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Abstract—While information-theoretic security is stronger
than computational security, it has long been considered im-
practical. In this work, we provide new insights into the design
of practical information-theoretic cryptosystems. Firstly, from
a theoretical point of view, we give a brief introduction into
the existing information theoretic security criteria, such as the
notions of Shannon’s perfect/ideal secrecy in cryptography, and
the concept of strong secrecy in coding theory. Secondly, from a
practical point of view, we propose the concept of ideal secrecy
outage and define a outage probability. Finally, we show how
such probability can be made arbitrarily small in a practical
cryptosystem.

I. INFORMATION THEORETIC SECURITY CRITERIA

The security definition in information-theoretic security is

formalized by use of some information-theoretic measure (e.g.

entropy or statistical distance). Thus, it does not depend on a

specific computational model and can provide security even

when the adversary has unlimited computing power. Up to

date, the principle of information-theoretic security is widely

accepted as the strictest notion of security. Various security

measures have been reported and developed since Shannon’s

work [1]. In what follows, we introduce the classical criteria

of information theoretic security.

A. Shannon’s Secrecy

We first introduce Shannon’s shared key-based model. We

consider a cryptosystem where a sequence of K messages

{mi}K
1 are enciphered into the cryptograms {yi}K

1 using

a sequence of secret keys {ki}K
1 . We recall from [1] the

definition of Shannon’s ideal secrecy and perfect secrecy.

Definition 1: A secrecy system is ideal when

lim
K→∞

H({mi}K
1 | {yi}K

1 ) �= 0,

lim
K→∞

H({ki}K
1 | {yi}K

1 ) �= 0. (1)

Definition 2: A secrecy system is perfect when

H({mi}K
1 | {yi}K

1 ) = H({mi}K
1 ). (2)

In the special case that {mi}K
1 and {ki}K

1 are i.i.d. and

mutually independent (which also means that {yi}K
1 are i.i.d.),

using the entropy chain rule, we have

H({mi}K
1 ) =

K∑

i=1

H(mi), (3)
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H({mi}K
1 | {yi}K

1 ) =

K∑

i=1

H(mi|yi), (4)

H({ki}K
1 | {yi}K

1 ) =

K∑

i=1

H(ki|yi). (5)

From (4) and (5), ideal secrecy is achieved if H(mi|yi) �=
0 and H(ki|yi) �= 0 for at least one i. The above definition

of ideal secrecy does not guarantee that all the messages are

equally secured. To protect all the messages, in this work, we

use a slightly stronger condition as our design criterion for

ideal secrecy, given by

Definition 3: If {mi}K
1 and {ki}K

1 are i.i.d. and mutually

independent, a secrecy system is ideal when

H(mi|yi) �= 0 and H(ki|yi) �= 0, for all i. (6)

From (3) and (4), perfect secrecy is achieved when

H(mi|yi) = H(mi), for all i. (7)

B. Secrecy Capacity and Strong Secrecy

Wyner [2] and later Csiszár and Körner [3] proposed a

keyless model, called the wiretap channel. Wyner has shown

that if the eavesdropper (Eve) intercepts a degraded version

of the intended receiver’s (Bob’s) signal, a prescribed degree

of data confidentiality could simultaneously be attained by

channel coding without any secret key. The associated notion

of secrecy capacity was introduced to characterize the max-

imum transmission rate from the transmitter (Alice) to Bob,

below which Eve is unable to obtain any information. Khisti

and Wornell studied the ergodic secrecy capacity for multiple-

input, single-output, multiple eavesdropper (MISOME) system

in [4]. For quasi-static fading channels, the outage probability

of secrecy capacity is derived in [5]. We recall from [6] the

definition of instantaneous secrecy capacity for demonstration:

CS � max
p(u)

{I(u; z)−I(u;y)} . (8)

where u is the information vector, z and y are the received

vector at Bob and Eve, respectively. The maximum is taken

over all possible input distributions p (u).

If CS > 0, Alice can limit the information leakage to Eve

by means of channel coding. Csiszár [7] proposed the strong
secrecy criterion for the wiretap code design.

Definition 4: A strong secrecy rate R is achievable if there

exist a sequence of wiretap codes {Cn} of increasing length
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n and rate R, such that both Bob’s error probability and the

amount of information obtained by Eve approach zero when

n → ∞ [7,8], i.e.,

lim
n→∞Pr {û �= u} = 0, (reliability)

lim
n→∞ I(u;y) = 0, (strong secrecy)

where û represents Bob’s estimation of u.

C. Discussion

In terms of the cost, Shannon’s perfect secrecy can be

achieved only when the secret key is at least of the size of

the plaintext, while Csiszár’s strong secrecy requires infinite

length wiretap codes. Obviously, neither of them is achievable

in practice. In fact, it is common for a cryptosystem

to leak some information (i.e., H(mi|yi) < H(mi)) but

nevertheless maintain its security properties even against an

adversary that has unlimited computational resources (see

http://en.wikipedia.org/wiki/Information-theoretic security).

Therefore, it is meaningful to study the application of

Shannon’s ideal secrecy in practical cryptosystem design.

II. IDEAL SECRECY OUTAGE

We consider physical layer cryptograph in a wireless sys-

tem. We use our slightly stronger definition of ideal secrecy

in (6) and drop the subscript i for simplicity. In general,

H(m|y) and H(k|y) are functions of Eve’s channel matrix. It

is reasonable to assume that Alice only knows the statistics of

Eve’s channel. Although Alice cannot know the exact values

in H(m|y) and H(k|y), she may be able to evaluate their

cumulative distribution functions (cdf), given by

Pr {H(m|y) < x1} and Pr {H(k|y) < x2} , (9)

where 0 < x1 < H(m) and 0 < x2 < H(k).

We refer to the event

{H(m|y) < x1} ∪ {H(k|y) < x2} , (10)

as the ideal secrecy outage. We refer to

Pout(x1, x2) � max {Pr {H(m|y) < x1} , Pr {H(k|y) < x2}} ,

(11)

as the ideal secrecy outage probability. If Pout → 0, then

H(m|y) ≥ x1 and H(k|y) ≥ x2 almost surely.

Remark 1: The proposed concept of ideal secrecy outage

serves as a new measure of information theoretic security,

which is tailored for practical secure communications. In what

follows, we provide an example to show how Pout can be made

arbitrarily small in a practical cryptosystem.

Example 1: In [9–12], we proposed the Unshared Secret
Key Cryptography (USK) to comply with two security goals:

(i) the secret key is not needed by Bob to decipher, (ii)
the secret key is fully affecting Eve’s ability to decipher the

ciphertext. Although those two goals seem to contradict each

other, this can be reconciled by aligning a one-time pad (OTP)

secret key within the null space of a MIMO channel between

Alice and Bob. In this way, the OTP nulls out at Bob, but adds

a certain degree of uncertainty to the received signal at Eve.

The USK secrecy properties are discussed below.
Suppose that m contains n mutually independent infor-

mation bits. In the USK scheme, Alice maps the n bits

to NB (corresponding to Bob’s antenna number) elements

of u for B channel uses. Each element of u is uniformly

selected from a M-QAM constellation Q̃, where �(Q̃) =

�(Q̃) = {0, 1, ...,
√

M − 1}. We ignore the shifting and scaling

operations at Alice to minimize the transmit power. To secure

the total B transmitted vectors
{
uj

}B

1
, Alice enciphers

{
uj

}B

1

into the cryptograms
{
yj

}B

1
using a sequence of i.i.d. unshared

keys
{
kj

}B

1
. The USK scheme has the following property of

H(m|{yj

}B

1
) = H(

{
kj

}B

1
|{yj

}B

1
) = H(

{
uj

}B

1
|{yj

}B

1
),

(12)

and guarantees that for any given 0 < x < H(m),

Pout(x, x) < O(εB), (13)

where ε > 0 can be made arbitrarily small by increasing M

and the transmission power. The rigorous proofs for these

properties are provided in [12].

III. CONCLUSIONS

In this paper, we surveyed the existing measures of in-

formation theoretic security. Moreover, we proposed a tailor-

made measure for practical information-theoretic cryptosys-

tems, called ideal secrecy outage. An example has been

provided to show that the outage probability can be made

arbitrarily small in a practical cryptosystem. Going forward,

a variety of fascinating research problems remain open, such

as generalizing the concept of ideal secrecy outage to relaying

networks.
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