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Abstract—Inspired by the artificial noise technique by Goel
et al., we propose an unshared secret key (USK) cryptosystem,
where the artificial noise is redesigned as a one-time pad
secret key aligned within the null space between transmitter
and legitimate receiver. Unlike previously studied artificial noise
techniques, rather than ensuring non-zero secrecy capacity, the
USK cryptosystem guarantees Shannon’s perfect secrecy without
the need of secret key exchange.

I. INTRODUCTION

Wireless communications provide flexibility and mobility
for users, but equally the ease of access features undermines
user privacy. Research on secure communication falls into
two categories: network layer cryptography and physical layer
security (PLS). The former assumes that the physical layer
provides error-free data links, in which security depends on
a shared secret key. In the latter, the strategy is to use
wiretap codes to protect the secret data from eavesdropping,
while security comes from specific channel limitations for the
eavesdropper. Both categories are rooted in Shannon’s perfect
secrecy [1], defined as the mutual information I(u; y) = 0;
that is, the secret message u and the eavesdropper’s received
message y are mutually independent. Perfect secrecy requires
one-time pad secret key [1].

The PLS scheme, known as artificial noise (AN) [2], is the
basis for our unshared secret key (USK) cryptosystem. In the
AN scheme, the transmitter (Alice) aligns a jamming signal,
called artificial noise, within the null space between itself
and the legitimate receiver (Bob), thus AN only degrades the
eavesdropper’s (Eve’s) channel. The strategy is to use Gaussian
distributed AN to guarantee non-zero secrecy capacity [3].
Given such secrecy capacity, infinite-length wiretap codes can
be used to achieve strong secrecy [4]. More recently, we pro-
posed a variant of AN using a finite M-QAM alphabet, called
practical secrecy (PS) scheme, where instead of increasing the
secrecy rate with AN, the eavesdropper’s error probability is
maximized [5].

In this work, we show that the PS scheme is de facto an
USK, where AN serves as an unshared one-time pad secret
key. The result is a development of our understanding of
the benefits of AN, embracing both coding and cryptographic
dimensions. We show that the USK provides Shannon’s perfect
secrecy, with no secret key exchange, under Goel et al.’s
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assumptions on the physical channels that enable the use of
the AN scheme.

Our work differs from previous studies of AN [2], because
it puts forward four new aspects that were not previously
accounted for:

1) Perfect secrecy: we aim to achieving Shannon’s perfect
secrecy directly, rather than ensuring non-zero secrecy
capacity.

2) Finite alphabet: we use a finite alphabet (M-QAM) rather
than infinite-length wiretap codes.

3) Artificial noise: we have no requirement of the distribu-
tion of AN; that is, not necessarily Gaussian.

4) Lattice precoding: we introduce lattice precoding to
MIMO wiretap channels, which avoids the diversity loss
caused by conventional singular value decomposition
(SVD) precoding of [2].

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the Hermitian transpose,
inverse, pseudoinverse of a matrix B by BH , B−1, and B†,
respectively. Let {Xn, X} be defined on the same probability
space. We write Xn

a.s.→ X if Xn converges to X almost
surely or with probability one. In denotes the identity matrix
of size n. We write , for equality in definition. A circularly
symmetric complex Gaussian random variable x with variance
σ2 is denoted as x v NC(0, σ2). The real, complex, integer and
complex integer numbers are denoted by R, C, Z and Z [i],
respectively. H(X), H(X|Y ) and I(X;Y ) represent entropy,
conditional entropy and mutual information, respectively. We
use the standard asymptotic notation f (x) = O (g (x)) when
lim sup

x→∞
|f(x)/g(x)| < ∞. vol(S) denotes the Euclidean vol-

ume of S.

II. SYSTEM MODEL

We consider a MIMO wiretap system, including a transmit-
ter (Alice), an intended receiver (Bob), and a passive eaves-
dropper (Eve), with NA, NB, and NE antennas, respectively.
The signals received by Bob and Eve are given, respectively,
by

z = Hx+ nB, (1)

y = Gx+ nE, (2)

where the entries of nB and nE are i.i.d. complex random
variables ∼ NC(0, σ2B) and NC(0, σ2E), respectively. We assume
that the matrices H and G, representing the channels from
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Alice to Bob and Alice to Eve, respectively, are mutually
independent, i.e., Bob and Eve are not co-located. The entries
of H and G are i.i.d. complex random variables ∼ NC(0, 1).

A. Artificial Noise Scheme

We first introduce the AN scheme [2]. Assuming NB < NA,
H has a non-trivial null space Z = null(H). Alice transmits

x = Pu+ Zv (3)

where u is the secret data vector and P is the precoding matrix.
The AN v is generated by Alice and is unknown to Eve. In
order to estimate the secrecy rate, both u and v are assumed
to be Gaussian circularly symmetric random vectors.

The AN scheme is based on the channel assumptions below:
1) Alice only knows the realization of H.
2) Eve knows the realizations of H, G, Z and P.
3) NA > NB, NA > NE and NE ≥ NB.
Equations (1) and (2) can then be rewritten as

z = HPu+ nB, (4)
y = GPu+GZv + nE. (5)

Thus, v only degrades Eve’s reception, but not Bob’s.
In (3), the transmitted signal x depends on the precoding

matrix P. The AN scheme uses SVD precoding, given by

xSVD= V1u+ ZvSVD, (6)

where P = V1 and the columns of V = [V1, Z] are the right-
singular vectors of H, i.e., H = UΛVH .

For the AN scheme, given a positive secrecy rate, infinite-
length wiretap codes can be used to achieve strong secrecy
[4], i.e.,

lim
n→∞ I(u;y) =0, (7)

where n represents the codeword length.

B. Practical Secrecy Scheme

Based on the AN scheme, we proposed the PS scheme,
where the security measure in AN, secrecy capacity, is re-
placed by Eve’s error probability [5]. Although the transmis-
sion model is the same as that given in (4) and (5), u and v

are not required to be Gaussian distributed. The settings of the
PS scheme are given below.

1) Uniform M−QAM signalling, i.e., <(u) and =(u) ∈ CNB ,
where C ={−

√
M + 1, −

√
M + 3, ...,

√
M − 1}, is used.

2) There is no requirement on the distribution of v.
The PS scheme can use either SVD precoding or lattice

precoding [6], in which

xLP= H†(u−Aŵ) + ZvLP, (8)

where A = 2
√
M , P = H† and

ŵ = arg min
w∈Z[i]NB

‖H†(u−Aw)‖2. (9)

Compared with the AN scheme, where the achievability of
security is based on an infinite length code, the PS scheme
is designed for practical communication systems, which make

use of a finite alphabet. However, a security scheme based on
error probability may be not safe in the sense of information-
theoretic security.

In this work, we analyze and enhance the security of the
PS scheme under the same channel assumptions as AN. To
simplify our analysis, we unify the notation of u by defining

ũ ,
{
u−Aŵ lattice precoding
u SVD precoding

(10)

We define the noise-plus-interference term at Eve as

ñv , GZv + nE. (11)

III. UNSHARED SECRET KEY CRYPTOSYSTEM

In this section, we first interpret the PS scheme from a
cryptographic perspective, and then prove its security in terms
of perfect secrecy.

A. Encryption

The AN v used in the PS scheme can be treated as a one-
time pad secret key. Alice randomly (without any predefined
distribution) chooses v from the set S defined by

S ,
{
v ∈ RNA−NB : ||v||2 ≤ P

}
, (12)

where P represents the transmission power constraint on v.
The message ũ is received by Eve as a lattice point in:

ΛC = {GPũ, ũ ∈ Z [i]NB} (see Fig. 1). The set S can be further
partitioned into D subsets S1, ..., SD, i.e.,

S =

D⋃

k=1

Sk, (13)

where

Sk ,
{
v: GPũ ∈ ΛC is the kth closest lattice point to y

}
.

Later, we will show that the value of D can be uniquely
characterized by P .

Assuming v ∈ Sk, 1 ≤ k ≤ D, the PS scheme thus can be
viewed as a cryptosystem that encrypts ũ to y using a secret
key v, such that GPũ is the kth closest lattice point to y (see
Fig. 1).

From Eve’s perspective, we assume that she knows P and
the above encryption process. Since Eve cannot know the
secret key v, she cannot know the distribution of k either.
It means that Eve only knows that GPũ is hidden inside the
D closest lattice points to y, but cannot locate it. Moreover,
Eve cannot distinguish which lattice point has the highest
probability of being GPũ, thus the probability that Eve obtains
GPũ is uniform over all D lattice points. By taking the
codebook size of u into account, for a given GP, we have

Pr {GPũ|y} = Pr {u|y} =
1

min
{
D, MNB

} , (14)

or equivalently

H(u|y) = logmin
{
D, MNB

}
. (15)

International Zurich Seminar on Communications (IZS), February 26 – 28, 2014

48



 GPu
 ~

 n
v

 ~

 y

k
th

 closest lattice point

Closest lattice point

Fig. 1. Achieving perfect secrecy.

Different from Shannon’s one-time pad cryptosystem, the
one-time pad secret key v is not shared between Alice and
Bob. In particular, it is independently generated by Alice, but
not needed by Bob to decipher, while it is fully affecting Eve’s
ability to decipher the original message. We name this kind
cryptosystem as Unshared Secret Key (USK) cryptosystem.

B. Decryption

From (4), Bob can simply run maximum likelihood de-
coding to estimate u. We then show how to increase Eve’s
uncertainty of u, i.e., H(u|y).

Based on (15), increasing H(u|y) is equivalent to increasing
D. The value of D depends on the channel matrices G and
H. In this work, we assume G and H are not fixed, but are
Gaussian random matrices. In this sense, for a given v and a
positive integer c, Pr {D > c|G,H} is also a random variable
depending on G and H, and ñv is a Gaussian random vector
with i.i.d. entries NC(0, σ̃2v) where

σ̃2v = ||v||2 + σ2E. (16)

We recall that the realizations of G of G and H of H are
known at Eve. Note that if we can ensure Pr {D > c|G,H} a.s.→
1, then D > c for almost any realizations G and H (see [7,
Def. 1.3]).

In fact, the idea behind the original PS scheme was to ensure
Pr {D > 1|G,H} a.s.→ 1, which is a special case of the USK
with c = 1.

C. Achieving Perfect Secrecy

We now show how large P should be to guarantee perfect
secrecy, i.e.,

I(u;y) = 0. (17)

From [1, Th.6], the necessary and sufficient condition to
achieve perfect secrecy is

Pr {u} = Pr {u|y} . (18)

Since Pr {u} = 1/MNB , based on (14), a sufficient condition
to achieve perfect secrecy is D ≥MNB .

In what follows, we evaluate the value of D by choosing
||v||2 = P , i.e., on the surface of S in (12).

Lemma 1: Let vol(ΛC) be the volume of the Voronoi cell
of ΛC.

Pr
{
D ≤MNB |G,H

}
≤ MNB vol(ΛC)

πNEPNE
, ∆. (19)

Proof: See Appendix A.
Note that ∆ is a random variable depending on ΛC defined

by the random matrices G and H. From Lemma 1, by sending
∆ to zero, Pr{D ≤MNB |G,H} is forced to zero as well, i.e.,
achieving perfect secrecy. In the following theorem, we show
how to ensure ∆

a.s.→ 0.
Lemma 2: Let

κ ,MNB/(2NE)/
√
π. (20)

If P = ρ2/Φ2NB/NE and ρ > κ, then ∆
a.s.→ 0 as NB → ∞, or

equivalently,

Pr

{
∆ >

( ρ
κ

)−NB
}
< O

(( ρ
κ

)−NB
)

(21)

where Φ depends on the precoder, i.e.,

ΦLP =

[
(NE −NB)!

(NA −NB)!
· NA!

NE!

] 1
2NB for lattice

precoding
(22)

ΦSVD =

[
(NE −NB)!

NE!

] 1
2NB for SVD

precoding
(23)

Proof: Available in the journal version.
Lemmas 1 and 2 allow us to deduce our main theorem.
Theorem 1: If P > κ2/Φ2NB/NE , perfect secrecy is achieved

almost surely as NB → ∞, where κ is given in (20) and Φ is
given in (22) or (23).

IV. CONCLUSIONS

We have revisited the role that artificial noise plays in
cryptography, showing that it can be used as unshared one-time
pad secret keys. The proposed unshared secret key cryptosys-
tem provides Shannon’s perfect secrecy, and enjoys exemption
from secret key exchange. Our work has highlighted that USK
is valid for a finite alphabet such as M-QAM and a arbitrarily
distributed artificial noise. Both lattice and SVD precoding are
applicable to USK, significantly enhancing the utility of the
cryptosystem. The basis is now established for future advances
on generalizing USK to other channel.

APPENDIX

A. Proof of Lemma 1

Let Sp be a sphere of radius R centered at y, where
vol(Sp) =MNB vol(ΛC). Let K be the number of the points in
Sp∩ΛC. We have

K ≈ vol(Sp)

vol(ΛC)
= MNB . (24)

We recall that GPũ is the kth closest lattice point to y and
D ≥ k. Thus, if GPũ /∈Sp, we have D > MNB .
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Let S′
p be a sphere with the same radius R centered at GPũ.

If GPũ /∈Sp, then y/∈S′
p, and vice versa. Therefore, we have

Pr
{
D ≤MNB |G,H

}

= Pr {GPũ ∈Sp}
= Pr

{
y∈S′

p
}

=

∫

S′
p

f(ñv)dñv

≤ MNB vol(ΛC)
πNE σ̃2NE

v

≤ MNB vol(ΛC)
πNEPNE

, (25)

where f(ñv) is the probability density function (pdf) of ñv.
The last inequalities hold since

f(ñv) =
1

πNE σ̃2NE
v

exp

(
−||ñv||2

σ̃2v

)

≤ 1

πNE σ̃2NE
v

=
1

πNE
(
P + σ2E

)NE

≤ 1

πNEPNE
. (26)

¥
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