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Abstract—We consider the problem of oblivious transfer (OT)
over OFDM and MIMO wireless communication systems where
only the receiver knows the channel state information. The sender
and receiver also have unlimited access to a noise-free real
channel. Using a physical layer approach, based on the properties
of the noisy fading channel, we propose a scheme that enables
the transmitter to send obliviously one-of-two files, i.e., without
knowing which one has been actually requested by the receiver,
while also ensuring that the receiver does not get any information
about the other file.

I. INTRODUCTION

Oblivious Transfer (OT) is a fundamental primitive in secure
multiparty computation. In one-out-of-two string OT, one
party, Alice, has two files and the other party, Bob, wants one
of these files. Bob needs to obtain the required file without
Alice finding out the identity of the file chosen by him. Bob
should also not be able to recover any information about
the other file. Alice and Bob are assumed to be “honest but
curious” participants - they follow the agreed protocol but are
also curious to gain illegitimate additional knowledge of the
other’s data from their own observations.

It is well known [1] that OT can not be performed only by
interactive communication over a noise-free channel. The OT
is thus studied with a noisy channel as a critical resource in
addition to unlimited access to a noise-free channel. The OT
capacity is the largest length of file that can be transferred per
use of the noisy channel between Alice and Bob. In [2], [3],
this problem has been addressed when the channel between
Alice and Bob is a Discrete Memoryless Channel (DMC). An
upper bound for the OT capacity of a DMC was given in [2]
and it was shown that the given upper bound is achievable by
a simple scheme for binary erasure channels (BEC). Multi-
user variants of OT have been studied over broadcast erasure
channels in [5], [6].

One-out-of-two string OT has been considered in the context
of AWGN channels in [4], where a protocol was proposed. The
case of fast fading wireless channels has also been discussed
in [4], where the fading state varies in each transmission
and is not known to the transmitter or the receiver. Under
such assumption, the channel can be modeled by the con-
ditional probability distribution pY |X with the channel state
marginalized. In [4], fading state does not directly provide any
additional advantage in OT, other than through its influence

on pY |X . The OT capacity is not known for many important
channels including AWGN and binary symmetric channels.

We consider OT over two classes of wireless slow-fading
channels: orthogonal frequency division multiplexing (OFDM)
channel and multiple input multiple output (MIMO) channel,
where the fading state information is available only at the
receiver (CSIR), [7]. Channels with CSIR (Fig. 1) have not
been considered for OT before to the best of our knowledge.
CSIR is a common assumption in wireless communications,
which can be made when the coherence block length n is
sufficiently large. We will allow an interactive protocol to run
over n uses of the channel during which the channel state
remains fixed, and in that period the noise-free channel can be
used any finite number of times. In other words, we assume
that one run of the OT protocol is completed in one block.
However, following common principle of rate-adaptation used
in many wireless communication models, the OT rate may
vary from block to block depending on the channel state. As
we will see in our setups, the knowledge of the state only at
the receiver is the key to some interesting techniques for OT.
Our techniques have the flavor of the protocol for BECs [2].
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Fig. 1. Communication setup for oblivious transfer over channels with state

Our OT schemes use the CSI available at the receiver-
partially shared with the transmitter. Exploiting the noise
and the exclusive knowledge of CSI at the receiver may be
alternative avenues for future investigation.

The paper is organized as follows. Section II presents the
system model and problem definition. In Section III, we
propose a protocol for our OT problem. We will present
separately the two cases of OFDM and MIMO channels, and
observe that these follow a common principle.



II. SYSTEM MODEL

Alice (A) and Bob (B) are two parties in the system as
shown in Fig. 1. Alice has two binary strings K0,K1 of
equal length, and Bob wants one of these strings KC where
C ∈ {0, 1} is Bob’s choice bit. We assume that all the bits
in (K0,K1, C) are i.i.d. ∼ Ber(1/2). Alice can communicate
with Bob over a channel pY |X,S with state S, where the state
remains fixed over a large block length n, and varies from
block to block in an i.i.d. manner. The state is known to Bob in
the beginning of a block. This models wireless communication
setups, where in a large coherence block of length n, the fading
state remains fixed, and the fading state is known (estimated)
by Bob. This is commonly known as the block fading channel
model, [7]. In addition to this channel, there is also a noise-
free channel over which Alice and Bob can communicate
real numbers between themselves without any error/distortion.
During each block, the noise-free channel can be used any
finite number of times. The length l(S) of K0,K1 depends
on S. Since Bob knows the state S in the beginning of a
block, he is assumed to compute and communicate l(S) to
Alice over the noise-free channel. The goal of a protocol is
to transfer KC to Bob obliviously within the current block
such that Bob has little knowledge about KC , and Alice has
no knowledge about C.

Our setup can also be used to transfer large files. We then
need multiple coherence blocks to complete the OT session
for one pair of files. The two files can be broken into multiple
chunks to form one pair (K0i,K1i) for each block i. Then
one run of the protocol is performed in each block, where the
choice bit C of Bob remains the same over the whole session
involving many runs of the protocol.

An (n, l(·)) OT protocol is described as follows. Here, l(·)
denotes a function of the state S and the noisy channel is used
n times. There are total of k rounds of communication between
Alice and Bob, including communication over both the noisy
and noise-free channels. These are indexed by 1, 2, · · · , k,
where k can be random and can be dependent on S. But for
every S, it is required to be finite with probability 1. The noisy
channel is used at rounds i1, i2, · · · , in ∈ {1, · · · , k}. At every
round before round i1, between consecutive ij and ij+1, and
after round in, Alice and Bob exchange a sequence of real
numbers over the noise-free channel. Such a protocol which
uses the noisy channel n times is referred as an n-protocol.
To be specific, an n-protocol has the following steps.
The structure of an n-protocol:
1) Alice and Bob generate private random variables/vectors
M,N, respectively.
2) For ij < i < ij+1 for every j = 0, 1, · · · , n (assuming i0 =
0 and in+1 = k+ 1), Alice sends Ei = Ei(K0,K1,M, F i−1)
and Bob sends Fi = Fi(C, S,N,E

i−1, Y j) over the noise-
free channel. Here F 0 = E0 = Y 0 = ∅.
3) For i = ij , the input to the noisy channel is Xj =
Xj(K0,K1,M, F ij−1). There is no communication over the
noise-free channel in these rounds, and thus Ei = Fi = ∅.
4) At the end of the protocol, Bob computes K̂C =

K̂(C, S,N,Ek, Y n).

The rate l(S)/n of a protocol as described above is a
function of the state S, and is denoted by R(S).

Definition 1 A non-negative rate function R(·) is said to be
achievable if there is a sequence of n-protocols such that for
every S, l(S)

n → R(S) as n → ∞, and the protocols satisfy
the conditions

P (K̂C 6= KC)→ 0

I(K0K1MF k;C) = 0

I(CSNY nEk;KC)→ 0.

The OT capacity function C(S) is the pointwise supremum
of all achievable OT rate functions.

We consider two channels with states, OFDM and MIMO,
in this paper as discussed below. The essential technique used
for OT over both these setups is the same.

III. THE PROTOCOL

Before we present our OT protocol, we will discuss a well-
known result for Gaussian wiretap channels [8]. If Alice and
Bob are respectively the transmitter and receiver of an AWGN
channel, and if Eve is a wiretapper whose received symbol
is more noisy than that of Bob, then the secret message
transmission capacity is given by
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where σ2
B and σ2

E are the variance of the noise at Bob and
Eve, respectively. At any rate under this capacity, Alice can
transmit in such a way that Bob can decode at arbitrarily
small probability of error, but Eve gets almost no information
about the message. Practical coding schemes approaching the
secrecy capacity have been proposed for discrete memoryless
channels using polar codes [11] and for the Gaussian channel
based on lattice codes [12] under semantic security.

We now outline the basic idea behind our OT protocols.
In both OFDM and MIMO, we rely on the modeling of the
channel as parallel fading channels. For the MIMO setup, this
is done by Bob first finding the SVD precoder matrix and
sending it over the noise-free channel, to be used by Alice.
The fading coefficients in the resulting parallel channels are
revealed by Bob to Alice in pairs. In each pair of channels,
Bob does not reveal to Alice which fading gain is for which
channel in that pair, but tells her which string is to be partly
communicated over which channel. He ensures that the desired
string is sent over the stronger of the channels. Alice uses
encoding methods appropriate for a Gaussian wiretap channel
for sending each string over the respective channel. The rate
of transmission is so chosen as to guarantee that Bob can
recover the desired string, but he can not get any information
about the other string sent over the weaker channel. In fact, the
stronger channel can be identified with the legitimate Alice-
to-Bob channel and the weaker channel with the Alice-to-Eve



channel where SNR is degraded. The idea of pairing good
and bad subchannels in OFDM and SVD-precoded MIMO was
also used in [9], [10] with the aim of designing signal sets that
minimize error probability or maximize mutual information.
Here, we exploit subchannel pairing to guarantee that Alice is
oblivious to which file is requested and that Bob only receives
one of the two files.

A. OFDM setup:

The OFDM setup is shown in Fig. 2. There are 2L par-
allel fading AWGN channels between Alice and Bob. The
channel states are given by independent fading coefficients
H0, H1, · · · , H2L−1. If the vector Xn

i = (Xi1, Xi2, · · · , Xin)
is transmitted over the i-th channel for i = 0, 1, · · · , 2L − 1,
then the received vector over the i-th channel is given by

Y n
i = HiX

n
i + Zn

i ,

where Zn
i is the i.i.d. noise with distribution N (0, 1). We

assume that Hi are i.i.d. with Rayleigh distribution. In other
words, we assume that the channel gains remain fixed for a
block of length n, and change from block to block in an i.i.d.
manner. They are known to Bob in the beginning of the block.
The average transmitted power in any block is restricted to P ,
i.e.,

∑n
j=1

∑2L−1
i=0 X2

ij ≤ nP .

.
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Z2L−1

K̂C
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Fig. 2. The OT setup with OFDM channel

2-Channels OFDM: Let us consider an OFDM setup with 2
subchannels, each of which undergo independent and identical
Rayleigh fading. For a block, let us define

B = arg max{H0, H1}
W = C ⊕B
R = C(PH2

B/2, PH
2
B
/2)− ε

where ⊕ denotes the modulo-2 addition, C(·, ·) refers to (1),
and ε > 0 is a pre-chosen constant. In the following protocol,
all channel encoding and decoding refer to the encoding and
decoding for the Gaussian wiretap channel with transmit power
constraint P/2, receiver SNR PH2

B/2, and wiretapper SNR
PH2

B
/2.

The protocol:
1. Bob reveals (W,HB , HB) to Alice over the noise-free

channel.
2. Alice takes strings K0 and K1 of length l(H0, H1) := nR
each. She encodes KW and KW into two length-n codewords
Xn

0 and Xn
1 respectively, such that each has an average power

P/2. Xn
0 and Xn

1 are transmitted over the respective channels.
Note that KC has been encoded into Xn

B , and KC has been
encoded into Xn

B
.

3. Bob receives Y n
0 and Y n

1 with SNR PH2
0/2 and PH2

1/2
respectively. He decodes KC from Y n

B using the decoder for
the wiretap channel referred above.

Correctness of the protocol: Note that KC is transmitted
over the stronger channel (B), and KC is transmitted over
the weaker channel (B). Bob’s received SNR in the stronger
channel is PH2

B/2, whereas his received SNR in the weaker
channel is PH2

B
/2. Thus he can decode KC with vanishing

probability of error, whereas he can get negligible information
about KC as his SNR is that of the wiretapper in this channel.
Since H0 and H1 are independent and identically distributed,
it is easy to check that I(W ;C) = 0, thus Alice does not learn
anything about Bob’s choice C.

Generalization to 2L-channels OFDM: The protocol for
2-channels OFDM can be generalized to 2L-channels OFDM
in a simple way. Bob pairs the channels into L pairs of
channels. Bob reveals these pairs to Alice. He also reveals
the set of fading coefficients in each pair without telling which
one is for which channel. Alice finds two L-tuples of channels
by taking the first of each pair of channels in one L-tuple,
and by taking the second of each pair in the other L-tuple.
Bob asks for the desired (KC) file to be transmitted over the
better of the channels in the pairs, and the other file over the
weaker of the channels. Based on the fading states of each pair,
Alice will allocate different amount of power between different
pairs while respecting her average power constraint. In each
pair of channels, exactly the same protocol as presented for
the 2-channels OFDM is followed to transfer a part of the
desired file obliviously. It is worth noting that we have two
choices to make: (i) the pairing of the channels, and (ii) the
power allocation over different pairs of channels. We omit
these details here due to limited space.

B. MIMO setup
Let us consider the MIMO system with transmitter Alice

and receiver Bob, as shown in Fig. 3. Alice has NA antennas
and Bob has NB antennas. We assume that NA = 2L is even.
Let X denote the vector transmitted by Alice over the MIMO
channel. The received vector Y is given by

Y = HX + Z

where Z ∈ RNB×1 is the Gaussian noise vector with i.i.d.
entries ∼ N (0, 1) and H ∈ RNB×NA represents the channel
fading matrix. The entries of H are assumed to be i.i.d.
Gaussian random variable ∼ N (0, 1). Our scheme also works
for Rayleigh distributed fading coefficients. H remains fixed
over the block of length n, and changes in an i.i.d. manner
from block to block. The average transmit power in any block



is constrained to be P , i.e.,
∑n

i=0

∑NA−1
j=0 X2

ij ≤ nP , where
Xij denotes the symbol transmitted in the i-th symbol interval
from the j-th transmit antenna. We assume that H is known
only to Bob in the beginning of each block. For simplicity we
restrict our model to real channels. The results can be easily
extended to complex channels.

x

A B

H CK0,K1

Noise-free real channel

y

K̂C

Fig. 3. MIMO system for oblivious transfer

2 × 2 MIMO: Consider a 2 × 2 fading MIMO channel
between the parties Alice and Bob. Alice and Bob each has 2
antennas. Let H denote the 2× 2 fading matrix such that the
symbol received by Bob over the MIMO channel is given by

[
Y0
Y1

]
= H

[
X0

X1

]
+

[
Z0

Z1

]
, (2)

where X = (X0, X1)T is the vector transmitted by Alice.
Over n uses of the channel, the output is given by

Yn = HXn + Zn, (3)

Though in our model, Alice does not know the channel
state H, we use the principle of SVD precoding. Let the SVD
decomposition of H be given by

H = UΛV,

where Λ is a diagonal matrix with diagonal elements λ0, λ1
such that λ0 ≥ λ1. Let V0, V1 denote the rows of V. We define

(W0,W1) = (VC , VC)

and R = C(Pλ20/2, Pλ
2
1/2)− ε (4)

for some pre-decided ε, where the C(·) above is defined
as (1). In the following, all channel encoding and decoding
refer to the encoding and decoding for the Gaussian wiretap
channel with transmit power P/2, receiver SNR Pλ20/2, and
wiretapper SNR Pλ21/2.

The protocol:
1. Bob reveals (W0,W1, λ0, λ1) to Alice over the noise-free
channel.
2. The basic transmitter and receiver block diagram is shown
in Fig. 4. Alice computes R (as in (4)) and takes strings K0

and K1 of length l(λ0, λ1) := nR each. She encodes K0 and
K1 into two length-n codewords Xn

0 and Xn
1 respectively,

such that each has an average power P/2. She then transmits
the matrix

[
WT

0 WT
1

] [ Xn
0

Xn
1

]
= WT

0 X
n
0 +WT

1 X
n
1

= V T
0 X

n
C + V T

1 X
n
C

= VT

[
Xn

C

Xn
C

]
.

3. Bob first multiplies the received 2× n matrix by UT . The
resulting end-to-end channel is given by

Y′n = UTHVT

[
Xn

C

Xn
C

]
+ UTZn

=

[
λ0X

n
C

λ1X
n
C

]
+ UTZn. (5)

Bob gets Y ′n0 and Y ′n1 with SNR Pλ20/2 and Pλ21/2 respec-
tively. He decodes KC from Y n

0 using the decoder for the
wiretap channel referred above.

X 0

X 1

[W   0
   T

W  ] 1
 T

+

+

Z 0

Z 1

Y 0

Y 1

Y 0
’

Y 1
’

H UT

Fig. 4. MIMO precoding for OT

Correctness of the protocol: First note that since Y′n is
obtained by a unitary (and so invertible) transformation on
Yn, it contains exactly the same information as Yn. So we
will henceforth treat Y′n as Bob’s received matrix. Since U
is a unitary matrix, UTZ has the same distribution as that of
Z. Also note that KC is encoded into Xn

C , which is received
with noise as Y ′n0 with SNR Pλ20/2. Since this encoding is
done by Alice for a Gaussian wiretap channel with the same
receiver SNR, Bob can decode KC with vanishing probability
of error. On the other hand, KC is encoded into Xn

C
, which

is received with noise as Y ′n1 with SNR Pλ21/2. Bob can not
get any information about KC as his SNR in Y ′1 is that of the
wiretapper. This ensures secrecy of Alice against Bob.

Regarding the secrecy of Bob against Alice, first note that
H is circularly symmetric, and thus (V0, V1) and (V1, V0)
have the same distribution, that is, their joint distribution is
symmetric in V0 and V1. Also, note that λ0, λ1 are independent
of C, V0, V1. Thus

I(W0,W1, λ0, λ1;C) = I(VC , VC ;C) = 0.

This ensures the secrecy of Bob against Alice.
As seen in (5), the SVD precoding as shown in Fig. 4

transforms the MIMO channel into a parallel fading Gaussian
channel, where Alice is unsure of which of the two channels
has the gain λ0, and which has gain λ1. We now discuss the
2×1 MIMO system, where the same technique takes a simple
elegant form.

2 × 1 MIMO: Consider a 2 × 1 fading MIMO channel
between Alice and Bob. Let H = (H0, H1) denote the 1× 2



fading matrix such that the symbol received by Bob over the
MIMO channel is given by

Y = HX + Z,

where X = (X0, X1)T is the vector transmitted by Alice, and
Z ∼ N (0, 1) is the noise. Over n uses of the channel, the
received vector is given by

Y n = HXn + Zn,

where Xn and Zn are respectively the transmitted vector and
noise vector. Let the SVD of H be

H = ΛV

where Λ = (λ, 0), λ =
√
H2

0 +H2
1 , the first row of V is

V0 = (1/λ)H, and the second row of V is a vector V1

orthonormal with the first row.
The best way to communicate messages (without any

secrecy condition) is using SVD precoding wherein Alice
multiplies her message symbol with the first row of V0

and transmits. Bob simply divides the received symbol by λ
and chooses the nearest message symbol to the result. Note
that if in addition, Alice added any scalar multiple of V1

with her transmission, it does not contribute to the received
symbol as V1 is orthogonal to H . Thus this dimension which
is orthonormal to H (the null-space of H) is not useful
for communication, as it has zero gain. This reduces the
MIMO channel to a single fading AWGN channel with fading
coefficient λ.

We now give an OT protocol for this channel when only
Bob has the knowledge of H in the beginning of a block. We
define

(W0,W1) = (VC , VC) (6)

and R =
1

2
log2

(
1 +

Pλ2

2

)
− ε (7)

for some pre-decided ε. In the following, all channel encod-
ing and decoding refers to encoding and decoding schemes
suitable for an AWGN channel with transmit power constraint
P/2, channel gain λ, and noise variance 1.

The protocol:
1. Bob reveals (W0,W1, λ) to Alice over the noise-free
channel. He sets (W0,W1) as in (6).
2. Both Alice and Bob computes l(λ) = Rn with R computed
as (7). Alice encodes each of K0 and K1 (of length l(λ) each)
into a n-length vector. Let these encoded vectors be Xn

0 and
Xn

1 respectively. Over n uses of the channel, Alice transmits
the 2× n matrix WT

0X
n
0 + WT

1X
n
1 .

3. Bob receives

Y n = H(WT
0X

n
0 + WT

1X
n
1 ) + Zn

= λXn
C + Zn.

Bob now decodes KC from Y with probability of error going
to zero as n→∞.

Correctness of the protocol: Since XC is transmitted in the
null-space of H, it does not contribute to Bob’s received

vector. Thus Bob has no information about KC . Since H
has i.i.d. Gaussian entries, (V0, V1) has a distribution which
is symmetric in V0 and V1, and λ is independent of (V0, V1).
Thus, I(W0,W1, λ;C) = 0. Thus the secrecy of Bob against
Alice is met.

General MIMO channel: Our MIMO protocol can be
extended to arbitrary even number of transmit antennas. Bob
will compute the SVD of H, and then arrange the resulting
parallel channels in pairs. The rest of the protocol proceeds as
discussed in the general OFDM case.

IV. CONCLUSION

We presented a technique for OT over parallel fading
AWGN channels with receiver CSI with application to OFDM
and MIMO. For privacy of Bob against Alice, our techniques
use primarily Bob’s exclusive knowledge of the fading states,
whereas the additive noise is utilized for privacy of Alice
against Bob. The noise can potentially be further utilized,
and we have not made an attempt to explore this possibility.
Particularly, for a single point-to-point fading channel or for
parallel fading channels with the same fading coefficient, an
obvious scheme is for Bob to first reveal the channel state
to Alice over the noise-free channel. Then they can follow
a protocol suitable for the resulting AWGN channel [4].
Altogether, the technique proposed in this paper can be an
important tool for performing OT over wireless channels using
the exclusive CSI at the receiver.
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