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Abstract—A flat fading point-to-point multiple-antenna chan-
nel is considered where the channel state information is known at
both transmitter and receiver. At the transmitter side, we use a
lattice encoder to map information symbols to lattice codewords.
The lattice coded layers are then precoded using unitary matrices
satisfying non-vanishing minimum product distance. At the
receiver side, an integer-forcing linear receiver is employed. This
scheme is called ‘unitary precoded integer-forcing’. We show that
by applying the proposed precoding technique full-diversity can
be achieved. We then verify this result by conducting computer
simulations in a 2× 2 and 4× 4 multiple-input multiple-output
(MIMO) channel using full-diversity algebraic rotation precoder
matrices.
Index Terms—Integer-Forcing, unitary precoding, lattice codes,

full-diversity.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) channels with mul-
tiple antennas appeared in the early 1990’s as the key
technology to achieve high spectral efficiencies in wireless
channels. On one hand, optimal maximum likelihood (ML)
detectors such as sphere decoder [1] have high computational
complexity. On the other hand, there are well-known linear
receivers [2] including zero-forcing (ZF) and minimum mean
square estimation (MMSE) linear receivers, which trade-off
error performance for reduced computational complexity. In
these schemes, the channel coefficient matrix is forced to an
identity matrix.
The integer-forcing (IF) linear receiver has been recently

proposed in [3] to obtain higher rates in MIMO channels
with reduced decoding complexity. In this framework, the
transmitter employs a lattice coding scheme, and sends in-
dependent lattice codewords simultaneously across different
layers. Identical lattice codes carved from lattices are used
as codebooks for each transmit antenna and hence, at the
destination, each receive antenna decodes an integer linear
combination of transmitted lattice codewords. The decoded
point is another lattice point because any integer linear com-
bination of lattice points is another lattice point. This makes
detecting information symbols easier by only solving a system
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of linear equations with integer coefficients in each codeword
transmission. Since the matrix of coefficients for this system
needs to be a non-singular integer matrix, this scheme is called
integer-forcing. It is also shown in [3], [4] that integer-forcing
linear receiver provides a full receive diversity order and a full
multiplexing gain. The problem of finding design parameters
for IF receivers using lattice reduction algorithms is addressed
in [4], [5]. Therefore, there is one advantage in using IF linear
receiver over ML decoders such as sphere decoder. For the
IF receiver, the lattice reduction algorithm is performed only
at the beginning of each quasi-static interval for which the
channel is assumed to remain constant for a long time so
that many codewords are transmitted. Subsequently, after each
codeword transmission, only a system of linear equations has
to be solved to recover an estimate of that codeword. Instead,
for the ML decoding, a sphere decoder algorithm should be
performed at every codeword use within a quasi-static interval.
Hence, the complexity of the proposed IF receiver is lower
than the ML decoder for slow fading channels.
Space-Time Block-Codes (STBC) are designed to maximize

both diversity and coding gain in MIMO channels where
an optimal decoder is available at the receiver. The design
parameters for these codes are known to be the rank and
the non-vanishing determinant criteria [6], [7]. In addition,
families of full-diversity space-time codes for which linear
receivers (ZF and MMSE only) are used at the receiver,
were fully investigated and constructed in [8], [9], [10], [11],
[12], [13]. The MIMO linear precoding techniques such as
regularized ZF [14] are alternative approaches that can provide
full diversity in conjunction with linear receivers like MMSE,
see [15] and references therein. In particular, using perfect
STBCs like Golden Codes, the authors of [16] have pointed
out that under an IF decoder, a constant gap to capacity is
attainable. A perfect STBC [17] code is a linear dispersion
space-time code over a Quadrature-Amplitude Modulation
(QAM) constellation, which is full-rate, satisfies non-vanishing
determinant property, and its generator matrix is a unitary
matrix. We aim at relaxing the first two constraints of perfect
STBCs and keeping the last one only. We analyze the di-
versity order of a lattice space-time encoding scheme, which
is precoded by a unitary matrix for IF linear receiver. We
approach the problem of precoder design by using the singular
value decomposition (SVD) to diagonalize the channel, and
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then implemen the optimal solution for each of the resulting
parallel scalar channels. Our optimization criterion is based on
maximizing the minimum distance of the input lattice, similar
to the approach of [18]. We note that differently from [18], our
precoder matrices are unitary and our decoder is the IF linear
receiver and not the ML receiver. Other work ([19], [20], [21],
and [22] and references therein) focus on a different design
criterion based on maximizing the mutual information.
In this paper, using channel state information at both trans-

mitter and receiver (CSIT and CSIR, respectively), we propose
a unitary precoding scheme for n×n MIMO channels, where
the detector at the receiver is IF. In particular, the well-known
SVD along with a unitary precoding matrix, which satisfies
the non-vanishing minimum product distance criterion are used
together to produce unitary precoding matrices. We define this
scheme as unitary precoded integer-forcing (UPIF). It is shown
analytically that full (transmit and receive) diversity can be
achieved by employing the introduced UPIF. The computer
simulations were conducted using a well-known full-diversity
algebraic rotation [23] and presented to support the derived
theoretical results. For example, it is shown that if a 2 × 2
full-diversity algebraic rotation matrix given in [24] is used
over a UPIF scheme, it can perform as close as 1dB away
from ML decoder for the same code.
The rest of the paper is organized as follows: In Section II

we formulate our problem and introduce unitary-precoded
integer-forcing scheme. Diversity analysis of the proposed
scheme is provided in Section III. We finally conduct sim-
ulations to verify the correctness of our theoretical results
in Section IV. We conclude with some comments and future
directions.
Notation. Capital letters are used for functions, and capital

calligraphic letters for sets. The superscript h denotes Hermi-
tian transposition. Let G and G′ be a group and its subgroup
respectively, then G/G′ denotes the quotient group. The sets
Z, C, R, and Z[i] denote the ring of rational integers, the
field of complex numbers, the field of real numbers, and the
ring of Gaussian integers, respectively, where i2 = −1. We
further denote C \ {0} by C∗. The operations �(·) and �(·)
denote the real and imaginary parts of a complex number.
We let |z| and arg(z) denote the modulus and the unique
phase of the complex number z, respectively. The notation ‖v‖
stands for the Euclidean norm of a vector v ∈ Cn. Finally,
an k × k matrix X = [xT

1 , . . . ,x
T
k ]

T is formed by stacking
the k−dimensional row vectors x1, . . . ,xk, and Ik denote the
k × k identity matrix. Finally, let v be a vector, then its j-th
entry is represented by [v]j .

II. SYSTEM MODEL
We first summarize the notion of complex lattices [25]

which are essential for the rest of the paper. A k-dimensional
lattice Λ with a basis set {�1, . . . , �k} ⊆ C

d is the set of
all Gaussian integer linear combinations of basis vectors. Let
L be a matrix with �m as its rows, then L is called the
generator matrix of the lattice ΛL. Throughout the paper, we
only consider full rank lattices where d = k. For example Z[i]d

is a lattice with standard bases. For an d-dimensional lattice
ΛL, we define the m-th successive minima, for 1 ≤ m ≤ d as

εm(ΛL) � inf {r : dim(ΛL ∩ Nr(0)) ≥ m} , (1)

where
Nr(0) =

{
x ∈ R

d : ‖x‖ ≤ r
}
,

and dim(V) denotes the dimension of subspace V ⊆ Rd. A d-
dimensional lattice ΛL is called full-diversity if for all disjoint
x,y ∈ ΛL, the number of elements in {m : [x]m 
= [y]m} be
exactly d. The minimum product distance of a full-diversity
lattice ΛL is denoted by dp,min(ΛL) and is defined by [23]:

dp,min(ΛL) � min
0 �=x∈ΛL

∏
m

|[x]m| . (2)

A subset Λ′ ⊆ Λ is called a sublattice if Λ′ is a lattice itself.
Given a sublattice Λ′, we define the quotient Λ/Λ′ as a lattice
code. This corresponds to a finite constellation of lattice points
carved from the lattice Λ. The shape of such constellation is
governed by the Voronoi region of the shaping lattice Λ′ as
explained in [25]. A common choice for the sublattice Λ′ is
gΛ for some integer g ∈ Z. For example, for Λ = Z[i]d and
Λ′ = gZ[i]d, we have Λ/Λ′ = Zg[i] for which Zg is the ring
of integers modulo g. This is called hypercube shaping. For
g = 2 the cubic shaped lattice code Z2[i] is simply a 4-QAM
constellation. For the rest of this paper we use Λ = Z[i]d and
g a power of 2.

We consider a quasi-statistic flat-fading n × n MIMO
channel, where the channel state information is available at
both transmitter and receiver. The channel matrix is denoted
by H̄ ∈ Cn×n, where the entries of H̄ are i.i.d. complex
Gaussian random variables∼ CN (0, 1). We use an n-layer lat-
tice coding scheme, where the information transmitted across
different antennas are independent. For 1 ≤ m ≤ n, the m-
th layer is equipped with a lattice encoder E : Rk → Cn

which maps a message s̄m ∈ Rk over the ring R into a
lattice codeword x̄m ∈ Λ/Λ′ ⊂ Cn in the complex space. The
matrix X̄ = [x̄T

1 , . . . , x̄
T
n ]

T is actually a space-time codeword,
where its rows are all lattice codewords. This lattice space-
time codeword will then be precoded using a unitary matrix.
The precoding matrix Ū can be derived using the components
of the channel matrix H̄ and another unitary matrix P̄, to
be optimized later. Together with Ū, the matrix X̄ forms a
space-time codeword ŪX̄ to be sent through the channel.

Let H̄ = W̄Σ̄V̄h be the singular value decomposition
(SVD) of the channel matrix where W̄, V̄ ∈ Cn×n are
two unitary matrices and Σ̄ is a diagonal matrix given by
Σ̄ = diag(σ̄1, . . . , σ̄n) with σ̄1 ≥ · · · ≥ σ̄n all in R. A unitary
precoder matrix

Ū = V̄P̄ (3)

is then employed at the transmitter where P̄ ∈ C
n×n is a uni-

tary matrix that needs to be optimized. If X̄ = [x̄T
1 , . . . , x̄

T
n ]

T

denotes the matrix of transmitted vectors, the received signal
Ȳ is given by

Ȳ =
√
ρ · H̄ŪX̄+ Z̄, (4)
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where ρ = SNR
n

and SNR denotes the average signal-to-
noise ratio at each receive antenna and the entries of Z̄ are
i.i.d. distributed as CN (0, 1). Using standard conversion from
complex lattice to the equivalent real one, we have the real
lattice generator matrix as:

M =

( �(M̄) �(M̄)
−�(M̄) �(M̄)

)
.

With the above transformation, (4) can be written as

Y =
√
ρ ·HUX+ Z, (5)

where all the matrices Y,H,U,X, and Z are in R2n×2n. A
suitable block diagram is then as Fig. 1. Upon receiving Y

at the destination, we multiply it by Wh to get Y′ � WhY.
Substituting U from (3) into (5) the channel can be modeled
as:

Y′ =
√
ρ ·ΣPX+ Z′, (6)

where Z′ = WhZ. Note that Z′ continues to be an i.i.d.
complex Gaussian matrix with entries ∼ CN (0, 1) because
W is unitary.
The goal of integer-forcing linear receiver is to project ΣP

(by left multiplying it with a receiver filtering matrix B) onto
a non-singular integer matrix A. In order to uniquely recover
the information symbols, the matrix A must be invertible over
the ring R. Thus, we have

Y′′ = BY′ =
√
ρ ·BΣPX+BZ′. (7)

For the IF receiver [3] formulation, the model is given by

Y′′ =
√
ρ ·AX+

√
ρ · (BΣP−A)X︸ ︷︷ ︸

quantization noise term

+BZ′

�
√
ρ ·AX+E , (8)

where √
ρ · AX is the desired signal component, and the

effective noise is
√
ρ · (BΣP−A)X+BZ′.

We further denote the effective noise term along the m-th
layer by em. The average energy of the effective noise along
the m-th row of Y′′ is defined as

G(am,bm) � ρ‖bmΣP− am‖2 + ‖bm‖2, (9)

where am and bm denote the m-th row of A and B,
respectively. Note that in order to increase the effective signal-
to-noise ratio for each layer, the term G(am,bm) has to be
minimized for each m by appropriately selecting the matrices
A and B. We refer to the above signal model as unitary
precoded integer-forcing.

III. DIVERSITY ANALYSIS

We first recall Woodbury identity [26], which is used in the
rest of this Section. Let U and V be two n × n invertible
matrices, then the following identity holds:

(In +UV)
−1

= In −U (In +VU)
−1

V.

Note that the effective noise is not Gaussian distributed due
to the quantization noise term. However, since the optimum
value of bm that minimizes (9) given am is [3]

bm = ρ · amΣPh
(
I2n + ρ ·ΣP (ΣP)h

)−1

� ρ · am (ΣP)h S−1

the quantization noise term along the m-th layer is then given
by

G(am,bm) = ρ‖bmΣP− am‖2 + ‖bm‖2
= ρ · am(I2n − (ΣP)

h
S−1ΣP)ahm (10)

= ρ · am
(
I2n + ρ · (ΣP)

h
ΣP

)−1

ahm(11)

= ρ · amPh
(
I2n + ρ ·ΣhΣ

)−1
Pahm

= ρ · amPhLLhPahm (12)
� ρ · amLpL

h
pa

h
m (13)

where (10) holds because of (9) in [4], (11) is true because of
the Woodbury identity [26] for

U =
√
ρ · (ΣP)

h
, V =

√
ρ ·ΣP,

and (12) uses the fact that
(
I2n + ρ ·ΣhΣ

)−1 is a positive
definite matrix which has the Cholesky decomposition LLh.
We denote the probability of error for decoding the m-th

layer in the infinite lattice Z by Pe(m,ΣP,Z). It follows that

Pe(m,ΣP,Z) = Pr
(
|em| ≥

√
ρ

2

)
.

The following Theorem provides an upper bound on
Pe(m,ΣP,Z). Due to lack of space, we remove the proofs
of the following two theorems and include them in the
extended version of this paper.

Theorem 1: (Upper Bound on Probability of Error) The
term Pe(m,ΣP,Z), for all 1 ≤ m ≤ 2n, is upper bounded as

Pe(m,ΣP,Z) ≤ exp
(
−cε22n−m+1(ΛL

−1

p

)
)
, (14)

where c is some constant independent of ρ and
ε22n−m+1(ΛL

−1

p

) is the (2n−m+1)-th successive minima of
the lattice with generator matrix L−1

p .
We are interested in Pe(2n,ΣP,Z) which is an upper bound
for Pe(m,ΣP,Z), for all 1 ≤ m ≤ 2n. We define the error
probability for phase precoded integer forcing over Z as

Pe(ΣP,Z) � Pe(2n,ΣP,Z). (15)

Based on (14), we have

Pe(ΣP,Z) ≤ exp
(
−cε21(ΛL

−1

p

)
)
. (16)

Theorem 2: Let the precoding matrix P be such that
dp,min(ΛP) 
= 0, then the achievable diversity of the unitary
precoded integer-forcing is (2n)2.
According to the above theorem, if lattice codes along with
a non-zero minimum product distance precoder are used at
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Fig. 1. Real Block diagram of unitary precoded integer-forcing.

the transmitter of a MIMO channel and integer-forcing is
employed at the receiver, full (transmit and receive) diversity
can be achieved. We now proceed to verify this result by
conducting simulations.

IV. SIMULATION RESULTS
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Fig. 2. Unitary Precoded IF in comparison with other schemes in a 2 × 2

MIMO Channel. The precoding matrix P2 as in (17) is employed.

We have conducted simulation for a 2 × 2 MIMO UPIF
channel over a 4-QAM constellation. In this case, the matrices
A and B for IF linear receiver were found using Algorithm2
presented in [4]. The full-diversity algebraic rotation [24]
matrix P2 which has been employed for simulations is as
follows:

P2 =

( −0.5257311121 −0.8506508083
−0.8506508083 0.5257311121

)
, (17)

with dp,min (ΛP2
) = .4472. For reference purposes, we also

presented IF with no precoding and no CSIT along with
unitary precoded scheme decoded under ML detector. Fig. 2
shows the codeword error rate [4] curves versus signal-to-noise
ratio ρ of different mentioned schemes over a 2 × 2 MIMO
channel. The change of slope from no precoding curve to
unitary precoded schemes is obvious in Fig. 2. In particular, at
codeword error rate 10−4 a gap of less than 1dB is observed,

which shows strong agreement between derived numerical
results and provided theoretical achievements.
The same set of simulations were conducted for a 4 × 4

MIMO channel, where a full-diversity algebraic rotation [24]
matrix P4 as in (19) with dp,min (ΛP4

) = 0.0371 have been
used. The codeword error rate [4] curves versus signal-to-noise
ratio ρ of the precoded schemes with different decoders were
shown in Fig. 3. We calculated the matrices A and B for
IF linear receiver with Algorithm1 along with HKZ lattice
reduction presented in [4]. In particular, at codeword error rate
10−3 a gap of less than 2.5dB away from ML performance is
observed.
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Fig. 3. Unitary Precoded IF in comparison with other schemes in a 4 × 4

MIMO Channel. For this figure, both CSIT and precoding are available. The
corresponding precoder matrix P4 is given in (19).

Since the performance of UPIF decreases by growing ρ
parallel to ML decoded curve in both the figures, full-diversity
of UPIF is guaranteed.

V. SUMMARY AND DIRECTIONS FOR FUTURE WORK

A unitary precoding scheme has been introduced to be
employed at the transmitter of a flat-fading MIMO channel in
the presence of both CSIT and CSIR. At the receiver side,
an IF linear receiver is employed. This precoding scheme
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P4 =

⎛
⎜⎜⎝

−0.3663925121 −0.7677000238 0.4230815704 0.3120820187
−0.2264430248 −0.4744647078 −0.6845603618 −0.5049593142
−0.4744647080 0.2264430248 −0.5049593144 0.6845603618
−0.7677000246 0.3663925106 0.3120820189 −0.4230815707

⎞
⎟⎟⎠ , (19)

followed by a linear receiver is called unitary precoded integer-
forcing (UPIF). The diversity gains of the proposed approach
has been analyzed both theoretically and numerically.
The recently introduced X- and Y-precoders [28] for MIMO

channels can be considered as potential competitors to this
work as they share three common properties with UPIF.
First, they have unitary precoders at the transmitter. Second,
they both have low complexity in comparison with joint ML
decoders when the number of transmit and receive antennas are
small. Third, both achieve full (transmit and receive) diversity
in 2 × 2 MIMO channels. Comparing the error performance
of the proposed UPIF in this work with X- and Y- precoding
schemes is left for the future work.
As this work is a consequence of [29], designing full-

diversity unitary precoders with IF receiver at the destination
without having CSIT is of interest. Another direction is to let
the transmitter have access to limited feedback over a delay-
free link from the IF receiver. In this case, designing a suitable
codebook of unitary precoding matrices which attains higher
rates and obtain higher coding gains seems to be a promising
research topic.
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