1999 IEEE ITW, Kruger National Park, South Africa, June 20 - 25

On Z4- and Zg-linear Lifts of the Golay Codes

M. Greferath
Shannon Labs, AT&T
Florham Park
NJ 07632, USA
greferath@research.att.com

In this paper we investigate Z4-linear and Zg-linear lifts® of
the extended binary and ternary Golay codes. Following the
line of a recent work [4] we introduce weight functions on Z4
and Zo which reflect previously unknown error-correcting and
packing capabilities of these codes. We coinpare their proper-
ties with those of the Hamming, Lee and homogeneous weight
(as presented in [5]) and give algebraic decoding schemes using
the general decoder presented in [3] and the algebraic decoder
in {1]. In the following we will illustrate the 9-ary case. Similar
results were obtained for the quaternary case.

In our discussion of different weight functions on the al-
phabet Zg we will compute the volumes of the balls of radius
dmin/2 — 1 where dmin is the minimum distance, in order to
obtain a measure for the quality of the induced packing.

The ternary Golay code is a cyclic [11, 6, 5]-code generated
by the polynomial z° + z* — 2® + 2® — 1 € Z3[z]. Hensel-
lifting this polynomial to Zo[z] results in the polynomial z° —
2z* — % + 3% — 3z — 1, which generates a free [11, 6] code over
Zg. Extending the latter code by a parity check produces a
Zg-linear free [12, 6]-code Es.

Using a computer program we compute the symmetrized
enumerator SEg, (z, y, 2) where the z,y and z denote the vari-
ables for the unital multiples of 1,3 and 0, respectively.

From this we obtain the Hamming weight enumerator by
the substitution z — 1 and z,y — ¢. Since its minimum
weight is given by 6 this code corrects all Hamming errors
of weight < 2 which yields a sphere packing with Hamming
balls of volume 4321. It can furthermore be seen, that the
minimum Lee weight of Eg equals 9 producing a packing with
Lee balls of volume 16641.

For the homogeneous weight [5] on Zg, which assigns the
units the weight 2 and the nonzero non-units the weight 3,
we compute the weight enumerator of Eg by substituting = +—
t?,y — t*, and z — 1. Like in the case of the Hamming weight
it turns out that Fy possesses only 8 different homogeneous
weights and it can be seen that this is not true in general
for other choices of the weight function. The homogeneous
weight produces a packing which is denser than the Hamming
or Lee packings discussed before. Since Eg has a minimum
homogeneous weight of 15 we easily see that the volume of
the balls in this packing is given by 99361.

We found a weight function on Zg, which produces an even
denser packing and hence reflects additional error correcting
capabilities of the code at hand. Let us consider the weight
function wg : Zg — N such that ws(0) = 0, ws(u) = 5 if
u € Z§ and we(z) = 6 otherwise.

The weight enumerator of Eg with respect to this function

I This work was performed during his visit at Shannon Labs.

2By lifting an extended cyclic code we mean by abuse of notation
the canonical way of Hensel-lifting its generator polynomial to the
ring in question and then introducing the standard extension of the
resulting cyclic code by a check position.
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is computed by substituting = — ¢°,y — t° and z — 1, which
yields the 12-term enumerator

Wue(t) = 24¢™ +16632¢% + 95040¢°° + 69768 t°° +
+ 142560 t°7 + 59840 t°* + 71280 ¢°! + 47520 ¢*8
+ 11880 ¢ + 11880 £*2 + 5016 ¢>° + 1.

Due to the minimum weight of 36 we find that Eg is able
to correct all error patterns of weight up to 17, which yields
a packing by balls of volume 115201. The set of all errors
correctable by Eg is simply described by the set of all errors
up to Hamming-weight 3 except the errors of type £3°.

A complete algebraic decoder for the cyclic Golay codes
has been developed in {1]. This algorithm can be upgraded
to decode the extended ternary code E3 by simply append-
ing the parity check symbol to the codeword decoded by the
decoding algorithm for Cs. The resulting decoder D3 then re-
liably corrects all errors of Hamming weight 2. Furthermore
all triple errors affecting the check position are reliably cor-
rected, whereas if such errors occur in the cyclic part then
they will cause a decoding error.

The permutation group of Fs, provides a set P; of permu-
tations such that for every error e of Hamming weight at most
3 there exists m € P3 such that w(e) can reliably be corrected
by Ds. This is due to the fact that = moves one of the nonzero
positions of e into the extension position of Ej.

We first obtain the permutation (5, 7)(6, 11)(8, 9)(10, 12) of
E3 using Magma V2.3-1. Multiplying these permutations with
the cyclic shifts (in the respective cyclic component) we obtain
the necessary permutations.

In order to implement the full error-correcting capabilities
of Ey we combine the general decoding technique given in (3]
with an application of the above permutations to the 3-adic
components of the received word. This is possible because the
codes in question are free, and hence splitting in the sense of
[2]. This yields a set of P3| votes for the transmitted word
which contains the word actually sent. This word can easily
be identified as the unique one closest (with respect to we) to
the received word.
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