
On Fast–Decodable Space–Time Block Codes
Ezio Biglieri

Universitat Pompeu Fabra
Barcelona, Spain

e.biglieri@ieee.org

Yi Hong
Institute of Advanced Telecommunications

University of Wales, Swansea, UK
y.hong@swansea.ac.uk

Emanuele Viterbo
DEIS - Università della Calabria
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Abstract— In this paper, we focus on full–rate, fast–decodable
space–time block codes (STBCs) for 2×2 and 4×2 multiple-input
multiple-output (MIMO) transmission. We first derive conditions
for reduced-complexity maximum-likelihood decoding, and apply
them to a unified analysis of two families of 2 × 2 STBCs that
were recently proposed. In particular, we describe a reduced-
complexity sphere decoding algorithm suitable for QAM signal
constellations. Next, we derive a novel reduced-complexity 4× 2
STBC, and show that it outperforms all previously known codes
with certain constellations.

I. INTRODUCTION

Recently, Paredes et al. [1] have shown how to construct
a family of fast-decodable, full-rate, full-rank space–time
block codes (STBCs) for 2×2 multiple–input multiple–output
(MIMO). The maximum-likelihood (ML) decoder can be
simplified to a 4-dimensional sphere–decoder (SD) followed
by an Alamouti detector [2]. The best code within this
family coincides with a code originally found by Hottinen
and Tirkkonen [3], under the name of twisted space–time
transmit diversity code. Independently, the same STBCs were
found in [4], and classified under the rubric of multi–strata
space–time codes. More recently, another family of full–rate,
full–diversity, fast–decodable STBCs for 2 × 2 MIMO was
proposed in [5]. This family of STBCs employs a combination
of two different rotated Alamouti codewords.

Motivated by the above, the present paper provides a
unified view of the fast-decodable STBCs in [1, 3–5]. We
show that these families enable the same low-complexity ML
decoding procedure, and we specialize it in the form of a SD
search [6, 7]. We also present general structure for full-rate,
fast-decodable STBCs, and we extend this idea to MIMO 4×2.
We propose a family of new STBCs. Within this family, we
show a code that outperforms all previously proposed 4 × 2
STBCs for 4-QAM signal constellation.

Notations: Boldface letters are used for column vectors,
and capital boldface letters for matrices. Superscripts T , †, and
∗ denote transposition, Hermitian transposition, and complex
conjugation, respectively. Z, C, and Z[j] denote the ring of
rational integers, the field of complex numbers, and the ring
of Gaussian integers, respectively, where j2 = −1. Also, In

denotes the n×n identity matrix, and 0m×n denotes the m×n
matrix all of whose elements are 0.

Given a complex number x, we define the (̃·) operator from
C to R2 as

x̃ � [�(x),�(x)]

where �(·) and �(·) denote the real and imaginary parts of a
complex number. The (̃·) operator can be extended to complex
vectors x = [x1, . . . xn] ∈ Cn as

x̃ � [x̃1, . . . x̃n]T

The vec(·) operator stacks the m column vectors of a n×m
matrix into a mn column vector. The ‖ · ‖ operation denotes
the Euclidean norm of a vector, and the Frobenius norm of a
matrix. Finally, the Hermitian inner product of two complex
column vectors a and b is denoted by

〈a,b〉 � aT b∗

II. SYSTEM MODEL AND CODE DESIGN CRITERIA

We consider a nt × nr MIMO system over block fading
channels. At discrete time t, the received signal matrix Y ∈
Cnr×T is given by

Y = HX + N, (1)

where X ∈ Cnt×T is the codeword matrix, transmitted over
T channel uses. Moreover, N ∈ Cnr×T is a complex white
Gaussian noise with i.i.d. entries ∼ NC(0, N0), and H =
[hi�] ∈ Cnr×nt is the channel matrix, assumed to remain con-
stant during the transmission of a codeword, and varies from
one transmission of a codeword to another independently. The
elements of H are assumed to be i.i.d. circularly symmetric
Gaussian random variables ∼ NC(0, 1). The realization of
H is assumed to be known at the receiver, but not at the
transmitter. The following definitions are relevant here:

Definition 1: (Code rate) The code rate of a STBC is
defined as the number κ of independent information symbols
per codeword, drawn from a complex constellation S. If
κ = nrT , the STBC is said to have full rate. �

Consider now ML decoding. This consists of finding the
code matrix X that achieves the minimum of the squared norm
m(X) � ‖Y − HX‖2.

Definition 2: (Decoding Complexity) The ML decoding
complexity can be measured by counting the minimum num-
ber of values of m(X) in ML decoding. This number cannot
exceed Mκ, with M = |S|, the worst-case decoding complex-
ity achieved by an exhaustive-search ML decoder. �

Definition 3: (Simplified decoding) We say that a STBC
admits simplified decoding if ML decoding can be achieved
with less than Mκ computations of m(X). �

Assuming that the codeword X is transmitted, it may occur
that ‖Y − HX‖2 > ‖Y − HX̂‖2, with X̂ 	= X, resulting
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in a pairwise error. Let r denote the rank of the codeword-
difference matrix X − X̂, with X̂ 	= X, and let E � (X −
X̂)(X − X̂)† be the codeword-distance matrix. Let δ denote
the product of non-zero eigenvalues of the codeword distance
matrix E. The error probability of a STBC is upper-bounded
by the following union bound:

P (e) ≤ 1
Mκ

∑
X

∑
X�=X̂

P (X → X̂)

=
1

Mκ

∑
r

∑
δ

A(r, δ)P (r, δ) (2)

where P (X → X̂) denotes the pairwise error probability
(PEP) among all distinct (X, X̂). The term P (r, δ) represents
the PEP of the codewords with rank r and eigenvalue product
δ, while A(r, δ) denotes the associated multiplicity.

Definition 4: (Full-diversity STBC) A full-diversity STBC
is one with r = nt over all possible codeword-difference
matrices. �

For a full-diversity STBC, the worst-case PEP depends
asymptotically, for high signal-to-noise ratios, on both the
rank r = nt and the minimum determinant of the codeword
distance matrix

δmin � min
X�=X̂

det (E)

The “rank-and-determinant criterion” (RDC) of code design
requires the maximization of both r and δmin. This criterion
yields diversity gain nrnt and coding gain (δmin)1/nt [8].

For a non full-diversity STBC, the minimum determinant
equals to zero. In such a case, we have to minimize the
associated multiplicity of the dominant pairwise terms of rank
r ≤ nt independently of their product distance.

III. FAST-DECODABLE CODES FOR 2 × 2 MIMO

Consider now 2 × 2 STBCs. These are full-rate and full-
diversity if κ = 4 symbols/codeword, and r = nt.

Definition 5: (Fast-decodable STBCs for 2×2 MIMO) A
2 × 2 STBC allows fast ML decoding if its complexity does
not exceed 2M3. �

1st family fast–decodable STBC – Here we examine
2 × 2 fast-decodable STBCs endowed with the following
structure [3]:

X = Xa(x1, x2) + TXb(z1, z2) (3)

where

T =
[

1 0
0 −1

]
and Xa(x1, x2) =

[
αx1 −βx∗

2

βx2 αx∗
1

]
(4)

is an Alamouti 2 × 2 space–time block codeword [2], with
α = β = 1 and x1, x2 ∈ Z[j]. Moreover, we have

Xb(z1, z2) =
[

z1 −z∗2
z2 z∗1

]
and

[
z1

z2

]
= U

[
x3

x4

]
(5)

where z1, z2 ∈ C, x3, x4 ∈ Z[j], and U ∈ C2×2 is the
unitary matrix

U =
[

ϕ1 −ϕ∗
2

ϕ2 ϕ∗
1

]

with |ϕ1|2 + |ϕ2|2 = 1. Vectorizing, and separating real and
imaginary parts, the matrices X yield

ṽec(X) = G1[x̃1, x̃2]T + G2[x̃3, x̃4]T

where G1, G2 ∈ R8×4 are the generator matrices of Xa and
TXb, respectively. Note that the matrix T is chosen in order
to guarantee that the matrix G = [G1|G2] is an orthogonal
matrix, i.e., GT G = I2κ. This implies that the code has cubic
shaping (or that is information lossless).

The matrix U is chosen to achieve full rank and maximize
the minimum determinant, characterized by the unitary matrix
[1, 3, 4]:

U =
1√
7

[
1 + j −1 + 2j
1 + 2j 1 − j

]
This code has δmin = 16/7 for 4-QAM signalling, which is
smaller than that of the Golden code (δmin = 16/5) [9].

2nd family fast–decodable STBC – In the second family
of fast-decodable STBCs [5], both Xa and Xb have the
Alamouti structure (4), but with different coefficients α, β,
and T = I yielding δmin = 1.9973 for 4-QAM signalling. If
we compare with the 1st Family, we can see that in the 2nd
Family of STBCs, the generator matrix G is not an orthogona
matrix. This implies that the 2nd family STBCs do not have
cubic shaping.

Low–Complexity MLD – At the receiver, due to the
linearity of the code, a sphere decoder can be employed. It
was pointed out in [1, 4, 5] that both family STBCs admits
a low-complexity decoder thanks to orthogonality properties
of the two component codes in (3). The relevant performance
comparison in terms of codeword error rate (CER) is given
in [10]. Let Y = [y�n] ∈ C2×2, H = [h�n] ∈ C2×2, and
N = [n�n] ∈ C2×2. After vectorization, we obtain

y = Hx + n (6)

where

y � [y11, y21, y
∗
12, y

∗
22]

T n � [n11, n21, n
∗
12, n

∗
22]

T

x � [x1, x2, x3, x4]T

and explicitly for 1st family STBC, we have

H�[f1|f2|f3 | f4]=

⎡⎢⎢⎣
αh11 αh12 A −B
αh21 αh22 C −D
β∗h∗

12 −β∗h∗
11 −B∗ −A∗

β∗h∗
22 −β∗h∗

21 −D∗ −C∗

⎤⎥⎥⎦ (7)

with

A = h11ϕ1 − h12ϕ2 B = h11ϕ
∗
2 + h12ϕ

∗
1

C = h21ϕ1 − h22ϕ2 D = h21ϕ
∗
2 + h22ϕ

∗
1 (8)

We conduct the QR decomposition of H, i.e., H = QR,
where Q ∈ C4×4 is an unitary matrix and R ∈ C4×4 is an
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upper-triangular matrix. Here Q and R are given by

Q = [e1|e2|e3|e4]

R =

⎡⎢⎢⎢⎣
‖d1‖ 〈f2, e1〉 〈f3, e1〉 〈f4, e1〉

0 ‖d2‖ 〈f3, e2〉 〈f4, e2〉
...

. . .
. . .

...
0 0 0 ‖d4‖

⎤⎥⎥⎥⎦
The QR decomposition is related to the Gram–Schmidt

orthogonalization algorithm through the following equations:

ui = fi −
i−1∑
j=1

Projej
fi, ei =

ui

‖ui‖ , i = 2, · · · , 4

where Projuv � 〈v,u〉
〈u,u〉u and u1 = f1. Direct computation

shows that R has the following properties:
1) 〈f2, e1〉 = 0, 〈f4, e3〉 = 0
2) ‖d1‖2 = ‖d2‖2 � μ, ‖d3‖2 = ‖d4‖2 � γ

3) [e1 | e2] =
1√
μ

[f1 | f2] =
1√
μ
F1

4) We obtain[
Φ1 Φ2

Φ3 Φ4

]
=

[
1√
μφ1 − 1√

μφ2

1√
μφ∗

2
1√
μφ∗

1

]
where φ1 � 1√

2
(ρϕ1 − 2cϕ2), φ2 � 1√

2
(ρϕ∗

2 + 2cϕ∗
1),

with ρ � |h11|2 − |h12|2 + |h21|2 − |h22|2, and c �
h∗

11h12 + h∗
21h22. We have Φ1Φ∗

2 + Φ3Φ∗
4 = 0

Thus, R has the form

R =

⎡⎢⎢⎣
√

μ 0 Φ1 Φ2

0
√

μ Φ3 Φ4

0 0
√

γ 0
0 0 0

√
γ

⎤⎥⎥⎦ (9)

For 2nd family STBCs, we obtain the same structure of the
above R matrix but with different components. Examina-
tion of the structure of R discloses the simplified-decoding
property of both families of codes, with complexity 2M3. In
fact, the ML metric turns out to be a sum of four quadratic
functions, depending on (x1, x3, x4), (x2, x3, x4), x3, and x4,
respectively. The low–complexity MLD using SD searching
algorithm is given as follows.

1) We first choose a pair (x3, x4) using a 4-dimensional
real SD (M2 branch metric computation complexity).

2) For every such pair, using Alamouti symbol-by-symbol
decoding, we choose in parallel x1 and x2, resulting in
2M branch metric computation complexity.

3) The worst-case decoding complexity of fast-decodable
STBCs is 2M3, as compared to a standard SD com-
plexity M4.

4) The zero elements in the upper triangular matrix R
allows faster branch metric computation.

Design Criteria of Fast–decodable STBCs – In summary,
a STBC of the above form (see 1st, 2nd family STBCs) has
low–complexity decoding if Xa has an Alamouti structure
and Xb has an orthogonal generator matrix. If cubic shaping
is required, T should be chosen such that GT G = I. If

Xb has the Alamouti structure, extra savings of computation
complexity are available in the SD.

Codes δmin Multiplicity

New STBC 0
∑

δ A(2, δ) = 160
Perfect Code U matrix 0

∑
δ A(2, δ) = 560

DjABBA 0.8304 A(4, 0.8304) = 770
Two-Layers Perfect Code 0.0016 A(4, 0.0016) = 128

TABLE I

MINIMUM DETERMINANTS OF 4 × 2 STBCS WITH 4-QAM SIGNALING

IV. NEW STBC FOR 4 × 2 MIMO SYSTEMS

Here we design a fast-decodable 4× 2 STBC based on the
concepts elaborated upon in the previous sections. We first
introduce the relevant definitions.

Definition 6: (Quasi-orthogonal structure) [11] A code
such that

X =

⎡⎢⎢⎣
x1 −x∗

2 −x∗
3 x4

x2 x∗
1 −x∗

4 −x3

x3 −x∗
4 x∗

1 −x2

x4 x∗
3 x∗

2 x1

⎤⎥⎥⎦
where xi ∈ C, i = 1, . . . , 4, is said to have a quasi-orthogonal
structure. Note that quasi-orthogonal STBCs are not full rank,
and r = 2. �

Definition 7: (Full-rate, fast-decodable STBC for 4 × 2
MIMO) A full-rate, fast-decodable STBC for 4 × 2 MIMO,
denoted G′, has κ = 8 symbols/codeword, and can be
decoded by a 12-dimensional real SD algorithm (rather than
the standard 16-dimensional SD). �

The 4 × 4 codeword matrix X ∈ G′ encodes eight QAM
symbols x = [x1, . . . , x8] ∈ Z[j], and is transmitted by using
the channel four times, i.e., T = 4. Following the idea of the
previous section, we choose the following codeword structure:

X = Xa(x1, x2, x3, x4) + TXb(z1, z2, z3, z4) (10)

where

T =
[

I2 0
0 −I2

]
(11)

is used to preserve the orthogonality between the two com-
ponents of the code (similarly to the codes of previous
section), Xa(x1, x2, x3, x4) and Xb(z1, z2, z3, z4) follow the
quasi-orthogonal STBC structure (see Definition 6), where
x1, x2, x3, x4 ∈ Z[j] and[

z1 z2 z3 z4

]T = U
[

x5 x6 x7 x8

]T
(12)

where zi ∈ C, xk ∈ Z[j], i = 1, . . . , 4, k = 5, . . . , 8
and U is a 4 × 4 unitary matrix. Note that 1) The matrix
T guarantees cubic shaping, and 2) Since the matrix Xa has
a quasi-orthogonal structure, the code is not full rank: in fact,
it has r = 2. As a consequence, we conduct a search over
the matrices U leading to the minimum of

∑
δ A(2, δ), i.e.,

the total multiplicity of all rank 2 terms in (2). The term
A(2, δ) represents the total number of codeword difference
matrices of rank 2 and product distance δ. Since an exhaustive
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search through all 4 × 4 unitary matrices is too complex,
we focus on those with the form U = DF, where F �
[exp(j2π�n/4)]�,n=1,...,4 is a 4×4 discrete-Fourier-transform
matrix, and D � diag(exp(j2πn�/N) for some integers N, �,
with 0 ≤ n� < N and � = 1, . . . , 4.

For 4-QAM signaling, taking N = 7 and n� = 1, 2, 5, 6,
we have obtained

U=

⎡⎣ 0.31 + 0.39i 0.31 + 0.39i 0.31 + 0.39i 0.31 + 0.39i
−0.11 + 0.49i −0.49 − 0.11i 0.11 − 0.49i 0.49 + 0.11i
−0.11 − 0.49i 0.11 + 0.49i −0.11 − 0.49i 0.11 + 0.49i

0.31 − 0.39i −0.39 − 0.31i −0.31 + 0.39i 0.39 + 0.31i

⎤⎦
which yields the minimum

∑
δ A(2, δ).

Under 4-QAM signaling, we compare the minimum deter-
minants δmin and their associated multiplicities, as well as
CERs of the above STBC to the following 4 × 2 codes:

1) Code (10), with U the 4 × 4 “perfect” rotation [12].
2) The best DjABBA code of [3].
3) The “perfect” two-layer code of [13].

Determinant and multiplicity values are shown in Table I. The
CERs are shown in Fig. 1. The proposed code achieves the
best CER up to 10−5. Due to diversity loss, the performance
curve of the new code and the one of DjABBA cross over at
CER= 10−5.

Low–Complexity MLD – Following the same decoding
process as that of 2 × 2 MIMO, we obtain the following R
matrix

R =
[

S1 S2

04×4 S3

]
(13)

where

S1 =

⎡⎢⎢⎣
√

μ 0 0 Φ1

0
√

μ −Φ1 0
0 0

√
γ 0

0 0 0
√

γ

⎤⎥⎥⎦ (14)

S2 is a 4 × 4 non-zero matrix, S3 is a 4 × 4 upper
triangular matrix, μ =

∑2
i=1

∑4
j=1 |hij |2, and Φ1 �

2�(h∗
11h14 + h21h

∗
24 − h12h

∗
13 − h22h

∗
23)

Summarizing, we use the following MLD where the search
is based on SD algorithm:

• We use a 12-dimensional real SD, requiring M6 branch
metric computations, to find u16

5 � [u5, . . . , u16]. Then,
we subtract the interference terms from u16

5 and the
partial symbol vector u4

1 � [u1, . . . , u4] can be computed
directly using Alamouti symbol–by–symbol decoding
with decoding complexity 2M .

• The worst-case decoding complexity of fast-decodable
STBCs is 2M7 rather than a standard SD complexity
M8.

• The zero entries in the matrix R allow simple branch
metric calculation in the decoding.

V. CONCLUSION

In this paper we study, under a unified framework, two
families of full-rate, full-diversity 2× 2 STBCs. We examine
how both families allow low-complexity ML decoding. We
also derive design criteria of fast-decodable STBCs for 2× 2
MIMO. We then extend this design to the MIMO 4 × 2. We

2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

C
E

R

Fast−decodable New STBC
Fast−Decodable STBC with Perfect rotation matrix U
DjABBA
Perfect−two−layer STBC

Fig. 1. Comparison of the CER of different 4 × 2 STBCs with 4-QAM
signaling.

propose a family of new STBCs. Within this family, a new
code is found that outperforms any known 4 × 2 code for 4-
QAM signaling. A reduced-complexity SD algorithm enables
using only a 12-dimensional real SD, rather than the standard
16-dimensional one. Moreover the branch metric computation
cost can be reduced thanks to the quasi–orthogonal STBC
structure.
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