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On the Algebraic Structure of the Silver Code:
a 2× 2 Perfect Space-Time Block Code

C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti, E. Viterbo

Abstract— Recently, a family of full-rate, full-diversity space-
time block codes (STBCs) for 2 × 2 multiple-input multiple-
output (MIMO) channels was proposed in [1], [2], [3], [4] using a
combination of Clifford algebra and Alamouti structures, namely
twisted space-time transmit diversity code. This family was recently
rediscovered by Paredes et al., and they pointed out that such
STBCs enable reduced-complexity maximum-likelihood (ML)
decoding. Independently, the same STBCs were found in [8],
and named multi-strata space-time codes.

In this paper we show how this code can be constructed
algebraically from a particular cyclic division algebra (CDA).
This formulation enables to prove that the code has the non-
vanishing determinant (NVD) property and hence achieves the
diversity-multiplexing tradeoff (DMT) optimality. The fact that
the normalized minimum determinant is 1/

√
7 places this code

in the second position with respect to the Golden code, which
exhibits a minimum determinant of 1/

√
5, and motivates the

name Silver code.

I. INTRODUCTION

A family of full-rate, full-diversity STBCs for 2×2 MIMO
was recently proposed in [1], [2], [3], [4] using a combination
of Clifford algebra and Alamouti structures [5], namely twisted
space-time transmit diversity code. This family was recently
rediscovered in [6], where it was also pointed out that such
STBCs enable reduced-complexity ML decoding (see also [7]
for details). Independently, the same STBCs were found in [8],
and named multi-strata space-time codes.

In this paper we show how this code can be constructed
algebraically from a particular cyclic division algebra. This
formulation enables to prove that the code has the non-
vanishing determinant (NVD) property [9] and hence achieves
the diversity-multiplexing tradeoff (DMT) optimality [10]. The
fact that the normalized minimum determinant [11] is 1/

√
7

places this code in the second position with respect to the
Golden code [9], which exhibits a minimum determinant of
1/
√

5, and motivates the name Silver code.
By exploiting the algebraic structure of the Silver code

we are not, however, able to derive the exact minimum
determinant. Instead, we show that the minimum determinant
is at least 1/7, and verify by computer (up to 64–QAM) that
the actual normalized minimum determinant is indeed 1/

√
7.

As in [6] a numerical proof for the minimum determinant (in
the QAM case) based on the lattice structure of the Silver
code is given, we know that this is indeed the case. The
contribution of our paper is to prove that the Silver code
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has the NVD property, without the need of any technical and
lengthy calculations as in [6]. In fact, it is enough to notice
that we have a cyclic algebra with a suitable non-norm element
[12].

The Silver code was originally designed to have the cubic
shaping property of perfect space-time codes [13], but not the
non-vanishing determinant property, which was only conjec-
tured after it was verified up to 64–QAM.

II. SYSTEM MODEL AND NOTATION

We are interested in the coherent n× n MIMO-case where
the receiver perfectly knows the channel coefficients. The n×n
received signal matrix is

Y = HX + N,

where H is the Rayleigh fading channel response matrix, the
elements of the noise matrix N are i.i.d. complex Gaussian
random variables and X is the n × n transmitted codeword
taken from the MIMO-lattice Λ ⊂ Mn(C), the set of n × n
matrices over the complex field C.

A lattice, i.e., a discrete free abelian group, is determined by
its basis X1, X2, . . . , Xk consisting of n×n matrices that are
linearly independent over the field of real numbers. The rank
k is thus bounded from above by 2n2. A lattice is said to have
full rank, if k = 2n2. We are interested in full-rank lattices
since they yield full-rate space-time codes with the maximum
multiplexing gain.

The Gram matrix of Λ is defined by

G =
(
<[Tr(XiX

†
j )]

)
1≤i,j≤k

where < denotes the real part, Tr denotes the trace of the
matrix and † denotes Hermitian transposition. The determinant
of Λ is defined as det(Λ) = det(G). The measure, or
hypervolume, m(Λ) of the fundamental parallelotope of the
lattice is related to the lattice determinant by det(Λ) = m(Λ)2.

Given that any n × n codeword X from a space-time
codebook C ⊆ Λ corresponds to a lattice point of Λ, we define
the minimum determinant of the code as

min
X 6=X′∈C

det(X −X ′).

For the infinite code C = Λ this can be rewritten as

min
X∈C\{0}

det(X),

since the difference of any two lattice points is again a lattice
point.
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As the minimum determinant determines the asymptotic
pairwise error probability (PEP), this gives rise to natural
numerical measures for the quality of a code.

If all the codebooks of any size contained in Λ have a
minimum determinant bounded from below by a non-zero
constant, we say that Λ has the non-vanishing determinant
property and we define

∆(Λ) = min
X∈Λ\{0}

det(X)

If we consider a scaled lattice rΛ for some real constant
r > 0, we have

m(rΛ) = rkm(Λ)

and
∆(rΛ) = rn∆(Λ).

We can choose r to normalize either ∆(Λ) = 1 or m(Λ) = 1.
In order to define a signal-to-noise ratio we can also choose r
so that the entries of the codeword matrices have unit average
energy, i.e., E(xij) = 1.

Following [11], we first scale Λ to have a unit size fun-
damental parallelotope, and denote by δ(Λ) the normalized
minimum determinant of the lattice Λ. We omit Λ from the
paranthesis, whenever the lattice is clear from the context. To
make fair comparisons between the minimum determinants of
various codes, one should always use the normalized minimum
determinant.

For example, the Golden code has δ = 1/
√

5, when
considering unit hypervolume and δ = 4/

√
5, when assuming

±1,±3, . . . as integer components for the QAM symbols.

III. THE SILVER CODE AS A CYCLIC DIVISION ALGEBRA

The Silver code S is defined in [1], [2], [3], [4] as

S = {X = XA + TXB | x1, x2, x3, x4 ∈ Z[i]},

where

XA = XA(x1, x2) =
(

x1 −x∗2
x2 x∗1

)
,

XB = XB(z1, z2) =
(

z1 −z∗2
z2 z∗1

)
,

the twisting matrix

T =
(

1 0
0 −1

)
,

and (
z1

z2

)
= U

(
x3

x4

)
with a unitary matrix

U =
1√
7

(
1 + i −1 + 2i

1 + 2i 1− i

)
.

We can also think of the code S as a (full) rank 8 lattice
⊆M2(C).

Let us first introduce the basic definitions that are used
throughout the paper. In the following, we consider number
field extensions E/F , where F denotes the base field and F ∗

(resp. E∗) denotes the set of the non-zero elements of F (resp.

E). Usually, F is an imaginary quadratic field, either Q(i) or
Q(
√
−3) in order to match the QAM and HEX modulation

schemes [13]. We assume that E/F is a cyclic field extension
of degree n with Galois group Gal(E/F ) = 〈σ〉. Let A =
(E/F, σ, γ) be the corresponding cyclic algebra of degree n
(n is also called the index of A), that is

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

as a (right) vector space over E. Here u ∈ A is an auxiliary
generating element subject to the relations xu = uσ(x) for all
x ∈ E and un = γ ∈ F ∗. An element

a = x0 + ux1 + · · ·+ un−1xn−1 ∈ A

has the following representation as a matrix

A =


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .

We refer to this as the standard matrix representation of A
and identify an element of a cyclic division algebra (CDA)
with its standard matrix representation.

Definition 3.1: The determinant of the matrix A above is
called the reduced norm of the element a ∈ A and is denoted
by nr(a).

The next proposition due to A. A. Albert [14, Theorem
11.12, p. 184] tells us when a cyclic algebra is a division
algebra.

Proposition 3.1 (Norm condition): The cyclic algebra A =
(E/F, σ, γ) of degree n is a division algebra if and only if
the smallest factor t ∈ Z+ of n such that γt is the norm of
some element of E∗ is n.

Lemma 3.2: The Silver code S is contained as a subset in
the cyclic division algebra A defined as

A = (E/F, σ, γ),

where the center is F = Q(
√
−7), E = F (i), γ = −1, and

σ :
{

i 7→ −i√
7 7→ −

√
7.

Proof. As σ(i) = −i = i∗, the matrix

XA =
(

x1 γσ(x2)
x2 σ(x1)

)
∈ A.

Let us calculate the basis matrices coming from the part TXB

of the code matrix, i.e. we compute TXB(z1, z2), where
(x3, x4) ranges over the set {(1, 0), (0, 1), (i, 0), (0, i)}. We
end up with the following four basis matrices:

1√
−7

(
−1 + i −2− i

2− i −1− i

)
,

1√
−7

(
−2− i 1− i
−1− i −2 + i

)
,

1√
−7

(
−1− i −1 + 2i
1 + 2i −1 + i

)
,
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1√
−7

(
1− 2i −1− i
1− i 1 + 2i

)
.

Here we have written
1√
7

=
1

−i
√
−7

=
i√
−7

and multiplied i into the matrices. We see that all these basis
matrices are of the form

1√
−7

(
a γσ(b)
b σ(a)

)
,

where a, b ∈ Z[i]. Thus, both summands in X ∈ S are
elements of A and X ∈ A.

Now it remains to prove that A is a division algebra, i.e.
(according to A. A. Albert) there does not exist an element
x ∈ E for which NE/F (x) = −1.

We shall work in the extension fields of the 2-adic field
Q2. By Hensel’s lifting any integer m congruent to 1 modulo
8 has a square root in Q2. In particular

√
−7 ∈ Q2. Thus

we can view the field F as a subfield of Q2. For the sake of
being definite we may choose

√
−7 ≡ 1 (mod 4). Similarly,

the field E can be viewed as a subfield of Q2(i). Furthermore,
the norm map NE/F : E → F is then a restriction of the norm
map N : Q2(i) → Q2, which, obviously, can be defined via
the formula N(a + bi) = a2 + b2 for all a, b ∈ Q2.

Thus, in order to prove our claim, it is sufficient to show that
−1 is not in the image of the map N . Assume, on the contrary,
that there are 2-adic numbers a and b such that a2 + b2 =
−1. We shall first show that then both a and b must be 2-
adic integers. So we assume that at least one of them has a
negative exponential 2-adic valuation. The non-archimedean
triangle inequality then implies that v2(a) = v2(b). In other
words, there must exist an integer t < 0 such that a = 2ta′,
b = 2tb′ with a′, b′ 2-adic units. But then a′2 ≡ b′2 ≡ 1
(mod 4), so v2(a2 +b2) = 2t+1 is an odd integer, and hence
a2 + b2 cannot be a 2-adic unit unless both a and b are 2-
adic integers. In this case our claim now easily follows from
a modulo 8 consideration: the square of an integer is always
congruent to either 0, 1 or 4 modulo 8. Thus the sum of two
such squares cannot be congruent to 7 modulo 8. In particular,
it cannot be equal to −1.

In what follows, we denote the natural order of A by

Λ = OE ⊕ uOE ,

where the ring of integers of E is

OE = Z[i]⊕ 1 +
√
−7

2
Z[i].

For the purposes of constructing MIMO lattices the reason
for concentrating on orders is summarized in the following
proposition (e.g. [15, Theorem 10.1, p. 125]). We simply
rephrase it here in the language of MIMO-lattices.

Proposition 3.3: Let Λ be an order in a cyclic division
algebra (E/F, σ, γ). Then for any non-zero element a ∈ Λ
its reduced norm nr(a) is a non-zero element of the ring of
integers OF of the center F . In particular, if F is an imaginary
quadratic number field, then the minimum determinant of the
lattice Λ is equal to one.

Theorem 3.4: The Silver code S has a nonvanishing deter-
minant and mindet(S) ≥ 1/7.

Proof. When looking at the codeword matrices

X = XA + TXB ∈ Λ⊕ 1√
−7

Λ,

it is obvious that
√
−7S ⊆ Λ and thus S ⊆ 1√

−7
Λ. Now

mindet(S) ≥
∣∣∣∣mindet

(
1√
−7

Λ
)∣∣∣∣ =

1
7

min det(Λ) =
1
7
.

The actual minimum determinant is better than 1/7, it is
equal to 2/

√
7 (based on numerical calculations up to 64-

QAM) which corresponds to a normalized minimum determi-
nant 1/

√
7.

Remark 3.1: In the draft [16] the non-vanishing determi-
nant property is proved numerically in the special cases of
PAM and QAM constellations by exploiting just the lattice
structure. They derive the normalized minimum determinant
4/
√

7 (vs 4/
√

5 for the Golden code) for QAM signal con-
stellations.

Our proof extends the NVD property to any signal con-
stellation X ⊆ Z8 of an arbitrary size though we do not, at
least not yet, get the exact minimum determinant from our
algebraic proof. The code generates an ideal in the lattice,
and determining this ideal might by the key for solving the
problem. At this point, we know that the code is not a principal
ideal of the natural (nor any maximal) order.

Here we have shown (at least up to 64-QAM) that
mindet(S) = 2/

√
7, corresponding to a normalized minimum

determinant δ(S) = 1/
√

7, which is only slightly worse than
δ(G) = 1/

√
5 for the Golden code G and well worth the loss

due to much simpler decoding it enables.

Remark 3.2: The Silver code is actually a Perfect code [13],
as its Gram matrix is orthogonal and the non-norm element is
a unit.

IV. CONCLUSIONS

We have presented the interesting algebraic structure of the
Silver code, a 2 × 2 perfect space-time code with a non-
vanishing minimum determinant ≥ 1/7. By computer we have
verified that the actual normalized minimum determinant is
equal to 1/

√
7.

This code is very attractive for applications since its error
rate performance is only slightly (0.3dB) worse than the
one of the Golden code but offers the advantage of reduced
complexity decoding.
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