
Repair Schemes with Optimal I/O Costs for
Full-Length Reed-Solomon Codes with Two Parities

Hoang Dau∗ and Emanuele Viterbo†
Department of Electrical and Computer Systems Engineering, Monash University

Emails: ∗hoang.dau@monash.edu, †emanuele.viterbo@monash.edu

Abstract—Network transfer and disk read constitute the two
most time-consuming operations in the repair process for node
failures in erasure-code-based distributed storage systems. Recent
developments on Reed-Solomon codes have demonstrated repair
schemes that achieve optimal network bandwidths in the recovery
of single failures, although in certain cases at the expense of a
trivially high I/O cost, a term referring to the number of disk reads
performed in a repair scheme. We are interested in the lowest
I/O cost a repair scheme can achieve for Reed-Solomon codes.
We establish two repair schemes for a family of Reed-Solomon
codes with two parities that achieve the optimal I/O cost.

I. INTRODUCTION

Reed-Solomon (RS) codes [1] are arguably the most popular
codes used in practical storage systems, thanks to numerous ad-
vantages, including optimal storage overhead, widest range of
code parameters, and simple implementations. They form core
components of major distributed storage systems (DSS) such as
Google’s Colossus [2], Quantcast File System [3], Facebook’s
f4 [4], Yahoo Object Store [5], Baidu’s Atlas [6], Backblaze’s
Vaults [7], and Hadoop Distributed File System [8].

Recent developments on repairing RS codes ([9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]) estab-
lished that carefully designed repair schemes can reduce the
repair bandwidth significantly compared to the naive scheme.
Here, the repair bandwidth refers to the amount of data to
be transmitted from the helper nodes to the replacement node
during the repair process that recovers the lost content of one
failed node. As pointed out in [22], however, repair schemes
with optimal repair bandwidths may incur a trivial I/O cost.
By definition, the I/O cost measures the total amount of data
being read from the physical disks located at the helper nodes
during the repair process of a failed node. The trivial I/O cost
refers to the I/O cost of the naive repair scheme, which requires
the reading of the entire file from the system.

In this work, we investigate I/O-efficient repair schemes for
a family of RS codes. Fig. 1 illustrates the trade-off between
the repair bandwidth and the I/O cost (in bits) during the
repair process of one failed node in a DSS employing an
[8, 6]8 Reed-Solomon code. The left-most point represents the
scheme with an optimal repair bandwidth but incurring the
worst I/O cost ([22]). The schemes represented by the next
three points, in which the I/O cost is minimized, are our object
of interest. In general, for the case of full-length RS codes with
two parities over fields of characteristic two, we introduce a
lower bound on the I/O cost (Section III) and demonstrate
two repair schemes that achieve this bound (Section IV). The
second scheme improves the repair bandwidth upon the first
one. These are, as far as we know, the first repair schemes with
an optimal I/O cost for Reed-Solomon codes. It is an open
problem to determine the lowest possible repair bandwidth
given that the I/O cost is optimal.

II. PRELIMINARIES

Let [n] denote the set {1, 2, . . . , n}. Let F = Fq be the finite
field of q elements, for some prime power q. Let E = Fq` be

18

18

17

14 15 16 17

b

b b b

b

BW

I/O

B
W
=
I/
O

BW optimal
worst I/O I/O optimal

trivial repair
worst BW, I/O

Fig. 1: Illustration of the trade-off between the repair band-
width and the I/O cost (in bits) for an [8, 6]8 RS code. Given
a repair bandwidth, the corresponding lowest possible I/O cost
is found by an exhaustive search.

an extension field of F , where ` ≥ 1, and let E∗ = E\{0}. We
refer to the elements of E as symbols and the elements of F as
sub-symbols. The field E may also be viewed as a vector space
of dimension ` over F , i.e. E ∼= F `, and hence each symbol
in E may be represented as a vector of length ` over F . More
specifically, suppose B = {βi}`i=1 is a basis of E over F , then
any element α ∈ E can be written as α =

∑`
i=1 αiβi. The

unique vector φB(α) = (α1, . . . , α`) ∈ F ` is called the vector
representation of α with respect to the basis B. Throughout
this work we fix B and use φ(α), i.e. dropping the subscript.
We also use ψ(α) =

(
φ(αβ1)T, . . . , φ(αβ`)

T
)T

to denote the
`×` matrix whose ith row is φ(αβi). The following properties
are well known for φ(·) and ψ(·) (see, for instance, [14]).

Lemma 1. The following statements hold for α,β ∈ E, b ∈ F .
(a) φ(α+ β) = φ(α) + φ(β), φ(bα) = bφ(α),
(b) ψ(α+ β) = ψ(α) + φ(β), ψ(αβ) = ψ(α)ψ(β),
(c) φ(αβ) = φ(α)ψ(β),
(d) φ(α) 6= (0, . . . , 0) and detF (ψ(α)) 6= 0 if α 6= 0.

For u,v ∈ E, if φ(u)φ(v)T = 0 then we say u is
orthogonal to v and write u ⊥ v. For a set U ⊆ E, if u ⊥ v
for every u ∈ U then we also write U ⊥ v. If U is an F -
subspace of E, then U⊥ denotes the orthogonal complement of
U , which contains all elements of E orthogonal to U . We use
spanF (U) to denote the F -subspace of E spanned by a set of
elements U of E. The (field) trace of any symbol α ∈ E over
F is defined to be TrE/F (α) =

∑`−1
i=0 α

qi (the subscript E/F
is often omitted). The support of a vector u = (u1, . . . , u`),
denoted supp(u), is the set {j : uj 6= 0}. The (Hamming)
weight of u, denoted wt(u), is |supp(u)|. The support of a
set of vectors U is supp(U)

4
= ∪u∈U supp(u). A linear [n, k]

code C over E is an E-subspace of En of dimension k. Each
element of a code is referred to as a codeword. The dual of
a code C, denoted C⊥, is the orthogonal complement of C in

En and has dimension r = n− k. Elements of C⊥ are called
dual codewords.

Definition 1. Let E[x] denote the ring of polynomials over E.
A Reed-Solomon code RS(A, k) ⊆ En of dimension k over
a finite field E with evaluation points A = {αj}nj=1 ⊆ E is
defined as

RS(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ E[x], deg(f) < k

}
.

The Reed-Solomon code is full length if n = |E|. Note
that the dual of a full-length Reed-Solomon code RS(A, k)
is another Reed-Solomon code RS(A, n − k) (as a corollary
of [23, Chp. 10, Thm. 4]).

Trace repair framework. First, note that each symbol in E
can be recovered from its ` independent traces. More precisely,
given a basis {βi}`i=1 of E over F , any α ∈ E can be
uniquely determined given the values of Tr(βiα) for i ∈ [`],
i.e. α =

∑`
i=1 Tr(βiα)β∗i , where {β∗i }`i=1 is the dual (trace-

orthogonal) basis of {βi}`i=1 (see, e.g., [24, Ch. 2, Def. 2.30]).
Let C be an [n, k] linear code over E and C⊥ be its dual.

If c = (c1, . . . , cn) ∈ C and g = (g1, . . . , gn) ∈ C⊥ then
c · g=

∑n
j=1 cjgj = 0. Suppose cj∗ is erased and needs to

be recovered. In the trace repair framework, choose a set of `
dual codewords g(1), . . . , g(`) such that dimF

(
{g(i)

j∗ }`i=1

)
= `.

Since trace is linear, we obtain the following ` equations

Tr
(
g

(i)
j∗ cj∗

)
= −

∑
j 6=j∗

Tr
(
g

(i)
j cj

)
, i ∈ [`]. (1)

In order to recover cj∗ , one needs to retrieve sufficient infor-
mation from {cj}j 6=j∗ to compute the right-hand sides of (1).
We define, for every j ∈ [n],

Sj→j∗
4
= spanF

({
g

(1)
j , . . . , g

(`)
j

})
(2)

and refer to Sj→j∗ as a column-space of the repair scheme
when j 6= j∗. Then for each j 6= j∗, in order to de-
termine Tr(g

(i)
j cj) for all i ∈ [`], it suffices to retrieve

dimF (Sj→j∗) sub-symbols (in F) only. Indeed, suppose
{g(it)

j }st=1 is an F -basis of Sj→j∗ , then by retrieving just
s traces Tr(g

(i1)
j cj), . . . ,Tr(g

(is)
j cj) of cj , all other traces

Tr(g
(i)
j cj) can be computed as F -linear combinations of those

s traces without any knowledge of c. Finally, since {g(i)
j∗ }`i=1

is F -linearly independent, cj∗ can be recovered from its `
corresponding traces on the left-hand side of (1). We refer to
such a scheme as a repair scheme based on {g(i)}`i=1. It was
known that this type of repair schemes includes every possible
linear repair scheme for RS codes [10].

Lemma 2 (Guruswami-Wootters [10]). Suppose E = Fq` ,
F = Fq , C is an [n, k] linear code over E and C⊥ is its
dual. The repair scheme for cj∗ based on ` dual codewords
g(1), . . . , g(`), where dimF

(
{g(i)

j∗ }`i=1

)
= `, incurs a repair

bandwidth of
∑

j 6=j∗ dimF (Sj→j∗) sub-symbols in F , where
Sj→j∗ is defined as in (2).

I/O Cost of a Repair Scheme ([22]). Let B = {βi}`i=1 be
any F -basis of E. Then each element α =

∑`
i=1 αiβi ∈ E

can be represented by a vector φ(α) = (α1, . . . , α`) ∈ F `

as defined earlier. We assume throughout this work that every
node uses a fixed common basis to represent and store the
finite field elements. Another underlying assumption is that
each sub-symbol αi of α can be read from the storage disk
separately without accessing other sub-symbols. We first define
the I/O cost of a function and then proceed to describe the I/O
cost of a repair scheme.

Definition 2 ([22]). The (read) I/O cost of a function f(·) with
respect to a basis B is the minimum number of sub-symbols of
α ∈ E needed for the computation of f(α). The I/O cost of
a set of functions F is the minimum number of sub-symbols
of α needed for the computation of {f(α) : f ∈ F}.

Lemma 3 ([22]). The following statements hold.
(a) The I/O cost of a linear function fw(α)

4
= w · α =∑

i wiαi with respect to a basis B is wt(w) = |supp(w)|,
where w = (w1, . . . , w`) ∈ E.

(b) The I/O cost of a set of linear functions w1 ·α, . . . ,ws ·α
with respect to B is | ∪sj=1 supp(wj)|.

(c) The I/O cost of the trace functional Trγ(·), defined by
Trγ(α)

4
= Tr(γα), with respect to B is wt

(
wγ,B

)
, where

wγ,B
4
=
(
Tr(γβ1), . . . ,Tr(γβ`)

)
. (3)

(d) The I/O cost of the set of trace functionals {Trγ(·) : γ ∈
Γ} with respect to B is | ∪γ∈Γ supp(wγ,B)|.

The I/O cost of the repair scheme based on a set of dual
codewords {g(i)}`i=1 is the minimum number of sub-symbols
of cj’s, j 6= j∗, needed in the computation of the right-hand
sides of (1). The formal definition is given below.

Definition 3 ([22]). The I/O cost of the repair scheme based
on a set of dual codewords {g(i)}`i=1 with respect to a basis
B is the sum of the I/O costs of the sets of trace functionals
Fj =

{
Tr
g
(i)
j

(·)
}`
i=1

, j ∈ [n] \ {j∗}.

Our ultimate goal is to find the best trade-off curve between
the repair bandwidth and the I/O cost. This appears to be
challenging even for very particular sets of code parameters.
Therefore, it is reasonable to first study the two extreme points
of the curve. The first attempt along this line of research was
made in [22], where the authors prove that known bandwidth-
optimal repair schemes ([10], [13]) for some families of full-
length RS codes actually incur a trivial I/O cost. Moreover,
when the code has two parities (r = 2) and F = F2, they
show that trivial I/O costs are a necessary price to pay for
optimal repair bandwidths. We examine the same family of
codes as above but prioritize the I/O cost. Our first repair
scheme achieves the optimal I/O cost while the second one not
only achieves the same I/O cost but also incurs a lower repair
bandwidth, which is probably the lowest bandwidth possible.

III. A LOWER BOUND ON THE I/O COST FOR REPAIRING
FULL-LENGTH REED-SOLOMON CODES WITH TWO

PARITIES

We establish in this section a lower bound on the I/O cost.

Theorem 1. For a Reed-Solomon code of length n = 2` and
r = 2 over F2` , the I/O cost (in bits) of an arbitrary linear
repair scheme always satisfies the following inequality.

I/O ≥ (n− 1)(`− 1) + (2`−1 − 1). (4)

Note that on the right-hand side of (4), the first term
(n − 1)(` − 1) corresponds to the optimal repair bandwidth
of linear repair schemes, according to [13, Thm. 2], while the
second term specifies the difference between the optimal repair
bandwidth and the optimal I/O cost. The rest of this section is
devoted to a proof of Theorem 1.

As r = 2, a dual codeword of the full-length RS code can
be obtained by evaluating a polynomial of degree at most one
at all the elements of F2` . A linear repair scheme, therefore, is
based on a set of ` polynomials gi(x) = aix+bi, ai, bi ∈ F2` ,
i ∈ [`]. Set A = {ai}`i=1 and B = {bi}`i=1. We say the repair

scheme is defined by A and B. Moreover, by [22, Lem. 8],
it suffices to consider repairing c1 = f(0), the first codeword
component corresponding to the evaluation point α1 = 0. As a
repair scheme for c1, it is required that rankF2({gi(0)}`i=1) =
`. In other words, B must be an F2-basis of F2` . We henceforth
set rA

4
= rankF2

(A) and Aγ +B
4
= {aiγ + bi}`i=1.

It will later become clear in the proof of Lemma 8 that the
set of “good” γ defined in Lemma 4 consists of the evaluation
points where one bit of I/O can be saved in the repair scheme
defined by A and B and with respect to β = βi ∈ B.

Lemma 4. Suppose A = {ai}`i=1 ⊂ F2` , B = {bi}`i=1 is an
F2-basis of F2` , and β ∈ F∗2` . The set GA,B,β defined as

GA,B,β
4
= {γ ∈ F2` : Tr((aiγ + bi)β) = 0, ∀i ∈ [`]} , (5)

which is called the set of “good” γ, has size zero or 2`−rA .

Proof. In order to show that |GA,B,β| is zero or 2`−rA , we
prove that it is the solution set of a (non-homogeneous) system
of linear equations where the coefficient matrix has rank rA.

Let K 4
= {κ ∈ F2` : Tr(κ) = 0} be the kernel of the trace

function. Let uK be the normal vector of K/β, that is, uK 6= 0
and uK ⊥ K/β. We can rewrite GA,B,β as follows.

GA,B,β = {γ ∈ F2` : aiγ + bi ∈ K/β, ∀i ∈ [`]}
=
{
γ ∈ F2` : φ(aiγ + bi)φ(uK)T = 0, ∀i ∈ [`]

}
.

Therefore, γ ∈ GA,B,β if and only if it is a solution to the
system φ(γ)C = v, where

C =
(
ψ(a1)φ(uK)T | · · · | ψ(a`)φ(uK)T

)
and v =

(
φ(b1)φ(uK)T | · · · | φ(b`)φ(uK)T

)
, due to

Lemma 1. Note that since B is a basis, the vectors
φ(b1), . . . , φ(b`) are linearly independent over F2. Due to
the linearity of ψ, if rankF2

{ai1 , . . . ,airA
} = rA then the

corresponding columns {ψ(aij)φ(uK)T)}rAj=1 in the coeffi-
cient matrix C spans the column space of C. Therefore,
rankF2

(C) ≤ rA. For every (η1, . . . , ηrA) 6= (0, . . . , 0),
ηi ∈ F2, since

∑rA
j=1 ηjaij 6= 0, by Lemma 1, ψ(

∑rA
j=1 ηjaij)

is invertible. Furthermore, as uK 6= 0, it follows that(
ψ(ai1)φ(uK)T | · · · | ψ(airA

)φ(uK)T) (η1, . . . , ηrA)T

= ψ
(rA∑

j=1

ηjaij

)
φ(uK)T 6= (0, . . . , 0)T. (6)

Hence, this set of rA columns of C is linearly independent.
Therefore, rankF2(C) = rA, as desired. �

Lemma 5. Let K be an arbitrary (` − 1)-dimensional F2-
subspace of F2` and uK its normal vector, that is uK ⊥ K.
Then for every β 6= 0, the normal vector of the subspace K/β
is τ(β)uK , where τ(β) is the unique element in F∗2` satisfying
ψ(τ(β)) = ψ(β)T.

Proof. For every κ ∈ K we have

φ(κ/β)φ(τ(β)uK)T = φ(κ)ψ(β−1)(φ(uK)ψ(τ(β)))T

=φ(κ)ψ(β−1)ψ(τ(β))Tφ(uK)T =φ(κ)ψ(β−1)ψ(β)φ(uK)T

= φ(κ)ψ(1)φ(uK)T = φ(κ)φ(uK)T = 0.

Thus, τ(β)uK is the normal vector of K/β. �

Lemma 6. Suppose A = {ai}`i=1 ⊂ F2` and B = {bi}`i=1 is
an F2-basis of F2` . Set

UA,B = {u ∈ F∗2` : ∃γ ∈ F2` satisfying (Aγ+B) ⊥ u}. (7)

Then rankF2
(UA,B) ≤ rA.

Proof. Relabeling the elements of A and B if necessary, we
may assume that rankF2({a1, . . . ,arA}) = rankF2(A). Let P
be the (`− rA)× rA binary matrix satisfying

P

 a1

...
arA

 =

arA+1

...
a`

Then, let SA,B be the F2-subspace of F2` spanned by the `−rA
entries of the following column vector

(
P | I`−rA

)a1γ + b1

...
a`γ + b`

 = P

 b1

...
brA

+

brA+1

...
b`

 ,

where I`−rA is the identity matrix of order ` − rA. Clearly,
SA,B does not depend on γ and SA,B ⊆ SA,B,γ

4
=

spanF2
{Aγ + B}, for every γ ∈ F2` . Moreover, as B is a

basis, dimF2
(SA,B) = `−rA. For each u ∈ UA,B , there exists

γ ∈ F2` such that u is orthogonal to Aγ + B, and hence
to all elements in SA,B,γ ⊇ SA,B . Therefore, u ∈ S⊥A,B .
Hence, UA,B ⊆ S⊥A,B . As a consequence, rankF2

(UA,B) ≤
dimF2

(S⊥A,B) = rA. �

As we shall see in the proof of Lemma 8, the set of “good”
β defined as in Lemma 7 determines how many βi ∈ B can
give rise to the saving of 2`−rA bits in I/O (see Lemma 4) in
a repair scheme defined by A and B.

Lemma 7. Given A = {ai}`i=1 ⊂ F2` and B = {bi}`i=1 an
F2-basis of F2` , we define the set of “good” β as

GA,B
4
= {β ∈ F∗2` : |GA,B,β| = 2`−rA}, (8)

where GA,B,β is the set of “good” γ defined as in (5). Then
rankF2(GA,B) ≤ rA.

Proof. By Lemma 4 and Lemma 5, we can rewrite the set
GA,B as follows

GA,B = {β ∈ F∗2` : ∃γ ∈ F2` so that (Aγ +B) ⊆ K/β}
= {β ∈ F∗2` : ∃γ ∈ F2` so that (Aγ +B) ⊥ τ(β)uK},

where K is the kernel of the trace function, uK is K’s
normal vector, and τ(β) is the unique element in F∗2` satisfying
ψ(τ(β)) = ψ(β)T. We now define a map π : F2` → F2` ,
π(β) = τ(β)uK . As τ is linear and one-to-one, so is π.
Moreover, π(GA,B) = UA,B , defined in (7). Therefore,

rankF2
(GA,B) = rankF2

(π(GA,B)) = rankF2
(UA,B) ≤ rA,

where the last inequality is by Lemma 6. �

Lemma 8. For the Reed-Solomon code of length n = 2` and
r = 2 over F2` , the I/O cost (in bits) of an arbitrary linear
repair scheme always satisfies the following inequality.

I/O ≥ (n− 1)`− max
0≤rA≤`

{rA2`−rA}. (9)

Proof. Consider a scheme repairing the first codeword com-
ponent c1 = f(0) defined by A = {ai}`i=1 and B =
{bi}`i=1, where B is an F2-basis of F2` . The corresponding
dual codewords are obtained by evaluating the polynomials
gi(x) = aix + bi, i ∈ [`] at all γ ∈ F2` . By Definition 3,
the I/O cost of this scheme is the sum of the I/O costs of the
sets of trace functionals Fγ = {Traiγ+bi(·)}, γ ∈ F∗2` . By
Lemma 3 (c)(d), the I/O cost of Fγ with respect to a fixed
basis B is | ∪`i=1 supp(waiγ+bi,B)|. Recall that

waiγ+bi,B =
(
Tr((aiγ + bi)β1), . . . ,Tr((aiγ + bi)β`)

)
∈F`

2.

Therefore, the I/O cost of Fγ with respect to B is precisely
the number of nonzero columns in the `× ` matrix Wγ whose
rows are waiγ+bi,B, i ∈ [`],

Wγ
4
=

wa1γ+b1,B

wa2γ+b2,B

...
wa`γ+b`,B

 =

Tr((a1γ + b1)β1)· · ·Tr((a1γ + b1)βi)· · ·Tr((a1γ + b1)β`)
Tr((a2γ + b2)β1)· · ·Tr((a2γ + b2)βi)· · ·Tr((a2γ + b2)β`)

...
. . .

...
. . .

...
Tr((a`γ + b`)β1) · · ·Tr((a`γ + b`)βi) · · ·Tr((a`γ + b`)β`)

 .

Note that if the codeword component cγ = f(γ) is read in full,
` bits will need to be accessed. However, in a repair scheme,
it is possible that less than ` bits of cγ actually need to be
read. Each all-zero column of Wγ indicates a bit in the vector
representation of cγ that does not need to be read, therefore,
leads to a saving of one bit in I/O when cγ is read in the repair
scheme defined by A and B. The more all-zero columns, the
larger the saving, and hence the lower the I/O cost.

Instead of counting the number of all-zero columns in each
Wγ and sum that up for all γ ∈ F∗q` , we first fix an index i and
count the number of all-zero i-th columns of Wγ , γ ∈ F∗2` ,
and then sum that up over all i ∈ [`]. By Lemma 4, for each
βi ∈ B, the number of all-zero i-th columns in Wγ , γ ∈ F∗2` ,
is |GA,B,βi |, which is either zero or 2`−rA . The set GA,B,βi

consists of those “good” γ where the i-th column of Wγ is
all-zero, which corresponds to a saving of one bit in I/O when
cγ is accessed. If |GA,B,βi

| = 2`−rA then βi is called “good”.
The set GA,B as defined in Lemma 7 consists of those “good”
β. Furthermore, as rankF2(GA,B) ≤ rA, the basis B contains
at most rA “good” βi. In addition, if βi is not “good”, then
there does not exists any γ ∈ F2` such that the i-th column of
Wγ is all-zero. Thus, the I/O cost of the repair scheme defined
by A and B satisfies the following inequality

I/O ≥ (n− 1)`− max
0≤rA≤`

{rA2`−rA},

where the term rA2`−rA corresponds to the maximum possible
reduction/saving in I/O if rankF2(A) = rA. The factor rA
accounts for the maximum number of “good” βi ∈ B while
2`−rA accounts for the saving in I/O with respect to each of
such “good” βi. That concludes the proof. �

Theorem 1 follows as a corollary of Lemma 8 by observing
that rA = 1 or rA = 2 maximizes the term rA2`−rA .

IV. REPAIRING FULL-LENGTH REED-SOLOMON CODES
WITH TWO PARITIES USING MINIMAL I/O COSTS

We demonstrate two repair schemes that achieve the lower
bound on the I/O cost established in Section III for full-length
RS codes with two parities over F2` . As suggested by the
development of the lower bound, we first look for a repair
scheme defined by A and B where rankF2

(A) = 1 and there
is one “good” βi ∈ B, that is, βi ∈ GA,B for some i ∈ [`].
This scheme, although achieves the optimal I/O cost, incurs the
worst repair bandwidth, which is the same as the I/O cost. We
subsequently develop the second repair scheme correponding
to the case rankF2

(A) = 2 that not only attains the optimal I/O
cost but also uses a lower repair bandwidth, which is probably
the lowest among all repair schemes with optimal I/O costs.

Construction I. Let A = {ai}`i=1, where a1 = a2 = · · · =
a` = a 6= 0. Choose an arbitrary β ∈ B = {βi}`i=1. Let
{hi}`−1

i=1 be an arbitrary basis of the subspace K/β, where K

is the kernel of the trace function. Choose an arbitrary b1 ∈
F2` \ K/β, and set bi = b1 + hi−1, for 2 ≤ i ≤ `. Set
B = {bi}`i=1. The output of this construction is the repair
scheme of c1 = f(0) defined by A and B. Repair schemes with
the same I/O cost for other cj can be obtained by modifying
this repair scheme (see [22, Lem. 8]).

Lemma 9. For β ∈ B and A and B chosen as in Construc-
tion I, we have β ∈ GA,B , where GA,B is defined as in (8).

Proof. Clearly, B is an F2-basis of F2` . By definition of GA,B ,
we need to show that |GA,B,β| = 2`−1, where GA,B,β is
defined as in (5). As hi = b1 + bi+1, i ∈ [`− 1], the subspace
K/β consists of field elements each of which can be written
as the sum of an even number of bi’s, i ∈ [`]. Therefore,

GA,B,β = {γ ∈ F2` : aγ + bi ∈ K/β, ∀i ∈ [`]}

=

{
γ ∈ F2` : aγ =

∑̀
i=1

ηibi,
∑̀
i=1

ηi = 1

}
.

That is, GA,B,β consists of γ ∈ F2` satisfying aγ can be
written as the sum of an odd number of bi’s. Hence, |GA,B,β| =
2`−1, as desired. Thus, β ∈ GA,B . �

Theorem 2. The repair scheme in Construction I achieves the
I/O cost of (n− 1)(`− 1) + (2`−1 − 1) bits, which is optimal
among all linear schemes repairing c1 = f(0) for the Reed-
Solomon code of length n = 2` with two parities over F2` .
Moreover, its repair bandwidth equals the I/O cost.

Proof. Suppose β = βi∗ , for some i∗ ∈ [`]. As β ∈ GA,B , it
is “good”, which means there are precisely 2`−1 elements γ ∈
F2` satisfying Tr((aiγ+bi)βi∗) = 0, for all i ∈ [`]. Following
the proof of Lemma 8, this means there are precisely 2`−1

elements γ ∈ F2` where the i∗-th column in the corresponding
matrix Wγ is all-zero. This implies a saving of 2`−1 bits in
the I/O cost. Therefore, the I/O cost of the repair scheme in
Construction I is

I/O = (n− 1)`− 2`−1 = (n− 1)(`− 1) + (2`−1 − 1),

which meets the lower bound established in Theorem 1. The
statement on the bandwidth also follows as rankF2

(Aγ + B)
is t− 1 when aγ is the sum of an odd number of bi’s and is
t otherwise, which is the same as the I/O cost. �

Remark 1. For an [n = 2`, k = 2` − 2]F
2`

RS code, the
proposed I/O-optimal repair scheme saves 2`−1 − ` bits in
I/O compared to the naive repair scheme, which incurs an I/O
cost of k` = (2` − 2)` bits. The saving ratio, therefore, is
(2`−1 − `)/((2` − 2)`) ≈ 1/2`, which becomes smaller when
` gets larger. That is understandable, given that we consider a
minimal r = 2, which remains constant while ` and n grow.
For larger r, the saving is expected to be more significant.

Construction II. Let ` ≥ 3. Suppose B = {βi}`i=1 is an
F2-basis of F2 with β1 = 1. Set K1 = K/β1, K2 = K/β2,
and H = K1∩K2. Then dim2(H) = `−2 (see [22, Lem. 5]).
Suppose1 that β2H 6= H . Let {hi}`−2

i=1 be an F2-basis of H .
Step 1 Select a1 ∈ (H/β2) ∩ (K2 \H) arbitrarily.
Step 2 Set a2 = β2a1 and A = {a1,a2,a2, . . . ,a2}.
Step 3 Select b1 ∈ a1 +H arbitrarily.
Step 4 Select b2 ∈ F2` \ (K1 ∪K2) arbitrarily, and set B =

{bi}`i=1, where bi = b2 + hi−2, for 3 ≤ i ≤ `.
The output of this construction is the repair scheme of c1 =
f(0) defined by A and B.

1This condition holds, e.g., when β2 is a primitive element with a zero trace.
Indeed, as β2,β2

2 ∈ K, we have β2 ∈ H . Note that K 6⊃ {βi
2}`i=1. Let

s ∈ {2, . . . , `} be the smallest integer so that βs
2 /∈ H . Then βs

2 ∈ β2H \H .

Lemma 10. The sets (H/β2)∩ (K2 \H) and F2` \ (K1∪K2)
are nonempty (` ≥ 3). Hence, Step 1 and Step 4 in Construc-
tion II are valid. Moreover, rankF2(A) = 2 and rankF2(B) = `.
Proof. As H/β2 ⊂ K1/β2 = K/β2 = K2 and H/β2 6= H by
our assumption, (H/β2)∩(K2\H) 6= ∅. The same conclusion
holds for F2` \(K1∪K2) as this set has size 2`−(2`−2`−2) =
2`−2 ≥ 2. Moreover, rankF2

(A) = 2 since a1 /∈ H while a2 =
β2a1 ∈ H . And finally, rankF2

(B) = ` since {b2 + bi}`i=3 =
{hi}`−2

i=1 spans H while b1 /∈ H as b1 ∈ a1 + H = K2 \H ,
and b2 /∈ (K1 ∪K2) ⊃ K2 = H ∪ (a1 +H). �

Lemma 11. A repair scheme of c1 = f(0) for an [2`, 2`−2]2`

RS code defined by A = {a1,a2, . . . ,a2} of rank two and B
that is a basis of F2 has an I/O cost of (n−1)(`−1)+(2`−1−1)
bits and a repair bandwidth of at most (n−1)(`−1)+(2`−2−1)
bits if the following conditions are satisfied.
(C1) spanF2

({b2 + bi}`i=3) = K1 ∩K2.
(C2) The sets Kj+b1

a1
∩ Kj+b2

a2
, j = 1, 2, are nonempty.

(C3) rankF2(Aγ +B) = ` only for 2`−2 elements γ ∈ F2` .
Proof. First, by the proof of Lemma 8, the scheme defined
by A and B achieves an optimal I/O cost if β1 and β2 are
“good”. To this end, we need to show that |GA,B,βj

| = 2`−2,
j = 1, 2, which means that β1 and β2 each contributes a
reduction of 2`−2 bits in the I/O cost. By Lemma 4, it suffices
to prove that GA,B,βj 6= ∅, j = 1, 2. By its definition, GA,B,βj

consists of γ ∈ F2` satisfying Aγ + B ⊂ Kj . By (C2), for
each j = 1, 2, we can select γj ∈ Kj+b1

a1
∩ Kj+b2

a2
. Then

a1γj + b1 ∈ Kj and a2γj + b2 ∈ Kj . Due to (C1), we have
(a2γj + b2) + (a2γj + bi) = b2 + bi ∈ K1 ∩ K2, for all
3 ≤ i ≤ `. Thus, Aγj +B ⊂ Kj , for j = 1, 2, as desired.

If (C3) holds then all but 2`−2 − 1 column-spaces Sj→j∗

of the repair scheme have dimension at most `− 1 (excluding
the column of γ = 0). Therefore, the scheme uses a repair
bandwidth of at most (n− 1)(`− 1) + (2`−2 − 1) bits. �

Theorem 3. The repair scheme in Construction II achieves the
same I/O cost as that in Construction I while incurs a lower
repair bandwidth of (n− 1)(`− 1) + (2`−2 − 1) bits (` ≥ 3).
Proof. In light of Lemma 11, we aim to show that A and B
produced by Construction II satisfy (C1), (C2), and (C3).

First, (C1) follows immediately from the way bi, 3 ≤ i ≤ `,
are defined in Step 4 of Construction II.

Second, for (C2) to hold, the idea is to show that there exists
an element in F2` that belongs to neither Kj+b1

a1
nor Kj+b2

a2
.

As the sizes of these two sets sum up to 2`, they must intersect.
Since K2 = H ∪ (a1 +H), we have (a1 +H)∩K1 = ∅. As
b1 ∈ a1 +H , we deduce that b1 /∈ K1. Moreover, b2 /∈ K1 by
its definition. Therefore, 0 /∈ K1+b1

a1
∪ K1+b2

a2
, as desired. Next,

we show that K2+b1
a1
∩ K2+b2

a2
6= ∅. Since b1 ∈ a1 +H ⊂ K2,

we have K2 + b1 = K2. Using the fact that a2 = β2a1 and
K2 = K/β2, it suffices to prove that a1 belongs to neither K
nor K2 +b2. Since a1 ∈ K2 \H and (K2 \H)∩K1 = ∅, we
have a1 /∈ K1 = K (here we use the assumption that β1 = 1,
which implies K1 = K). Furthermore, since a1 ∈ K2 by its
definition, we have a1+K2 = K2 63 b2. Hence, a1 /∈ K2+b2,
as desired. Thus, (C2) holds.

Finally, we demonstrate that (C3) also holds. According to
Step 4 in Construction II, the set {(a2γ+b2)+(a2γ+bi)}`i=3

spans H . Therefore, rankF2
(Aγ+B) = ` if and only if a1γ+

b1 /∈ H , a2γ + b2 /∈ H , and (a1γ + b1) + (a2γ + b2) /∈ H .
Equivalently, rankF2

(Aγ + B) = ` if and only if γ ∈ F2` \(
H+b1
a1
∪ H+b2

a2
∪ H+b1+b2

a1+a2

)
. Note that each of the three sets in

the union has size 2`−2. As long as they are pairwise disjoint,
our conclusion on the number of such γ is justified. First,

we show that H+b1
a1
∩ H+b2

a2
= ∅. Suppose by contradiction

that there exist h′,h′′ ∈ H such that h
′+b1
a1

= h′′+b2
a2

. Since
b1 ∈ a1 +H , we can write b1 = a1 + h∗, for some h∗ ∈ H .
Set h = h′ + h∗ ∈ H , we have (h/a1 + 1)a2 = h′′ + b2.
Since a2/a1 = β2 and a2 ∈ H , we deduce that b2 = (h′′ +
a2) +β2h ∈ H+β2H ⊆ K1, which is impossible since b2 /∈
K1 according to Step 4 in Construction II (the last inclusion
follows from the fact that β2H = β2K1 ∩β2K2 ⊂ K = K1).
We can show that H+b1

a1
∩ H+b1+b2

a1+a2
= H+b2

a2
∩ H+b1+b2

a1+a2
= ∅

using similar arguments. This concludes the proof. �
ACKNOWLEDGMENT

This work is supported by the 210124 ARC DECRA grant
DE180100768 and the Monash 250003 Faculty Initiative Fund.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[2] A. Fikes, “Colossus, Successor to Google File System,” http://static.
googleusercontent.com/media/research.google.com/en/us/university/
relations/facultysummit2010/storage architecture and challenges.pdf.

[3] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The
Quantcast File System,” in Proc. VLDB Endow., vol. 6, no. 11, 2013,
pp. 1092–1101.

[4] S. Muralidhar et al., “f4: Facebook’s warm BLOB storage system,” in
Proc. 11th ACM/USENIX Symp. Oper. Syst. Des. Implementation (OSDI),
2014, pp. 383–398.

[5] P. Narayanan, S. Samal, and S. Nanniyur, “Yahoo cloud object store
- object storage at exabyte scale,” https://yahooeng.tumblr.com/post/
116391291701/yahoo-cloud-object-store-object-storage-at.

[6] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
“Atlas: Baidu’s key-value storage system for cloud data,” in Proc. 31st
Symp. Mass Stor. Syst. Tech.(MSST), 2015, pp. 1–14.

[7] B. Beach, “Backblaze Vaults: Zettabyte-scale cloud storage architecture,”
https://www.backblaze.com/blog/vault-cloud-storage-architecture/.

[8] R. Li, Z. Zhang, K. Zheng, and A. Wang, “Progress report: Bringing
erasure coding to Apache Hadoop,” http://blog.cloudera.com/blog/2016/
02/progress-report-bringing-erasure-coding-to-apache-hadoop/.

[9] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire, “A
repair framework for scalar MDS codes,” IEEE J. Selected Areas Comm.
(JSAC), vol. 32, no. 5, pp. 998–1007, 2014.

[10] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in
Proc. Annu. Symp. Theory Comput. (STOC), 2016.

[11] ——, “Repairing Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 63, no. 9, pp. 5684–5698, 2017.

[12] M. Ye and A. Barg, “Explicit constructions of MDS array codes and RS
codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2016, pp. 1202–1206.

[13] H. Dau and O. Milenkovic, “Optimal repair schemes for some families of
Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),
2017, pp. 346–350.

[14] I. Duursma and H. Dau, “Low bandwidth repair of the RS(10,4) Reed-
Solomon code,” in Proc. Inform. Theory Applicat. Workshop (ITA), 2017.

[15] A. Chowdhury and A. Vardy, “Improved schemes for asymptotically
optimal repair of MDS codes,” in Proc. 55th Annual Allerton Conf.
Comm Control Comput. (Allerton), 2017.

[16] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon
codes: Achieving the cut-set bound,” in Proc. 58th Annual IEEE Symp.
Foundations Computer Sci. (FOCS), 2017.

[17] W. Li, Z. Wang, and H. Jafarkhani, “A tradeoff between the sub-
packetization size and the repair bandwidth for Reed-Solomon code,”
in Proc. 55th Annual Allerton Conf. Comm Control Comput. (Allerton),
2017, pp. 942–949.

[18] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with multiple erasures,” IEEE Trans. Inform. Theory,
2018, accepted.

[19] ——, “Repairing Reed-Solomon codes with two erasures,” in Proc. IEEE
Int. Symp. Inform. Theory (ISIT), 2017, pp. 351–355.

[20] B. Bartan and M. Wootters, “Repairing multiple failures for scalar MDS
codes,” in Proc. 55th Annual Allerton Conf. Comm Control Comput.
(Allerton), 2017.

[21] M. Ye and A. Barg, “Repairing Reed-Solomon codes: Universally
achieving the cut-set bound for any number of erasures,” available at
https://arxiv.org/abs/1710.07216.

[22] H. Dau, I. Duursma, and H. Chu, “On the I/O costs of some repair
schemes for full-length Reed-Solomon codes,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2018, pp. 1700–1704.

[23] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1977.

[24] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge University Press, 1986.

