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Abstract—In cryptography, a shared secret key is normally
mandatory to encrypt the confidential message. In this work, we
propose the unshared secret key (USK) cryptosystem. Inspired
by the artificial noise (AN) technique, we align a one-time
pad (OTP) secret key within the null space of a multiple-
output multiple-input (MIMO) channel between transmitter and
legitimate receiver, so that the OTP is not needed by the legitimate
receiver to decipher, while it is fully affecting the eavesdropper’s
ability to decipher the confidential message. We show that the
USK cryptosystem guarantees Shannon’s ideal secrecy and perfect
secrecy, if an infinite lattice input alphabet is used.

I. INTRODUCTION

Security is a critical issue in wireless communications.

Nowadays secure wireless information exchange relies mainly

on encryption, the process of encoding information in such

a way that only the receiver with the secret key can decode

it. It is widely accepted that a cryptosystem should be secure

in terms of information-theoretic security, which stems from

Shannon’s perfect secrecy [1]. Perfect secrecy is achieved

when the secret message u and the eavesdropper’s (Eve)

received message y are mutually independent, i.e., when I(u;

y) = 0. Perfect secrecy requires a one-time pad (OTP) secret

key v [1]. A weaker version of perfect secrecy is ideal secrecy
[1], that is, no matter how much of y is intercepted by Eve,

there is no unique solution of u and v but many solutions of

comparable probability. This kind of cryptosystem would have

information theoretic security but not perfect secrecy [1].

One of the major weakness of traditional cryptosystems is

the secret key exchanging. The problem is how to protect the

key from unauthorized disclosure. To overcome this limitation,

we propose the unshared secret key (USK) cryptosystem based

on the artificial noise (AN) technique [2]. We redesign the AN

as a OTP aligned within the null space of a MIMO channel

between transmitter (Alice) and legitimate receiver (Bob).

Consequently, the OTP is not needed by Bob to decipher, while

it is fully affecting Eve’s ability to decipher the confidential

message. In [3, 4], we introduced the prototype of USK. In this

work, we refine the analysis in [4] by considering an infinite

lattice constellation input alphabet. We show that the proposed

USK provide Shannon’s ideal and perfect secrecy, under the

same channel assumptions in [2] that enable the use of the AN
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scheme. The extension to practical systems using finite lattice

input alphabets will be reported in the journal version.

Our work differs from previous studies of AN [2, 5],

because it puts forward three new aspects:

1) Shannon’s secrecy: we aim at achieving Shannon’s ideal

and perfect secrecy, rather than positive secrecy capacity.

2) Artificial noise: we have no special requirement of the

distribution of AN; that is, not necessarily Gaussian.

3) Secrecy outage: we show that Shannon’s ideal secrecy can

be achieved with an arbitrarily small outage probability,

when the number of antennas at each terminal is finite.

Section II presents the system model. Section III describes

the USK cryptosystem with infinite lattice constellations.

Section IV analyzes the security of the USK cryptosystem.

Section V sets out the theoretical and practical conclusions.

The Appendix contains the proofs of the theorems.

Notation: Matrices and column vectors are denoted by upper

and lowercase boldface letters, and the Hermitian transpose,

inverse, pseudo-inverse of a matrix B by BH , B−1, and

B†, respectively. Let {Xn, X} be random variables defined

on the same probability space. We write Xn
a.s.→ X, if

Xn converges to X almost surely or with probability one.

We use the standard asymptotic notation f (x) = O (g (x))

when lim sup
x→∞

|f(x)/g(x)| < ∞. The real, complex, integer,

and complex integer numbers are denoted by R, C, Z, and

Z [i], respectively. H(·), H(·|·), and I(·; ·) represent entropy,

conditional entropy, and mutual information, respectively.

II. SYSTEM MODEL

The MIMO wiretap system model is given as follows. The

number of antennas at the transmitter (Alice), the intended

receiver (Bob), and the passive eavesdropper (Eve) are denoted

by NA, NB, and NE, respectively. Alice transmits the informa-

tion signal x, and Bob and Eve receive z and y, respectively,

z = Hx + nB, (1)

y = Gx + nE, (2)

where H ∈ C
NB×NA and G ∈ C

NE×NA are the channel matrices

of Bob and Eve. We assume that all the channel matrix

elements are i.i.d. NC(0, 1) random variables (i.e., Bob and

Eve are not co-located). We assume that the noise vectors
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nB and nE have i.i.d. NC(0, σ2
B) and NC(0, σ2

E) components,

respectively. Furthermore, we assume that

1) Alice knows the realization of H and the statistics of G,

which varies in each transmission.

2) Eve knows the realizations of H and G.

Our secure transmission strategy is based on the artificial

noise scheme [2], which is summarized below.

A. Artificial Noise Scheme

In the AN scheme [2], NB is assumed to be smaller than NA,

thus H has a non-trivial null space with an orthonormal basis

given by columns of the matrix Z = null(H) ∈ C
NA×(NA−NB).

Let u ∈ C
NB×1 be the transmitted vector carrying the informa-

tion, and let v ∈ C
(NA−NB)×1 represent the “artificial noise”

generated by Alice, which is unknown to Bob and Eve.

Alice performs SVD precoding and transmits

x = V

[
u

v

]
= V1u + Zv, (3)

where the columns of V = [V1, Z] are the right-singular

vectors of H (i.e., H = UΛVH , where U ∈ C
NB×NB ,

Λ ∈ C
NB×NA , V ∈ C

NA×NA , UHU = INB
, VHV = INA

).

Due to the orthogonality between V1 and Z, the total

transmission power ||x||2 can be written as

||x||2 = ||u||2 + ||v||2. (4)

Alice has an average transmit power constraint P , i.e.,

P ≥ E(||x||2) = E(||u||2) + E(||v||2). (5)

The AN scheme in [2] is based on the assumptions below:

1) u and v are assumed to be Gaussian random vectors.

2) NA > NB, NA > NE and NE ≥ NB

The condition NE ≥ NB guarantees that Eve has at least the

same number of degree of freedom as Bob.

Equations (1) and (2) can then be rewritten as

z = HV1u + nB, (6)

y = GV1u + GZv + nE. (7)

and show that v only degrades Eve’s reception, but not Bob’s.

The purpose of the AN scheme is to ensure a positive

secrecy capacity [2]. To achieve such secrecy capacity, explicit

wiretap codes are required.

B. Proposed AN Scheme

Different from the original AN scheme [2], we use the

following assumptions in our proposed scheme.

1) We use infinite lattice constellations u ∈ Z [i]NB , satisfy-

ing an average transmit power constraint.

2) We set a peak AN power constraint, Pv ≥ ||v||2.

We focus on information theoretic security, hence, our

analysis will focus on Eve’s equivocation H(u|y).

Throughout the paper, we consider the worst-case scenario

(for Alice) that Eve’s channel is noiseless, i.e.,

y = GV1u + GZv. (8)

Using Data Processing Inequality, it is simple to show that

Eve’s channel noise can only increase her equivocation:

H(u|GV1u + GZv) ≤ H(u|GV1u + GZv + nE).

C. Shannon’s Secrecy

We consider a cryptosystem where a sequence of K mes-

sages {mi}K
1 are enciphered into the cryptograms {yi}K

1 using

a sequence of secret keys {ki}K
1 . We recall from [1] the

definition of Shannon’s ideal secrecy and perfect secrecy.

Definition 1: A secrecy system is ideal when

lim
K→∞

H({mi}K
1 | {yi}K

1 ) �= 0,

lim
K→∞

H({ki}K
1 | {yi}K

1 ) �= 0. (9)

Definition 2: A secrecy system is perfect when

H({mi}K
1 | {yi}K

1 ) = H({mi}K
1 ). (10)

In the special case that {mi}K
1 and {ki}K

1 are mutually

independent, using the entropy chain rule, ideal secrecy is

achieved if H(mi|yi) �= 0 and H(ki|yi) �= 0 for at least some

i. To protect all the messages, we can use a stronger condition:

H(mi|yi) �= 0 and H(ki|yi) �= 0, for all i, (11)

as our design criterion for ideal secrecy.

In this case, perfect secrecy is achieved when

H(mi|yi) = H(mi), for all i. (12)

D. Lattice Preliminaries

To describe our scheme, it is convenient to introduce some

lattice preliminaries. An n-dimensional complex lattice ΛC in

a complex space C
m (n ≤ m) is the discrete set defined by:

ΛC =
{
Bu: u ∈ Z [i]n

}
,

where the basis matrix B = [b1 · · ·bn] has linearly independent

columns.

ΛC can also be easily represented as 2n-dimensional real
lattice ΛR [6]. In what follows, we introduce some lattice

parameters of ΛC, which have a corresponding value for ΛR.

The Voronoi region of ΛC, defined by

Vi (ΛC) =
{
y ∈ C

m: ‖y − xi‖ ≤ ‖y − xj‖, ∀ xi �= xj

}
,

gives the nearest neighbor decoding region of lattice point xi.

The volume of any Vi (ΛC), defined as vol(ΛC) �
| det(BHB)|, is equivalent to the volume of the corresponding

real lattice.

III. UNSHARED SECRET KEY CRYPTOSYSTEM

In this section, we consider the system model with an infi-

nite lattice constellation, satisfying the average transmit power

constraint. This provides the theoretical basis for unshared

secret key cryptosystems.
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A. Encryption

We consider a sequence of K mutually independent mes-

sages {mi}K
1 , where each m is mapped to a transmitted vector

u ∈ Z [i]NB . The probability distribution of u can be arbitrary,

but has finite E(||u||2). To secure the K transmitted vectors

{ui}K
1 , Alice enciphers {ui}K

1 into the cryptograms {yi}K
1

using a sequence of mutually independent secret keys {vi}K
1 .

We assume that {vi}K
1 and {ui}K

1 are mutually independent,

and {Gi}K
1 are mutually independent Gaussian random ma-

trices. No assumption is needed about the statistics of {Hi}K
1

across the K channel uses, since its realization is known to

both Alice and Eve.

Since {vi}K
1 and {ui}K

1 are mutually independent, from

(11) and (12), we only need to demonstrate the encryption

process for one transmitted vector ui. For simplicity, we drop

the subscript i.

For each u, Alice randomly and independently (without any

predefined distribution) chooses a one-time pad secret key v,

from a ball of radius
√

Pv:

S �
{
v ∈ C

NA−NB : ||v||2 ≤ Pv

}
, (13)

and transmits

x = V1u + Zv. (14)

In the worst-case scenario, when nE = 0, Eve will receive

y = GV1u+ñv, (15)

where ñv = GZv.

The message u is received by Eve as a lattice point (see

Fig. 1) in:

ΛC = {GV1u,u ∈ Z [i]NB}. (16)

This enables us to partition the set S into D disjoint subsets

S1, ..., SD, such that

S =

D⋃
k=1

Sk, (17)

where

Sk �
{
v: GV1u ∈ ΛC is the kth closest lattice point to y

}
.

(18)

As shown in Fig. 1, the value of D is determined by

D = |SRmax ∩ ΛC| , (19)

where SRmax is a sphere centered at y with radius

Rmax(Pv) � max
||v||2≤Pv

‖GZv‖ =
√

λmaxPv, (20)

where λmax is the largest eigenvalue of (GZ)H(GZ).

Assuming v ∈ Sk, 1 ≤ k ≤ D, the signal model in (15)

can be viewed as an encryption algorithm that encrypts u to

y using a one time pad secret key v, such that GV1u is the

kth closest lattice point to y.

The security problem lies in how much Eve knows about k.

The value of k is uniquely determined by the vector ñv. Since

we assume that the realizations of G and Z are known to Eve,

k is a function of v. Since v is randomly and independently

selected by Alice and is never disclosed to anyone, Eve can

closest lattice point

||GZv|| y

maxR

th
k:uGV1

Sphere
maxR

S

C
Λ

Fig. 1. The USK cryptosystem with infinite constellations.

neither know its realization nor its distribution. Thus, given y,

Eve is not able to estimate the distribution of the index k, or

more specifically, she only knows that GV1u ∈ SRmax ∩ ΛC.
Remark 1: The index k can be interpreted as the effective

one-time pad secret key, whose randomness comes from the

artificial noise. The effective key space size is D.
Remark 2: Different from Shannon’s one-time pad cryp-

tosystem, the effective one-time pad secret key k is not pre-

shared between Alice and Bob. This motivates the name of this

cryptosystem as Unshared Secret Key (USK) cryptosystem.

B. Analyzing Eve’s Equivocation
Suppose that Eve knows Pv, Rmax(Pv), D and the encryp-

tion process (15). The posterior probability that Eve obtains

u, or equivalently, finds k, from the cryptogram y, is

Pr {u|y} = Pr {k|y} = Pr {u|u ∈ U} , (21)

where

U �
{
u′: GV1u

′ ∈ SRmax ∩ ΛC

}
. (22)

For any u′ ∈ U , using Bayes’ theorem, we have

Pr
{
u = u′|u ∈ U}

=
Pr

{
u = u′}

Pr {u ∈ U} . (23)

Using (21) and (23), Eve’s equivocation is given by

H(u|y) = H(k|y) =
∑
u′∈U

Pr
{
u = u′}

Pr {u ∈ U} log
Pr {u ∈ U}
Pr {u = u′} . (24)

Since Pr {u ∈ U} =
∑

u′∈U
Pr

{
u = u′} and |U| = D,

1) if D ≥ 2, then Pr {u ∈ U} > Pr
{
u = u′}, so that

H(k|y) = H(u|y) > 0. (ideal secrecy)

2) if D → ∞, then Pr {u ∈ U} → 1, so that

H(k|y) = H(u|y) = H(u). (perfect secrecy)

As shown above, Eve’s equivocation depends on the value of

D, which is known to Eve but not to Alice. We then estimate

the value of D from Alice’s perspective. According to (17)

and (18), D is a function of G. Although Alice cannot know

the exact value of D, she is able to estimate its cumulative

distribution function (cdf), denoted by

FD(d, Pv) � Pr {D < d} , (25)

where d is a positive integer.
In the next section, we will show that Alice can ensure

FD(d, Pv) → 0 by increasing Pv, i.e., she can guarantee that

D ≥ d, for any given d.
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IV. THE SECURITY OF USK

To prove the main theorems, we first introduce some lem-

mas. We first define

κ(d) � d1/(2NE)/
√

π and Δ(d) � κ(d)2NE vol(ΛC)

PNE
v

, (26)

where d is a positive integer and

vol(ΛC) = | det((GV1)
H (GV1))|. (27)

Here, G is a complex Gaussian random matrix, while V1

is deterministic. Thus, Δ(d) is a random variable from Alice

perspective. The following two lemmas are used to evaluate

FD(d, Pv) in (25).

Lemma 1: If Pv = ρ2/Φ2NB/NE and ρ > κ(d), then Δ(d)
a.s.→

0 as NB → ∞, or equivalently,

Pr

{
Δ(d) >

(
ρ

κ(d)

)−NB
}

< O

((
ρ

κ(d)

)−NB
)

(28)

where

Φ =

[
(NE − NB)!

NE!

] 1
2NB

. (29)

Proof: See Appendix A.

We next provide a more accurate expression of the tail

distribution of Δ(d) for finite NB.

Lemma 2: If Pv = ρ2/Φ2NB/NE and ρ > κ(d), then

Pr

{
Δ(d) >

(
ρ

κ(d)

)−NB
}

< Υ

(
ρ

κ(d)

)
, (30)

where κ(d) is given in (26), Φ is given (29), and

Υ(x) =

NB∑
i=1

(
xe1−x

)NE−i+1
. (31)

Proof: See Appendix B.

Lemmas 1 and 2 enable us to prove the following lemma.

Lemma 3: If Pv = ρ2/Φ2NB/NE and ρ > κ(d), FD(d, Pv) →
0 as NB → ∞, or equivalently,

FD(d, Pv) < O

((
ρ

κ(d)

)−NB
)

, (32)

and for finite NB, we have

FD(d, Pv) <

(
ρ

κ(d)

)−NB

+ Υ

(
ρ

κ(d)

)
, (33)

where κ(d) is given in (26), Φ is given in (29), and Υ(x) is

given in (31).

Proof: See Appendix C.

A. Achieving Ideal Secrecy and Secrecy Outage

From (11) and the discussion following (24), ideal secrecy

is achieved when D ≥ 2.

Theorem 1: If Pv > κ(d)2/Φ2NB/NE and d ≥ 2, as NB → ∞,

D
a.s.≥ d, (34)

where κ(d) is given in (26) and Φ is given in (29).

Proof: Using Lemma 3, the proof is straightforward.

Theorem 1 shows that for the USK, Eve cannot find a unique

solution u, since D is almost surely greater than 2.

We next estimate the secrecy outage probability when NB

is finite, defined by

Pout(d) � Pr {D < d} = FD(d, Pv), (35)

for any d ≥ 2.

Theorem 2: Let Nmin = min {NE − NB + 1, NB}. If

Pv = ε−2/Nminκ(d)2/Φ2NB/NE (36)

and d ≥ 2, then

Pout(d) < O(ε), (37)

for any arbitrarily small ε > 0, i.e., ideal secrecy is achieved

with probability 1 − O(ε), where κ(d) is given in (26) and Φ

is given in (29).

Proof: Using Lemma 3, the proof is straightforward.

Theorem 2 shows that for finite NB, the outage of ideal

secrecy can be made arbitrarily small by increasing Pv.

B. Achieving Perfect Secrecy

From (12), perfect secrecy requires

H(u|y) = H(u). (38)

According to (24), the problem then reduces to ensuring D →
∞. From Theorems 1 and 2, perfect secrecy requires infinite

AN peak power Pv, which is of theoretical interest only.

C. Discussions

We remark that the USK cryptosystem with D ≥ 2 is already

cryptanalytically unbreakable, since Eve simply does not have

enough information to identify u (see Fig. 1).

Most recently, we have shown that the constraint NE < NA

can be removed by combining the USK scheme with cooper-

ative jamming technique in [7].

V. CONCLUSIONS

We proposed an unshared secret key (USK) cryptosystem

based on the artificial noise technique. For large NB, the

proposed scheme provides Shannon’s ideal secrecy and perfect

secrecy, by simply increasing the power allocated to the

artificial noise component. For finite NB, we have shown that

ideal secrecy can be obtained with an arbitrarily small outage.

APPENDIX

A. Proof of Lemma 1

Recalling that

Δ(d) =
κ(d)2NE | det((GV1)

H(GV1))|
PNE

v

. (39)

From Alice’s perspective, G is a complex Gaussian random

matrix. The matrix V1 with orthonormal columns is known.

According to [8], GV1 a Gaussian random matrix with i.i.d.

elements. Moreover, | det((GV1)
H(GV1))| can be expressed

as the product of independent Chi-squared variables [9]:

| det((GV1)
H(GV1))| =

NB∏
i=1

1

2
X 2 (2(NE − i + 1)) . (40)
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Using the properties of the Chi-squared distribution and the

central limit theorem, it is simple to show that as NB → ∞, if

Pv = ρ2/Φ2NB/NE , where Φ is given in (29),

Pr
{

Δ(d) > (ρ/κ(d))−NB

}
< 1/2 exp

(
−N2

B log2 (ρ/κ(d))

2 log 2NB

)

= O
(
(ρ/κ(d))−NB

)
, (41)

i.e., if ρ > κ(d), Δ(d)
a.s.→ 0 as NB → ∞. A more detailed

proof will be reported in the journal version.

�B. Proof of Lemma 2

We recall (39) and (40) and consider the random variable

Ψ �
NB∏
i=1

X 2 (2(NE − i + 1))

2(NE − i + 1)
. (42)

Recalling that NE ≥ NB. By substituting Ψ, Pv =

ρ2/Φ2NB/NE and ρ > κ(d) to the right side of (39), we have

Δ(d) = (ρ/κ(d))−2NE Ψ ≤ (ρ/κ(d))−2NB Ψ.

Consequently, we obtain

Pr
{

Δ(d) > (ρ/κ(d))−NB

}
≤ Pr

{
Ψ > (ρ/κ(d))NB

}
a≤ Pr

{
NB∑
i=1

X 2 (2(NE − i + 1))

2(NE − i + 1)
> NBρ/κ(d)

}

<

NB∑
i=1

Pr
{
X 2 (2(NE − i + 1)) ≥ 2(NE − i + 1)ρ/κ(d)

}

≤
NB∑
i=1

(
e1−ρ/κ(d)ρ/κ(d)

)NE−i+1
� Υ(ρ/κ(d)),

where (a) holds due to the inequality of arithmetic and

geometric means. �

C. Proof of Lemma 3

We pick an element v0 from S with ||v0||2 = Pv. Suppose

that v0 ∈ Sk0 , where k0 is the corresponding effective secret

key. Since D ≥ k0, we have

FD(d, Pv) = Pr {D < d} < Pr {k0 ≤ d} . (43)

The problem then reduces to evaluating Pr {k0 ≤ d}.

Let SR be a sphere of radius R ≤ Rmax(Pv) centered at y,

where vol(SR) = d·vol(ΛC) (see Fig. 1). Let K be the number

of the points in SR ∩ ΛC. We have

K ≈ vol(SR)

vol(ΛC)
= d. (44)

If GV1u ∈ SR, we have k0 ≤ d, and vice versa. Thus, the

two events are equivalent, i.e.,

Pr {k0 ≤ d} = Pr {GV1u ∈ SR} . (45)

Let S′
R be a sphere with the same radius R centered at

GV1u. If GV1u ∈ SR, then y ∈ S′
R, and vice versa. Thus,

the two events are equivalent, i.e.,

Pr {GV1u ∈ SR} = Pr
{
y ∈ S′

R

}
. (46)

From (43), (45) and (46), we have

FD(d, Pv)

< Pr
{
y ∈ S′

R

}
= Pr

{
y ∈ S′

R|vol(S′
R) ≤ C

} · Pr
{

vol(S′
R) ≤ C

}
+

Pr
{
y ∈ S′

R|vol(S′
R) > C

} · Pr
{

vol(S′
R) > C

}
< Pr

{
y ∈ S′

R|vol(S′
R) ≤ C

}
+ Pr

{
vol(S′

R) > C
}

,(47)

where C is a positive number.
We then evaluate the two terms in (47) separately. We use

the same settings as Lemmas 1 and 2, i.e., Pv = ρ2/Φ2NB/NE ,

ρ > κ(d). We set

C = πNEPNE
v (ρ/κ(d))−NB . (48)

1) Pr
{
y ∈ S′

R|vol(S′
R) ≤ C

}
: Let SC be a sphere centered

at GV1u, where vol(SC) = C. Let SC0 be a sphere centered at

the origin, where vol(SC0) = C. Recalling that Alice knows Z

and v0. From Alice perspective, ñv = GZv0 has i.i.d. NC(0,

Pv) components [8]. Therefore, we have

Pr
{
y ∈ S′

R|vol(S′
R) ≤ C

} ≤ Pr {y ∈ SC}
=

∫
SC0

f(ñv)dñv ≤ C

πNEPNE
v

= (ρ/κ(d))−NB , (49)

where f(ñv) is the probability density function (pdf) of ñv.

The last inequality holds since

f(ñv) =
1

πNEPNE
v

exp

(
−||ñv||2

Pv

)
≤ 1

πNEPNE
v

. (50)

2) Pr
{

vol(S′
R) > C

}
: Since vol(S′

R) = d·vol(ΛC), we have

Pr
{

vol(S′
R) > C

}
= Pr

{
Δ(d) > (ρ/κ(d))−NB

}
. (51)

From (47), (49), (51) and (28), as NB → ∞,

FD(d, Pv) < O

((
ρ

κ(d)

)−NB
)

. (52)

From (47), (49), (51) and (30), when NB is finite,

FD(d, Pv) <

(
ρ

κ(d)

)−NB

+ Υ

(
ρ

κ(d)

)
. (53)

�
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