On Fast–Decodable Space–Time Block Codes

Ezio Biglieri Universitat Pompeu Fabra Barcelona, Spain e.biglieri@ieee.org Yi Hong

Institute of Advanced Telecommunications University of Wales, Swansea, UK y.hong@swansea.ac.uk Emanuele Viterbo DEIS - Università della Calabria via P. Bucci 42C, Rende (CS), Italy viterbo@deis.unical.it

Abstract—In this paper, we focus on full-rate, fast-decodable space-time block codes (STBCs) for 2×2 and 4×2 multiple-input multiple-output (MIMO) transmission. We first derive conditions for reduced-complexity maximum-likelihood decoding, and apply them to a unified analysis of two families of 2×2 STBCs that were recently proposed. In particular, we describe a reduced-complexity sphere decoding algorithm suitable for QAM signal constellations. Next, we derive a novel reduced-complexity 4×2 STBC, and show that it outperforms all previously known codes with certain constellations.

I. INTRODUCTION

Recently, Paredes *et al.* [1] have shown how to construct a family of fast-decodable, full-rate, full-rank space-time block codes (STBCs) for 2×2 multiple-input multiple-output (MIMO). The maximum-likelihood (ML) decoder can be simplified to a 4-dimensional sphere-decoder (SD) followed by an Alamouti detector [2]. The best code within this family coincides with a code originally found by Hottinen and Tirkkonen [3], under the name of *twisted space-time transmit diversity* code. Independently, the same STBCs were found in [4], and classified under the rubric of *multi-strata* space-time codes. More recently, another family of full-rate, full-diversity, fast-decodable STBCs for 2×2 MIMO was proposed in [5]. This family of STBCs employs a combination of two different rotated Alamouti codewords.

Motivated by the above, the present paper provides a unified view of the fast-decodable STBCs in [1, 3–5]. We show that these families enable the same low-complexity ML decoding procedure, and we specialize it in the form of a SD search [6, 7]. We also present general structure for full-rate, fast-decodable STBCs, and we extend this idea to MIMO 4×2 . We propose a family of new STBCs. Within this family, we show a code that outperforms all previously proposed 4×2 STBCs for 4-QAM signal constellation.

Notations: Boldface letters are used for column vectors, and capital boldface letters for matrices. Superscripts T , † , and * denote transposition, Hermitian transposition, and complex conjugation, respectively. \mathbb{Z} , \mathbb{C} , and $\mathbb{Z}[j]$ denote the ring of rational integers, the field of complex numbers, and the ring of Gaussian integers, respectively, where $j^{2} = -1$. Also, \mathbf{I}_{n} denotes the $n \times n$ identity matrix, and $\mathbf{0}_{m \times n}$ denotes the $m \times n$ matrix all of whose elements are 0.

Given a complex number x, we define the (\cdot) operator from $\mathbb C$ to $\mathbb R^2$ as

$$\tilde{x} \triangleq [\Re(x), \Im(x)]$$

where $\Re(\cdot)$ and $\Im(\cdot)$ denote the real and imaginary parts of a complex number. The $(\tilde{\cdot})$ operator can be extended to complex vectors $\mathbf{x} = [x_1, \dots x_n] \in \mathbb{C}^n$ as

$$\tilde{\mathbf{x}} \triangleq [\tilde{x}_1, \dots \tilde{x}_n]^T$$

The vec(\cdot) operator stacks the *m* column vectors of a $n \times m$ matrix into a *mn* column vector. The $\|\cdot\|$ operation denotes the Euclidean norm of a vector, and the Frobenius norm of a matrix. Finally, the Hermitian inner product of two complex column vectors **a** and **b** is denoted by

$$\langle \mathbf{a}, \mathbf{b} \rangle \triangleq \mathbf{a}^T \mathbf{b}^*$$

II. SYSTEM MODEL AND CODE DESIGN CRITERIA

We consider a $n_t \times n_r$ MIMO system over block fading channels. At discrete time t, the received signal matrix $\mathbf{Y} \in \mathbb{C}^{n_r \times T}$ is given by

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{N},\tag{1}$$

where $\mathbf{X} \in \mathbb{C}^{n_t \times T}$ is the codeword matrix, transmitted over T channel uses. Moreover, $\mathbf{N} \in \mathbb{C}^{n_r \times T}$ is a complex white Gaussian noise with i.i.d. entries $\sim \mathcal{N}_{\mathbb{C}}(0, N_0)$, and $\mathbf{H} = [h_{i\ell}] \in \mathbb{C}^{n_r \times n_t}$ is the channel matrix, assumed to remain constant during the transmission of a codeword, and varies from one transmission of a codeword to another independently. The elements of \mathbf{H} are assumed to be i.i.d. circularly symmetric Gaussian random variables $\sim \mathcal{N}_{\mathbb{C}}(0, 1)$. The realization of \mathbf{H} is assumed to be known at the receiver, but not at the transmitter. The following definitions are relevant here:

Definition 1: (*Code rate*) The code rate of a STBC is defined as the number κ of independent information symbols per codeword, drawn from a complex constellation S. If $\kappa = n_r T$, the STBC is said to have *full rate*.

Consider now ML decoding. This consists of finding the code matrix **X** that achieves the minimum of the squared norm $m(\mathbf{X}) \triangleq \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|^2$.

Definition 2: (*Decoding Complexity*) The ML decoding complexity can be measured by counting the minimum number of values of $m(\mathbf{X})$ in ML decoding. This number cannot exceed M^{κ} , with $M = |\mathbf{S}|$, the worst-case decoding complexity achieved by an exhaustive-search ML decoder.

Definition 3: (*Simplified decoding*) We say that a STBC admits simplified decoding if ML decoding can be achieved with less than M^{κ} computations of $m(\mathbf{X})$.

Assuming that the codeword \mathbf{X} is transmitted, it may occur that $\|\mathbf{Y} - \mathbf{H}\mathbf{X}\|^2 > \|\mathbf{Y} - \mathbf{H}\widehat{\mathbf{X}}\|^2$, with $\widehat{\mathbf{X}} \neq \mathbf{X}$, resulting in a *pairwise error*. Let *r* denote the rank of the *codeword-difference matrix* $\mathbf{X} - \hat{\mathbf{X}}$, with $\hat{\mathbf{X}} \neq \mathbf{X}$, and let $\mathbf{E} \triangleq (\mathbf{X} - \hat{\mathbf{X}})(\mathbf{X} - \hat{\mathbf{X}})^{\dagger}$ be the *codeword-distance matrix*. Let δ denote the product of non-zero eigenvalues of the codeword distance matrix \mathbf{E} . The error probability of a STBC is upper-bounded by the following union bound:

$$P(e) \leq \frac{1}{M^{\kappa}} \sum_{\mathbf{X}} \sum_{\mathbf{X} \neq \hat{\mathbf{X}}} P(\mathbf{X} \to \hat{\mathbf{X}})$$
$$= \frac{1}{M^{\kappa}} \sum_{r} \sum_{\delta} A(r, \delta) P(r, \delta)$$
(2)

where $P(\mathbf{X} \to \hat{\mathbf{X}})$ denotes the pairwise error probability (PEP) among all distinct $(\mathbf{X}, \hat{\mathbf{X}})$. The term $P(r, \delta)$ represents the PEP of the codewords with rank r and eigenvalue product δ , while $A(r, \delta)$ denotes the associated multiplicity.

Definition 4: (*Full-diversity STBC*) A full-diversity STBC is one with $r = n_t$ over all possible codeword-difference matrices.

For a full-diversity STBC, the worst-case PEP depends asymptotically, for high signal-to-noise ratios, on both the rank $r = n_t$ and the *minimum determinant* of the codeword distance matrix

$$\delta_{\min} \triangleq \min_{\mathbf{X} \neq \widehat{\mathbf{X}}} \det \left(\mathbf{E} \right)$$

The "rank-and-determinant criterion" (RDC) of code design requires the maximization of both r and δ_{\min} . This criterion yields diversity gain $n_r n_t$ and coding gain $(\delta_{\min})^{1/n_t}$ [8].

For a non full-diversity STBC, the minimum determinant equals to zero. In such a case, we have to minimize the associated multiplicity of the *dominant pairwise terms* of rank $r \leq n_t$ independently of their product distance.

III. Fast-decodable codes for 2×2 MIMO

Consider now 2×2 STBCs. These are full-rate and fulldiversity if $\kappa = 4$ symbols/codeword, and $r = n_t$.

Definition 5: (*Fast-decodable STBCs for* 2×2 *MIMO*) A 2×2 STBC allows fast ML decoding if its complexity does not exceed $2M^3$.

1st family fast-decodable STBC – Here we examine 2×2 fast-decodable STBCs endowed with the following structure [3]:

$$\mathbf{X} = \mathbf{X}_a(x_1, x_2) + \mathbf{T}\mathbf{X}_b(z_1, z_2)$$
(3)

where

$$\mathbf{T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ and } \mathbf{X}_a(x_1, x_2) = \begin{bmatrix} \alpha x_1 & -\beta x_2^* \\ \beta x_2 & \alpha x_1^* \end{bmatrix}$$
(4)

is an Alamouti 2×2 space-time block codeword [2], with $\alpha = \beta = 1$ and $x_1, x_2 \in \mathbb{Z}[j]$. Moreover, we have

$$\mathbf{X}_{b}(z_{1}, z_{2}) = \begin{bmatrix} z_{1} & -z_{2}^{*} \\ z_{2} & z_{1}^{*} \end{bmatrix} \text{ and } \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = \mathbf{U} \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix}$$
(5)

where $z_1, z_2 \in \mathbb{C}$, $x_3, x_4 \in \mathbb{Z}[j]$, and $\mathbf{U} \in \mathbb{C}^{2 \times 2}$ is the unitary matrix

$$\mathbf{U} = \begin{bmatrix} \varphi_1 & -\varphi_2^* \\ \varphi_2 & \varphi_1^* \end{bmatrix}$$

with $|\varphi_1|^2 + |\varphi_2|^2 = 1$. Vectorizing, and separating real and imaginary parts, the matrices **X** yield

$$\widetilde{\operatorname{vec}(\mathbf{X})} = \mathbb{G}_1[\tilde{x}_1, \tilde{x}_2]^T + \mathbb{G}_2[\tilde{x}_3, \tilde{x}_4]^T$$

where $\mathbb{G}_1, \mathbb{G}_2 \in \mathbb{R}^{8 \times 4}$ are the generator matrices of \mathbf{X}_a and $\mathbf{T}\mathbf{X}_b$, respectively. Note that the matrix \mathbf{T} is chosen in order to guarantee that the matrix $\mathbb{G} = [\mathbb{G}_1|\mathbb{G}_2]$ is an orthogonal matrix, i.e., $\mathbb{G}^T \mathbb{G} = \mathbf{I}_{2\kappa}$. This implies that the code has *cubic shaping* (or that is *information lossless*).

The matrix U is chosen to achieve full rank and maximize the minimum determinant, characterized by the unitary matrix [1,3,4]:

$$\mathbf{U} = \frac{1}{\sqrt{7}} \begin{bmatrix} 1+j & -1+2j\\ 1+2j & 1-j \end{bmatrix}$$

This code has $\delta_{\min} = 16/7$ for 4-QAM signalling, which is smaller than that of the Golden code ($\delta_{\min} = 16/5$) [9].

2nd family fast-decodable STBC – In the second family of fast-decodable STBCs [5], both \mathbf{X}_a and \mathbf{X}_b have the Alamouti structure (4), but with different coefficients α , β , and $\mathbf{T} = \mathbf{I}$ yielding $\delta_{min} = 1.9973$ for 4-QAM signalling. If we compare with the 1st Family, we can see that in the 2nd Family of STBCs, the generator matrix \mathbb{G} is not an orthogona matrix. This implies that the 2nd family STBCs do not have cubic shaping.

Low–Complexity MLD – At the receiver, due to the linearity of the code, a sphere decoder can be employed. It was pointed out in [1,4,5] that both family STBCs admits a low-complexity decoder thanks to orthogonality properties of the two component codes in (3). The relevant performance comparison in terms of codeword error rate (CER) is given in [10]. Let $\mathbf{Y} = [y_{\ell n}] \in \mathbb{C}^{2\times 2}$, $\mathbf{H} = [h_{\ell n}] \in \mathbb{C}^{2\times 2}$, and $\mathbf{N} = [n_{\ell n}] \in \mathbb{C}^{2\times 2}$. After vectorization, we obtain

$$\mathbf{y} = \mathcal{H}\mathbf{x} + \mathbf{n} \tag{6}$$

where

$$\mathbf{y} \triangleq [y_{11}, y_{21}, y_{12}^*, y_{22}^*]^T \quad \mathbf{n} \triangleq [n_{11}, n_{21}, n_{12}^*, n_{22}^*]^T$$
$$\mathbf{x} \triangleq [x_1, x_2, x_3, x_4]^T$$

and explicitly for 1st family STBC, we have

$$\mathcal{H} \triangleq [\mathbf{f}_1 | \mathbf{f}_2 | \mathbf{f}_3 | \mathbf{f}_4] = \begin{bmatrix} \alpha h_{11} & \alpha h_{12} & A & -B \\ \alpha h_{21} & \alpha h_{22} & C & -D \\ \beta^* h_{12}^* & -\beta^* h_{11}^* & -B^* & -A^* \\ \beta^* h_{22}^* & -\beta^* h_{21}^* & -D^* & -C^* \end{bmatrix}$$
(7)

with

$$A = h_{11}\varphi_1 - h_{12}\varphi_2 \quad B = h_{11}\varphi_2^* + h_{12}\varphi_1^*$$

$$C = h_{21}\varphi_1 - h_{22}\varphi_2 \quad D = h_{21}\varphi_2^* + h_{22}\varphi_1^* \quad (8)$$

We conduct the QR decomposition of \mathcal{H} , i.e., $\mathcal{H} = \mathbf{QR}$, where $\mathbf{Q} \in \mathbb{C}^{4 \times 4}$ is an unitary matrix and $\mathbf{R} \in \mathbb{C}^{4 \times 4}$ is an upper-triangular matrix. Here \mathbf{Q} and \mathbf{R} are given by

$$\mathbf{Q} = [\mathbf{e}_1 | \mathbf{e}_2 | \mathbf{e}_3 | \mathbf{e}_4]$$
$$\mathbf{R} = \begin{bmatrix} \|\mathbf{d}_1\| & \langle \mathbf{f}_2, \mathbf{e}_1 \rangle & \langle \mathbf{f}_3, \mathbf{e}_1 \rangle & \langle \mathbf{f}_4, \mathbf{e}_1 \rangle \\ 0 & \|\mathbf{d}_2\| & \langle \mathbf{f}_3, \mathbf{e}_2 \rangle & \langle \mathbf{f}_4, \mathbf{e}_2 \rangle \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \|\mathbf{d}_4\| \end{bmatrix}$$

The QR decomposition is related to the Gram–Schmidt orthogonalization algorithm through the following equations:

$$\mathbf{u}_i = \mathbf{f}_i - \sum_{j=1}^{i-1} \operatorname{Proj}_{\mathbf{e}_j} \mathbf{f}_i, \quad \mathbf{e}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}, \quad i = 2, \cdots, 4$$

where $\operatorname{Proj}_{\mathbf{u}} \mathbf{v} \triangleq \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$ and $\mathbf{u}_1 = \mathbf{f}_1$. Direct computation shows that \mathbf{R} has the following properties:

1)
$$\langle \mathbf{f}_2, \mathbf{e}_1 \rangle = 0, \quad \langle \mathbf{f}_4, \mathbf{e}_3 \rangle = 0$$

2) $\|\mathbf{d}_1\|^2 = \|\mathbf{d}_2\|^2 \triangleq \mu, \quad \|\mathbf{d}_3\|^2 = \|\mathbf{d}_4\|^2 \triangleq \gamma$
3) $[\mathbf{e}_1 \mid \mathbf{e}_2] = \frac{1}{\sqrt{\mu}} [\mathbf{f}_1 \mid \mathbf{f}_2] = \frac{1}{\sqrt{\mu}} \mathbf{F}_1$
4) We obtain
 $\begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{\mu}} \phi_1 & -\frac{1}{\sqrt{\mu}} \phi_2 \end{bmatrix}$

 $\begin{bmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{bmatrix} = \begin{bmatrix} \sqrt{\mu} \phi_1 & \sqrt{\mu} \phi_2 \\ \frac{1}{\sqrt{\mu}} \phi_2^* & \frac{1}{\sqrt{\mu}} \phi_1^* \end{bmatrix}$ where $\phi_1 \triangleq \frac{1}{\sqrt{2}} (\rho \varphi_1 - 2c\varphi_2), \phi_2 \triangleq \frac{1}{\sqrt{2}} (\rho \varphi_2^* + 2c\varphi_1^*),$ with $\rho \triangleq |h_{11}|^2 - |h_{12}|^2 + |h_{21}|^2 - |h_{22}|^2$, and $c \triangleq h_{11}^* h_{12} + h_{21}^* h_{22}$. We have $\Phi_1 \Phi_2^* + \Phi_3 \Phi_4^* = 0$

Thus, R has the form

$$\mathbf{R} = \begin{bmatrix} \sqrt{\mu} & 0 & \Phi_1 & \Phi_2 \\ 0 & \sqrt{\mu} & \Phi_3 & \Phi_4 \\ 0 & 0 & \sqrt{\gamma} & 0 \\ 0 & 0 & 0 & \sqrt{\gamma} \end{bmatrix}$$
(9)

For 2nd family STBCs, we obtain the same structure of the above **R** matrix but with different components. Examination of the structure of **R** discloses the simplified-decoding property of both families of codes, with complexity $2M^3$. In fact, the ML metric turns out to be a sum of four quadratic functions, depending on (x_1, x_3, x_4) , (x_2, x_3, x_4) , x_3 , and x_4 , respectively. The low–complexity MLD using SD searching algorithm is given as follows.

- 1) We first choose a pair (x_3, x_4) using a 4-dimensional real SD $(M^2$ branch metric computation complexity).
- For every such pair, using Alamouti symbol-by-symbol decoding, we choose in parallel x₁ and x₂, resulting in 2M branch metric computation complexity.
- 3) The worst-case decoding complexity of fast-decodable STBCs is $2M^3$, as compared to a standard SD complexity M^4 .
- 4) The zero elements in the upper triangular matrix **R** allows faster branch metric computation.

Design Criteria of Fast-decodable STBCs – In summary, a STBC of the above form (see 1st, 2nd family STBCs) has low-complexity decoding if \mathbf{X}_a has an Alamouti structure and \mathbf{X}_b has an orthogonal generator matrix. If cubic shaping is required, \mathbf{T} should be chosen such that $\mathbb{G}^T\mathbb{G} = \mathbf{I}$. If \mathbf{X}_b has the Alamouti structure, extra savings of computation complexity are available in the SD.

Codes	δ_{\min}	Multiplicity
New STBC	0	$\sum_{\delta} A(2,\delta) = 160$
Perfect Code U matrix	0	$\sum_{\delta} A(2,\delta) = 560$
DjABBA	0.8304	A(4, 0.8304) = 770
Two-Layers Perfect Code	0.0016	A(4, 0.0016) = 128

TABLE I MINIMUM DETERMINANTS OF 4 \times 2 STBCs with 4-QAM signaling

IV. New STBC for 4×2 MIMO Systems

Here we design a fast-decodable 4×2 STBC based on the concepts elaborated upon in the previous sections. We first introduce the relevant definitions.

Definition 6: (*Quasi-orthogonal structure*) [11] A code such that

$$\mathbf{X} = \begin{bmatrix} x_1 & -x_2^* & -x_3^* & x_4 \\ x_2 & x_1^* & -x_4^* & -x_3 \\ x_3 & -x_4^* & x_1^* & -x_2 \\ x_4 & x_3^* & x_2^* & x_1 \end{bmatrix}$$

where $x_i \in \mathbb{C}$, i = 1, ..., 4, is said to have a quasi-orthogonal structure. Note that quasi-orthogonal STBCs are not full rank, and r = 2.

Definition 7: (*Full-rate, fast-decodable STBC for* 4×2 *MIMO*) A full-rate, fast-decodable STBC for 4×2 MIMO, denoted G', has $\kappa = 8$ symbols/codeword, and can be decoded by a 12-dimensional real SD algorithm (rather than the standard 16-dimensional SD).

The 4×4 codeword matrix $\mathbf{X} \in \mathcal{G}'$ encodes eight QAM symbols $\mathbf{x} = [x_1, \ldots, x_8] \in \mathbb{Z}[j]$, and is transmitted by using the channel four times, i.e., T = 4. Following the idea of the previous section, we choose the following codeword structure:

$$\mathbf{X} = \mathbf{X}_a(x_1, x_2, x_3, x_4) + \mathbf{T}\mathbf{X}_b(z_1, z_2, z_3, z_4)$$
(10)

where

$$\mathbf{T} = \begin{bmatrix} \mathbf{I}_2 & 0\\ 0 & -\mathbf{I}_2 \end{bmatrix} \tag{11}$$

is used to preserve the orthogonality between the two components of the code (similarly to the codes of previous section), $\mathbf{X}_a(x_1, x_2, x_3, x_4)$ and $\mathbf{X}_b(z_1, z_2, z_3, z_4)$ follow the quasi-orthogonal STBC structure (see Definition 6), where $x_1, x_2, x_3, x_4 \in \mathbb{Z}[j]$ and

$$\begin{bmatrix} z_1 & z_2 & z_3 & z_4 \end{bmatrix}^T = \mathbf{U} \begin{bmatrix} x_5 & x_6 & x_7 & x_8 \end{bmatrix}^T$$
(12)

where $z_i \in \mathbb{C}$, $x_k \in \mathbb{Z}[j]$, $i = 1, \ldots, 4$, $k = 5, \ldots, 8$ and U is a 4×4 unitary matrix. Note that 1) The matrix T guarantees cubic shaping, and 2) Since the matrix \mathbf{X}_a has a quasi-orthogonal structure, the code is not full rank: in fact, it has r = 2. As a consequence, we conduct a search over the matrices U leading to the minimum of $\sum_{\delta} A(2, \delta)$, i.e., the total multiplicity of all rank 2 terms in (2). The term $A(2, \delta)$ represents the total number of codeword difference matrices of rank 2 and product distance δ . Since an exhaustive search through all 4×4 unitary matrices is too complex, we focus on those with the form $\mathbf{U} = \mathbf{DF}$, where $\mathbf{F} \triangleq [\exp(j2\pi\ell n/4)]_{\ell,n=1,\ldots,4}$ is a 4×4 discrete-Fourier-transform matrix, and $\mathbf{D} \triangleq \operatorname{diag}(\exp(j2\pi n_{\ell}/N))$ for some integers N, ℓ , with $0 \leq n_{\ell} < N$ and $\ell = 1, \ldots, 4$.

For 4-QAM signaling, taking N = 7 and $n_{\ell} = 1, 2, 5, 6$, we have obtained

$$\mathbf{U} = \begin{bmatrix} 0.31 + 0.39i & 0.31 + 0.39i & 0.31 + 0.39i & 0.31 + 0.39i \\ -0.11 + 0.49i & -0.49 - 0.11i & 0.11 - 0.49i & 0.49 + 0.11i \\ -0.11 - 0.49i & 0.11 + 0.49i & -0.11 - 0.49i & 0.11 + 0.49i \\ 0.31 - 0.39i & -0.39 - 0.31i & -0.31 + 0.39i & 0.39 + 0.31i \end{bmatrix}$$

which yields the minimum $\sum_{\delta} A(2, \delta)$.

Under 4-QAM signaling, we compare the minimum determinants δ_{min} and their associated multiplicities, as well as CERs of the above STBC to the following 4×2 codes:

- 1) Code (10), with U the 4×4 "perfect" rotation [12].
- 2) The best DjABBA code of [3].
- 3) The "perfect" two-layer code of [13].

Determinant and multiplicity values are shown in Table I. The CERs are shown in Fig. 1. The proposed code achieves the best CER up to 10^{-5} . Due to diversity loss, the performance curve of the new code and the one of DjABBA cross over at CER= 10^{-5} .

Low-Complexity MLD – Following the same decoding process as that of 2×2 MIMO, we obtain the following **R** matrix

$$\mathbf{R} = \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 \\ \mathbf{0}_{4 \times 4} & \mathbf{S}_3 \end{bmatrix}$$
(13)

where

$$\mathbf{S}_{1} = \begin{bmatrix} \sqrt{\mu} & 0 & 0 & \Phi_{1} \\ 0 & \sqrt{\mu} & -\Phi_{1} & 0 \\ 0 & 0 & \sqrt{\gamma} & 0 \\ 0 & 0 & 0 & \sqrt{\gamma} \end{bmatrix}$$
(14)

 \mathbf{S}_2 is a 4 × 4 non-zero matrix, \mathbf{S}_3 is a 4 × 4 upper triangular matrix, $\mu = \sum_{i=1}^2 \sum_{j=1}^4 |h_{ij}|^2$, and $\Phi_1 \triangleq 2\Re(h_{11}^*h_{14} + h_{21}h_{24}^* - h_{12}h_{13}^* - h_{22}h_{23}^*)$

Summarizing, we use the following MLD where the search is based on SD algorithm:

- We use a 12-dimensional real SD, requiring M^6 branch metric computations, to find $\mathbf{u}_5^{16} \triangleq [u_5, \ldots, u_{16}]$. Then, we subtract the interference terms from \mathbf{u}_5^{16} and the partial symbol vector $\mathbf{u}_1^4 \triangleq [u_1, \ldots, u_4]$ can be computed directly using Alamouti symbol-by-symbol decoding with decoding complexity 2M.
- The worst-case decoding complexity of fast-decodable STBCs is $2M^7$ rather than a standard SD complexity M^8 .
- The zero entries in the matrix **R** allow simple branch metric calculation in the decoding. V. CONCLUSION

In this paper we study, under a unified framework, two families of full-rate, full-diversity 2×2 STBCs. We examine how both families allow low-complexity ML decoding. We also derive design criteria of fast-decodable STBCs for 2×2 MIMO. We then extend this design to the MIMO 4×2 . We

Fig. 1. Comparison of the CER of different 4×2 STBCs with 4-QAM signaling.

propose a family of new STBCs. Within this family, a new code is found that outperforms any known 4×2 code for 4-QAM signaling. A reduced-complexity SD algorithm enables using only a 12-dimensional real SD, rather than the standard 16-dimensional one. Moreover the branch metric computation cost can be reduced thanks to the quasi-orthogonal STBC structure.

REFERENCES

- J. Paredes, A. B. Gershman, and M. G. Alkhanari, "A 2 × 2 space-time code with non-vanishing determinants and fast maximum likelihood decoding," in *Proc. ICASSP*, Honolulu, Hawaii, USA, April 2007.
- [2] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," *IEEE J. Select. Areas Commun.*, vol. 16, no. 8, pp. 1451–1458, October 1998.
- [3] A. Hottinen and O. Tirkkonen, "Precoder designs for high rate spacetime block codes," Proc. CISS 2004, Princeton, March 17-19, 2004.
- [4] M. Samuel and M. P. Fitz, "Reducing the detection complexity by using 2 × 2 multi-strata space-time codes," *Proc. IEEE ISIT 2007*, pp. 1946– 1950, Nice, France, June 2007.
- [5] S. Sezginer and H. Sari, "A full-rate full-diversity 2×2 space-time code for mobile Wimax Systems," in Proc. *IEEE International Conference* on Signal Processing and Communications, Dubai, July 2007.
- [6] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading chanel," *IEEE Trans. Inform. Theory*, vol. 45, pp. 1639–1642, July 1999.
- [7] M. O. Damen, H. El Gamal, and G. Caire, "On maximum-likelihood detection and the search for the closest lattice point," *IEEE Trans. Inform. Theory*, vol. 49, no. 10, pp. 2389–2402, October 2003.
- [8] V. Tarokh, N. Seshadri and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Performance criterion and code construction," *IEEE Trans. Inform. Theory*, vol. 44, no. 2, pp. 744–765, March 1998.
- [9] J.-C. Belfiore, G. Rekaya, and E. Viterbo, "The Golden Code: A 2 × 2 full-rate space-time code with non-vanishing determinants," *IEEE Trans. Inform. Theory*, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.
- [10] E. Biglieri, Y. Hong, and E. Viterbo, "On fast-decodable space-time block codes," submitted to *IEEE Trans. Inform. Theory*, also available in arXiv: 07082804, Aug 2007.
- [11] H. Jafarkhani, "A quasi-orthogonal space-time block code," in *IEEE Trans. Commun.*, vol. 49, no. 1, pp. 1–4, January 2001.
- [12] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, "Perfect spacetime block codes," *IEEE Trans. Inform. Theory*, vol. 52, no. 9, pp. 3885–3902, September 2006.
- [13] Y. Hong, E. Viterbo, and J.-C. Belfiore, "A space-time block coded multiuser MIMO downlink transmission scheme," *Proc. IEEE ISIT*, pp. 257–261, Seattle, WA, June-July 2006.