =

x− iσ(x) = (a− b
√

5)(1− i).
In order to make this as specific as possible, let us study the

sequence of such matrices Xn with a = an, b = bn, where
for all n > 0 the integers an and bn are determined by the
equation an − bn

√
5 = (2−

√
5)n. We remark that this is by

no means the only sequence we could consider to achieve our
goal. We can form other such sequences by multiplying this
with constants and also use other small algebraic integers: any
pair (a, b) ∈ Z2 such that (a− b

√
5) is small will yield small

determinants by this construction.
The number α = 2+

√
5 = τ3 is a unit in the ring Z[τ ]. Its

norm is NF2
Q (α) = ασ(α) = (2 −

√
5)(2 +

√
5) = −1, and

hence σ(α) = 2−
√

5 = −1/α. This norm equation gives us
the identity a2

n − 5b2n = (−1)n that is valid for all integers
n > 0. At this time we infer from this formula that |bn| < |an|
for all n > 0.

We also have use for the trace function trF2
Q : F2 → Q, x 7→

x + σ(x). For example, as σ(an − bn
√

5) = an + bn
√

5, we
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get the formula 2an = trF2
Q (αn) = αn + (−1/α)n. In this

formula the second term always has absolute value < 1, so
the first term dominates for large values of n, and we get the
asymptotic formula an ≈ 1

2 (2 +
√

5)n. We shall also need
an explicit expression of bn in terms of α, and the following
formula is immediate from the definitions 2

√
5bn = αn −

(−1/α)n.
Now if we set in the BB-code x2 = 1 and x1 = zn =

an + i
√

5bn, then the logarithm of the resulting determinant
looks like log |det(X)| = log |(1 + i)(2−

√
5)n| = log

√
2 +

n log |2−
√

5| = log 2
2 − n logα.

At the same time the range parameter N grows as logN =
n logα− log 2. Therefore with this example sequence we get
the limit limn→∞

log | det(X)|
logN = −1.

Thus this example sequence of matrices simply makes the
single antenna pigeon hole bound explicit for the BB-code.
The obvious route to a better upper bound for the decay
function D(N) of the BB-code is to use this sequence of
determinants, but to split the energy more evenly between the
two users. After all, here (as in our proof of the pigeon hole
bound) one user was stuck with a low rate signal, while the
other user’s data rate was unbounded. To do this we want to
write the numbers zn = an+i

√
5bn in the form zn = x1σ(x2),

where x1 and x2 would both use, if not equal then at least
comparable, amounts of transmission power. While we cannot
do this for all the numbers zn, a useful factorization exists,
when 5|n. This is the topic of the following subsection.

B. Certain factorizations in OE
Let ζ = e2πi/5 be a fifth root of unity. Our field of interest

E is a subfield of the twentieth cyclotomic field L = Q(i, ζ),
and [L : E] = 2. This follows from the fact that −ζ − ζ−1 =
−2 cos(2π/5) < 0 is a zero of the polynomial x2 − x− 1 =
(x− τ)(x− 1 + τ), and hence τ = ζ + 1 + ζ−1.

The degree [L : Q] = 8 follows from the fact that the
minimal polynomial of any primitive twentieth root of unity,
such as iζ, is φ20(x) = x8−x6+x4−x2+1. This is, perhaps,
easiest to see starting with the factorization p(x) := x10 +1 =
(x2 + 1)φ20(x).

There is an automorphism ν of L that is determined by
i 7→ i, ζ 7→ ζ−1. We immediately see that ν is of order two,
and that E is the fixed field of ν. So if w is any root of
unity of order 20, then the polynomial (x − w)(x − ν(w))
has coefficients in the field E. Using this we arrive at the
following factorization of φ20(x) into irreducible factors in
the ring E[x]: φ20(x) = p1(x)p2(x)p3(x)p4(x), where

p1(x) = (x− iζ)(x− iζ−1) = x2 + i(1− τ)x− 1,
p2(x) = (x+ iζ)(x+ iζ−1) = x2 − i(1− τ)x− 1,
p3(x) = (x− iζ2)(x− iζ−2) = x2 + iτx− 1,
p4(x) = (x+ iζ2)(x+ iζ−2) = x2 − iτx− 1.

The task at hand is to factorize the number zn = an+ i
√

5bn.
The symmetries of these numbers become more apparent, if
we take a detour via Q: we start by considering the F3 → Q
norm znρ(zn) = a2

n + 5b2n = a2n = 1
2

(
α2n + α−2n

)
.

As before, here α = 2 +
√

5, so µ(α) = σ(α) = 2−
√

5 =
−1/α. The number u = α2n will appear frequently in our
calculations. We start our work on z5n with

a10n

a2n
= α10n+α−10n

α2n+α−2n = u5+u−5

u+u−1 = u−4(u10+1)
u2+1

= u−4φ20(u) = m1(n)m2(n)m3(n)m4(n),

where for j = 1, 2, 3, 4 we denote mj(n) = u−1pj(u) =
α−2npj(α2n) ∈ OE .

As µ(u) = 1/u, we have for example

µ(m1(n)) = µ(u+i(1−τ)−u−1) = u−1−iτ−u = −m3(n).

Similarly µ(m2(n)) = −m4(n). As µ2 = 1 in the Galois
group, we get that m1(n)m3(n) and m2(n)m4(n) are invari-
ant under µ, and hence are integers in the field F3. Thus we
may expect that one of these pairs is a factor of z5n.

We need one more pair of polynomial factorizations, this
time in the ring O1 = Z[i] :

x5 ± i = (x± i)(x4 ∓ ix3 − x2 ± ix+ 1). (4)

These arise similarly from factoring x20 − 1, or rather its
factors x5 + i and x5 − i respectively, in F1[x]. They are
needed in the following lemma that is the main result of this
subsection.

Lemma 3.1: The number z5n is always divisible by zn and
can be factored in the ringOE as z5n = znm2(n)m4(n), when
n is odd, and as z5n = znm1(n)m3(n), when n is even.

Proof: Both of these identities follow from the earlier
expressions for an and bn in terms of powers of α. These may
be compressed into formula zn = 1

2 (1 + i)(αn − i(−1/α)n).
Using our earlier abbreviation u = α2n, we see that

m2(n)m4(n) = u2 − iu− 1 + iu−1 + u−2,

m1(n)m3(n) = u2 + iu− 1− iu−1 + u−2.

Let us consider the case n odd. We can write zn = α−n(1 +
i)(u + i)/2. We also see that m2(n)m4(n) = α−4n(u4 −
iu3− u2 + iu+ 1). Therefore the claim follows from the first
of the above polynomial factorizations by substituting x = u.
The even case follows similarly from the second polynomial
factorization.

C. Sharper upper bounds to the decay function of the Badr–
Belfiore code and numerical data

Let us take a closer look at the factorization in Lemma 3.1.
We want to say something about the sizes of the coordinates
of these algebraic integers with respect to the integral basis
{1, i, τ, iτ}. From all the previous identities it immediately
follows that the coordinates of the factors mj(n), j = 1, 2, 3, 4,
have absolute values bounded from above by a constant
multiple of α2n. Therefore the coordinates of x1 = znmj(n)
(j = 1 or j = 2) can be approximated by a constant multiple
of α3n, and the coordinates of x2 = σ(mj+2(n)) by a constant
multiple of α2n. Recall that these choices yield a determinant
of absolute value

√
2α−5n.

As any size parameter N can be approximated up to a
constant (< α5) multiplier with a power of α5, we have the
following result.
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Corollary 3.2: There exists such a constant K > 0 that for
all N the decay of the BB-code has an upper bound

D(N3/5, N2/5) ≤ K

N
.

In particular, the decay exponent δ has the estimates

5/3 ≤ δ(BB-code) ≤ 2.
One way of getting better upper bounds for the decay

exponent is to apply Lemma 3.1 repeatedly. After all, we
get an even better balance between the factors x1 and x2,
when n is a multiple of 25, because in the factorization
z25n = z5nmj(5n)mj+2(5n) we can factor z5n further.

Observe that when doing this, we effectively restrict our
scale to the sizes a1, a5, a25, a125, . . .. Thus we lose the ability
to estimate (up to a constant multiplier) an arbitrary scale
parameter N by a member of this sequence. Therefore the
following result is stated in terms of limes superior.

Corollary 3.3: For the BB-code we get the result

lim sup
N→∞

− logD(N,N)
logN

= 2.

We conclude this section by a table of numerical results
based on the above factorization. Two things are obvious.
The multiples of 25 stand out. Note also that the coordinates
of these factors are quite large (but the determinant is then
correspondingly very small), and surely beyond the range of
all ongoing simulations.

TABLE I
SOME SMALL DETERMINANTS IN BB-CODE AND ESTIMATES OF δ

n m = max size of xi a factor of zn δ = − log det(X)/ logm

5 38 1.889
10 2880 1.769
15 219640 1.732
20 16692480 1.715
25 66563198 1.984

IV. DMT PERFORMANCE OF THE BADR-BELFIORE CODE

Recall that in Section II, the rows of the BB code are formed
by the lattices associated with each user with coordinates
aj , bj , cj , dj , j = 1, 2, lying within the range [−N,N ].
Thus, following from (2), assuming the users are to achieve
multiplexing gain r1 = r2 = r, the corresponding value for
N is

N = SNR
r
2 ,

since nt = 1. Furthermore, as the elements τ and γ are
fixed and do not vary with SNR, it is straightforward to see
that the overall BB-code matrix X in (3) has average power
E ‖X‖2 ≤̇ N2 = SNRr.

In [4] Coronel et al. had provided some initial DMT analysis
of the BB code. They showed that the BB code will be MAC-
DMT optimal if the following inequality is satisfied

2r + δ ≤ rS (dS∗ (r (S∗)) , ) (5)

where rS (dS∗ (r (S∗))) is the maximum of the sum of multi-
plexing gains of users in set S such that the dominant diversity

gain d∗(r) = dS∗ (r (S∗)) = max
{
d∗1,2(r), d

∗
2,2(2r)

}
can

be achieved. S∗ is the set of the users that is dominant
in the DMT error performance. Specifically, S∗ = {1} for
r ∈ [0, 2

3 ] and is called single-user performance region in
[10]. For r ∈

[
2
3 , 1
]

we have S∗ = {1, 2} and this is termed
the antenna-pooling region. d∗p,q(x) is the point-to-point DMT
with p transmit and q receive antennas given multiplexing gain
x given in [11]. Note that d∗1,2(x) = 2 − 2x for x ∈ [0, 1],
d∗2,2(x) = 4 − 3x for x ∈ [0, 1], and d∗2,2(x) = 2 − x for
x ∈ [1, 2]. To achieve diversity gain d∗(r) = 2− 2r, it is easy
to show that for S = {1, 2} we have

rS (dS∗ (r (S∗))) =
{

2+2r
3 , r ∈

[
0, 1

2

]
2r, r ∈

[
1
2 , 1
]
.

The other parameter δ shown in (5) is defined as

δ := − lim sup
SNR→∞

logSNR min
X 6=X′

|det (X −X ′)|2

where X and X ′ are distinct overall matrices of the BB-code.
In terms of D(N,N), we asymptotically have (SNR→∞)

δ = − logSNR |D(N,N)|2 = logSNR N
4 = 2r,

where the second equality follows from Corollary 3.3, and
where we have set N = SNR

r
2 such that both users achieve

multiplexing gain r. Putting all of the above together into
(5) shows that the BB code is MAC-DMT optimal when
the multiplexing gain falls in the interval

[
0, 1

5

]
, but fails to

achieve the condition (5) by Coronel et al. for r ≥ 1
5 . We

summarize the above in the following result.
Theorem 4.1: The BB-code is MAC-DMT optimal (at least)

when the multiplexing gain r ≤ 1
5 .
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