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Abstract—We consider a new variant of successive cancellation
decoder (SCD) for polar codes based on the concept of folding,
which was proposed in [1], [2] as technique to reduce the decoding
latency at the cost of a higher computational complexity. In this
paper, we first formally define the multiple folding operation
(iterated κ times), which decomposes the original encoding
graph into a number of smaller polar encoding graphs. More
specifically, we show that the multiple folding gives rise to a
two stage interpretation of the graph representing the polar
encoder and the SCD. Based on this, we propose the improved
multiple folded successive cancellation decoder (IMFSCD), which
combines SCD in one stage and maximum-likelihood decoding in
the other. This decoder exhibits a latency gain by a factor of 2κ,
still retaining a complexity close to the classic SCD. The small
increase in complexity is due to a short maximum likelihood
decoder (MLD) used in place of a SCD in the last decoding
stage within the IMFSCD. Moreover, we observe by simulation
that the decoder exhibits a significant performance gain at high
rates and longer codes.

Keywords—Successive cancellation decoder, multiple folded
successive cancellation decoder, partial ML decoding of polar
codes, low latency decoder, two stage polar encoder, two stage
polar decoder, polar code concatenation.

I. INTRODUCTION

Polar codes proposed by Erdal Arikan [3] have attracted signif-
icant research interest as the first provably capacity achieving
family of codes with low complexity encoding and decoding
of the order of O(N logN), where N is the code-length. The
original successive cancellation decoder (SCD) for polar codes
proposed by Arikan is an important element in proving the
capacity theorems for polar codes. Even in practice, the SCD
exhibits several useful properties such as fixed, deterministic
complexity and good error performance. Hence, polar codes
are becoming attractive for practical implementation. Indeed,
several implementations are reported, with large code-lengths
up to 217 [4]–[7].

Two well-known problems with SCD are the decoding delay
of the order of (2N −1) units [3], [5] and worse performance
when compared with the best available LDPC codes of the
same length [5], [8], [9].

Many alternative decoders are available [10]–[12] for polar
codes improving performance relative to SCD, but such gains
are achieved at the cost of higher complexity and/or higher
delay. Driven by this fact, considerable research has focused
on improving the error performance and latency of the SCD,
without much increase in complexity [1], [4]–[9], [13]–[18].
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Folding is a technique introduced in [12] to provide for the
first time, a Maximum Likelihood (ML) decoding algorithm
for polar codes with code-lengths up to 256. In [1], [2], the
folding is used to reduce the latency of the SCD algorithm
at the cost of a much higher complexity. The complexity
increases by a factor 22

κ

in their best implementation, where
κ represents the number of foldings (see Sec. III). Also,
the performance is reported to be the same as that of an
SCD, while we identify a possible gain in performance. A
first attempt to reduce complexity, while retaining all the
advantages of multiple folding, was made in [19].

In the later stages of our work on folding, we found inter-
esting similarities with the concatenated polar codes in [20],
when using the new interpretation of folding, provided in this
paper. However, our work significantly differs in both our main
objective and approach. Specifically, we aim to achieve highly
desired gains in delay (upto 87%, at κ = 3) using very short
length ML decoding (length 2κ, for small κ) of a part of
the polar code. In contrast, [20] attempts to achieve gains
in performance, using suboptimal, high complexity and high
latency decoding algorithms for different outer codes with
longer length. It is worth noting that such a performance gain
is easily attainable using much smaller complexity decoding
algorithms such as CRC-aided list decoding [8], without mak-
ing significant changes to the original polar code.

In the current paper, we revisit the folding technique for
application to SCD and propose an improved formulation. We
show that by folding the graph κ times (1 ≤ κ ≤ log2(N)−1),
the polar encoder can be visualized as two concatenated
shorter length polar encoding stages. Following this new
interpretation, we use a maximum-likelihood decoder (MLD)
in one stage, while the other stage uses the standard SCD. This
results in a new decoder with a much smaller complexity of
the one given in [2]. We refer to this as the improved multiple
folded successive cancellation decoder (IMFSCD). Similar to
[2], we observe that the IMFSCD exhibits latency reduction
by a factor of 2κ over the conventional SCD. Using our low
complexity decoder implementation, we are able to extend the
analysis to longer codes and we find that the performance gain
can be significant for rates above half.

Below is a summary of our contributions in this paper:
• We provide a new analytical formulation of the multiple

folding technique, allowing a range of new decoders.
• We show that the classic polar encoder can be imple-

mented with same complexity in two independent stages.
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• We show that a range of new decoders can be proposed
by choosing different pairs of decoders for the two stages.

• We show that the processing of q-ary symbol’s reliability
proposed in [1], [2] is not necessary in the current
framework. This is the key to a significant reduction in
complexity.

• We show that, in addition to the significant latency gain
up to a factor of 2κ, the IMFSCD has a significant
performance gain at longer code-lengths and high rates.

The rest of the paper is organized as follows. Sec. II
introduces the notation and briefly describes the polar codes.
In Sec. III, we discuss the main IMFSCD algorithm in detail
along with our simulations and we finally conclude in Sec. IV.

II. POLAR CODES

Notation — An index notation used to define the encoding
operation of polar codes is given as follows. Given any subset
of indices I from a vector x, we denote the corresponding
sub-vector as xI . Given any subset of column indices I from
a matrix A, we denote the corresponding sub-matrix by AI .

The following notation will used in defining multiple
folding with folding-length κ in Sec. III. Given a vector
v = [v1v2 . . . vL]

T and integers l and d such that l =
L/d, we define the interleaved sub-vectors with separation
d and length l, as the set of sub-vectors of v, of the form
vj , [vj , vj+d, . . . , vj+(l−1)d]

T , j = 1, 2, . . . d. Furthermore,
if we form a new vector by stacking all the sub-vectors as
v′ , [vT1 v

T
2 . . .v

T
d ]
T , the result is a block-interleaver (or

rectangular interleaver) permutation of the vector v with an
interleaver depth d. Denoting by P, such permutation matrix,
we have v′ = Pv.
Polar Coding — A polar code is completely specified by the
three-tuple (N,K,F), where N is the code length in bits, K
is the number of information bits encoded per codeword (or
code dimension), and F is a subset of N − K indices from
{0, 1, . . . , N − 1} (frozen bit locations).

For a (N,K,F) polar code we describe below the encoding
operation for a vector of information bits u of length K. Let
n , log2(N) and G , F⊗n = F ⊗ · · · ⊗ F be the n-fold
Kronecker product of F , [ 1 1

0 1 ].
Then, a codeword is generated as

x = GFc u, (1)

where Fc , {0, 1, . . . , N − 1}\F corresponds to the non-
frozen bit indices. Alternatively,

x = G d = F⊗nd (2)

where d ∈ {0, 1}N such that dF = 0 and dFc = u.

Note that the frozen bits dF from Arikan’s original for-
mulation [3] are set to zeros. Arikan proposed the efficient
implementation of the encoding equation (2) shown in Fig. 1.
Construction of Polar Codes — The choice of the set F is an
important step in polar coding often referred to as polar code
construction. A significant amount of literature is devoted to
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Fig. 1. Arikan’s O(N log2N) complexity encoder to implement (2) at N = 8

this operation [3], [20]–[24]. The original algorithm, proposed
in [21] and improved in [24], is based on the Bhattacharya
bound approximation. Later proposed algorithms improve on
this approximation at the cost of higher complexity. For sim-
plicity, we use the original polar code construction algorithm.
Successive Cancellation Decoder (SCD) — The SCD algo-
rithm [3] essentially follows the same encoder diagram in
Fig.1. The likelihoods evolve in the reverse direction from
right-to-left, as explained in [3]. A complete and detailed
implementation of SCD is available in [14].

III. IMPROVED MULTIPLE FOLDED SUCCESSIVE
CANCELLATION DECODING

The folded successive cancellation decoding is based on the
ideas introduced in [1], [2], [12] exploiting the recursive
structure in the encoding equation and its implementation
graph. A formal definition of the technique is provided in the
following.
Folding Operation at the Encoder – Consider below the
encoding equation rewritten using the well-known Kronecker
product property AB⊗CD = (A⊗C) · (B⊗D),

x = F⊗nd (3)

=
(
F⊗κ ⊗ F⊗n−κ

)
d (4)

=
(
I2κ · F⊗κ ⊗ F⊗n−κ · I2n−κ

)
d (5)

= (I2κ ⊗ F⊗n−κ) · (F⊗κ ⊗ I2n−κ) d︸ ︷︷ ︸
v

(6)

=


F⊗n−κ · · · 0

...
. . .

...

0 · · · F⊗n−κ



v1

...

v2κ

 =


F⊗n−κ · v1

...

F⊗n−κ · v2κ


(7)

where, v =


v1

...

v2κ

 , (F⊗κ ⊗ I2n−κ)d, (8)
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Fig. 2. Illustrating folding for N = 8

v1, · · · ,v2κ , are the sub-vectors of v of length 2n−κ or N/2κ.
We may infer from (7) that given any κ ≤ n − 1, the

encoding equation for code-length N can be visualized as a
collection of several independent polar encodings of shorter
code-length N/2κ on the partitions of vector v. Therefore
we denote this encoding stage as block-wise polar encoding
(BPE) stage. However, we need a pre-processing step (8) on
the information vector d to obtain v. Interestingly, the pre-
processing operation (8) can also be implemented by another
set of independent polar encoders of code-length 2κ, as shown
below. We call this pre-processing stage as interleaved polar
encoding (IPE) stage. Clearly, the two stages give rise to the
original polar encoding of code-length N .

Recall the following property of the Kronecker product of
square matrices A and B, with possibly different dimensions:

PT (A⊗B)P = (B⊗A) (9)

where P is a block-interleaver permutation matrix of rows,
with depth equal to the dimension of square matrix A. This
can be easily verified by writing the expansions of Kronecker
products (A ⊗ B) and (B ⊗ A) and then identifying the
permutation involved to match them.

Using (9), we can rewrite (8) as follows.

v = (F⊗κ ⊗ I2n−κ)d (10)

= PT (I2n−κ ⊗ F⊗κ)Pd (11)

= PT


F⊗κ · · · 0

...
. . .

...

0 · · · F⊗κ




d1

...

d2n−κ

 (12)

where P is the permutation matrix corresponding to a block-
interleaver of depth N/2κ. From (12), it is evident that we
can implement the IPE stage by applying 2n−κ parallel polar
encoders to the interleaved sub-vectors of d of length 2κ and
then de-interleaving their output before feeding the BPE stage.
Fig. 2 illustrates the folding process for N = 8, κ = 1, 2.
Note that all the three implementations in Fig. 2 are equivalent
polar encoders. A general implementation of the new encoder
is elaborated below. Note also that, the frozen bits will be
scattered to the component codes in a way that each one of
them is not necessarily a polar code.

By observing Fig. 2, the BPE stage may be vectorized by
grouping every 2κ bits output from an IPE stage encoder.
The BPE stage encoding can also be viewed as operating
over GF (q), with q = 22

κ

, where the addition operator is
the element-wise XOR on bit components. As a result, each
layer in the BPE stage processes the sub-vectors from v,
v1,v2, . . . ,v2κ , and hence implements (7).

A simple interpretation of the multiple-folded polar encoder
with folding-length κ is given as follows. Consider a rectan-
gular interleaver with 2κ columns holding N bits. First, we
fill the interleaver memory column-wise with the elements of
d. Then, in IPE stage we encode in-place, all rows in parallel,
using polar encoders of code-length 2κ. Then, the BPE stage
encodes in-place, all columns in parallel, using polar encoders
of code-length N/2κ. Finally, the memory is read column-wise
to obtain the polar codeword x. A similar interpretation will
be used for the decoder, based on a rectangular memory of N
real values representing the bit likelihoods.
Folding operation at the decoder — A key element in decoding
a polar code is the use of the encoder graph in reverse direc-
tion. After folding, we split the encoder graph in two stages,
which in turn are formed by different polar encoders of shorter
code-lengths 2κ and N/2κ. With this new interpretation, we
may decode independently each of the component codes in
each stage, for example, BPE stage can be decoded with a
standard successive cancellation decoder and the IPE stage
can be decoded by using a MLD or a list decoder.

Following the q-ary interpretation of the BPE stage encod-
ing, an extension of SCD was proposed for BPE stage de-
coding in [1], [2], on the q-ary symbols from GF (q) with
q = 22

κ

, formed by the groups of 2κ bits in Fig. 2. As a
result, the probability mass function (pmf) of each q-ary sym-
bol gets transformed (replacing likelihood transformation of
binary symbols) at different component 2× 2 blocks of the
decoder circuit. Such a pmf transformation takes O(22

κ · 2κ)
complexity, in their best implementation. In this paper, we
observe that this q-ary interpretation is not necessary using
our new interpretation because the bit likelihoods within each
q-ary symbol, corresponding to different layers in the BPE
stage decoding, are independent of each other. In other words,
layers of the BPE stage are independent, and hence the bits
within each q-ary symbol can be processed independently and

384



parallelly at a complexity of O(2κ) only. This is a significant
complexity reduction from the earlier work [1], [2] which has
O(22

κ · 2κ) complexity.
Choice of decoders — We propose to use a standard SCD

algorithm in BPE stage parallelly at each layer, and MLD
at the IPE stage. Note that, for small values of κ the IPE
stage MLD deals with codes of length 2κ and hence has
negligible complexity. We name this new decoder an improved
multiple folded successive cancellation decoder (IMFSCD)
with folding length κ. Note that had we used SCD at both
the stages, the result would have been exactly equal to the
standard SCD algorithm of code-length N . By replacing an
SCD with an MLD, we expect IMFSCD to perform at least as
well as the or better than the standard SCD of code-length N .
This is confirmed by our simulations for various test cases.

Similar to the encoder, a simple interpretation of the
IMFSCD can be given. Consider a rectangular interleaver
with 2κ columns and 2n−κ rows, holding N real values.
The rectangular interleaver memory is filled column-wise in
natural order, with the likelihoods computed from the channel
observations. Each column is then decoded in parallel SCDs
for codes of length N/2κ. This results in a row-wise evolution
of the likelihoods stored separately, in the well-known bit-
reversed order of rows. Once we have a row of bit-likelihoods,
we pass it on to an MLD for the code of length 2κ, which gives
a row of 2κ decisions including frozen bits. The appropriate
polar encoded decisions are then broadcasted parallelly just as
in a standard SCD. The information bit decisions are stored
separately in a similar rectangular interleaver of bits, in the
same locations and finally read column-wise in the natural
order to output the decisions.

Fig. 3 shows our simulations of polar codes performance
under IMFSCD, assuming BPSK modulation and Additive
White Gaussian Noise (AWGN) channel for a code-length
N = 8, 192 and rate R = 0.8. The code construction is taken
from [21]. The plots show the comparison of an IMFSCD with
κ = 1, 2, 3 versus a standard SCD. We will see in Fig. 3 that
the IMFSCD can give a significant performance gain over the
standard SCD for long code-lengths and high rates. However,
we also found by further simulations that the gain reduces for
shorter code-lengths or lower rates.
Latency gain and complexity of IMFSCD — The proposed
MLD replacing the SCD for the IPE-stage, will have higher
complexity compared to a standard SCD, but this increase is
not significant so far as the value of κ is small e.g., κ ≤ 3.
Note that the previously proposed decoders [1], [2] have an
much higher increase in complexity by a factor of 22

κ

in their
best implementation, due to the q-ary symbol processing.

The latency of the IMFSCD of length N is equal to
a standard SCD of length N/2κ, plus the latency of the
MLD in the IPE stage. However, unlike SCD, MLD can be
highly parallelized. Therefore, the difference in latency can be
minimized, which is the key in reducing the latency (2N −1)
of Arikan’s SCD (see [3]) under maximum parallelized imple-

mentation. Then the latency of IMFSCD can be reduced to a
value up to (N/2κ−1− 1), which is a significant reduction by
a factor of 2κ, when compared to standard SCD.
A Comparison with concatenated codes — As we noted
earlier, a range of new decoders can be proposed using the
above interpretation of multiple folding. This model closely
resembles the architecture of a concatenated code with an
inner code and an outer code. Interestingly, we may note
that neither the outer codes nor the inner codes in multiple
folding architecture are polar codes (i.e., the frozen bits are
not selected according to the standard construction). In the IPE
stage, this is due to frozen bits being spread randomly across
the bits seen by IPE stage encoders. In the BPE stage, the
locations of frozen bits are not compatible with a polar code
construction.

In the light of this observation, an interesting comparison is
to verify how a concatenated code performs compared to the
IMFSCD polar code with the same rate and code-length. As a
simple example, we use a single parity check (SPC) code at the
IPE-stage and the same polar code for all component codes of
the BPE-stage. This choice is motivated by the fact that SPC
codes are a classic example of low-complexity ML-decodable
codes, matching the choice of an IPE stage decoding in an
IMFSCD. The rate of the inner polar code is adjusted so as
to match the overall rate of the concatenated code.

The simulation of a SPC code of length 8, concatenated
with polar code of length 1024 at overall rate R = 0.5 is
considered in Fig. 4. We compare the performance of this
concatenated code with polar codes at N = 1024, R = 0.5
and N = 8096, R = 0.5, being decoded using standard
SCDs. We see that the concatenated code performs worse
when compared to a classic polar code of an equal length
and rate. This implies that the joint optimization performed
by polar code construction is more powerful than a simple
SPC code concatenation. Further comparisons are relegated to
our future work.

IV. CONCLUSION

We have proposed a new formulation of the folding technique,
by using which we have introduced a two stage concatenated
interpretation of the standard polar encoder. Following this
interpretation of the encoder, we have proposed a new low
complexity decoder IMFSCD, with much lower latency and
improved performance over the standard SCD. The latency
gain can be up to a factor of 2κ depending upon the ML stage
implementation, with significantly lower complexity than the
earlier decoders based on folding. The performance gains with
IMFSCD can be significant for longer codes and high rates.
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