
Signal Reconstruction in
Multidimensional Sensor Fields

Alessandro Nordio and Carla-Fabiana Chiasserini
Politecnico di Torino,Italy

Email: {nordio,chiasserini}@polito.it

Emanuele Viterbo
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Abstract—Sensor networks are often used for environmental
monitoring. In this context, sampling and reconstruction of a
physical field is a fundamental issue to solve. We consider a
bandlimited, multidimensional field and study the quality level
of its reconstruction when the sensor measurements are noisy
and the number of available sensors varies. We find that, for an
exact analysis of the problem, we would need the closed-form
expression of the eigenvalue distribution of the reconstruction
matrix, which, to the best of our knowledge, is still unknown.
Thus, we first derive a closed-form expression of the distribution
moments, and we find that the eigenvalue distribution tends to
the Marčenko-Pastur distribution as the field dimension goes to
infinity. We then apply our findings to the study of the MSE of
the reconstructed field, when linear reconstruction techniques are
used, and we derive an approximation that is very tight already
for a 3-dimensional field.

I. INTRODUCTION

One of the most popular applications of wireless sensor
networks is environmental monitoring. In general, a physical
phenomenon (hereinafter called signal or field) may vary
over both space and time, with some band limitation in both
domains. In this work, we address the problem of sampling and
reconstruction of a bandlimited, d-dimensional sensor field,
where d may take into account spatial as well as temporal
dimensions. We assume that sensors are randomly deployed
over a geographical area to sample the phenomenon of interest,
and that are transferred from the sensors to a common data-
collecting unit, the so-called sink node.

The issue we deal with is the field reconstruction from
a collection of samples that, being the sensors randomly
deployed, are not uniformly spaced. Let us assume that the
sampling points are known at the sink node, because (i)
either sensors are located at pre-defined positions or their
position can be estimated through a localization technique,
and (ii) the sampling time is either periodic or included in the
information sent to the sink. Here, we do not deal with issues
related to information transport, and consider that all data are
correctly received at the sink node. Furthermore, we consider
that the field samples are corrupted by additive noise, due to
quantization, round-off errors or quality of the sensing device.

Several efficient and fast algorithms have been proposed to
numerically reconstruct or approximate a signal in these cases,
which amount to the solution of a linear system [1]. A widely
used technique consists in processing the sensor measures by
means of a linear filter, which is a function of the system pa-
rameters known at the sink. In [2], we have found that, to study

the quality of linear reconstruction, we need the eigenvalue
distribution of the reconstruction matrix. However, obtaining
such a distribution is still an open problem. In this work, we
first extend the system model and the problem formulation
presented in [2] to the case of multidimensional fields (Section
II). Then, we derive a closed-form expression of the moments
of the eigenvalue distribution (Section III), through asymptotic
analysis. By using the moments expressions, we prove that the
eigenvalue distribution of the matrix representing the sampling
system tends to the Marčenko-Pastur distribution as the field
dimension d → ∞ (Section IV). We apply our results to the
study of the mean square error (MSE) of the field estimate,
when the reconstruction at the sink is performed through
linear filtering and the sensor measurements are affected by
noise. We show that, by using the Marčenko-Pastur distribution
instead of the actual eigenvalue distribution, we obtain an
approximation to the MSE of the reconstructed field, which is
very tight already for a 3-dimensional field (Section V).

II. SYSTEM MODEL

Here, we present the multidimensional formulation of our
reconstruction problem. Also, we give some background on
linear reconstruction techniques and generalize to the multidi-
mensional case some results on the MSE of the reconstructed
field.

A. Irregular sampling of bandlimited signals

Let us consider a d-dimensional field model (d ≥ 1), where
r sensors are located in the hypercube H = {x |x ∈ [0, 1)d}
and measure the value of a bandlimited signal s(x)1. We sup-
pose that sensors can represent each sample with a sufficient
number of bits so that the quantization error is negligible.
Furthermore, we assume that the sensor sampling points are
known. At first, we consider that they are deterministic, then
we will assume that they are i.i.d. random variables uniformly
distributed in the hypercube H.

Let X = {x1, . . . ,xr}, with xq = [xq,1, . . . , xq,d]T ∈ H,
q = 1, . . . , r, be the set of sampling points, and s =
[s1, . . . , sr]T, sq = s(xq) the values of the corresponding

1Lower case bold letters denote column vectors, while upper case bold
letters denote matrices. The (h, k)-th entry of a matrix X is denoted by
(X)h,k , and the sign (·)T represents the transposition operator. E[·] is the
average operator, while the identity matrix is denoted by I. The superscript
(·)† denotes the conjugate transposition operator
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field samples. We represent the spectrum of s(x) by using
2M + 1 harmonics per dimension2, i.e., through a random
column vector a = [a−N , . . . , a+N ]T of size (2M + 1)d,
where N = (2M+1)d−1

2 , and we assume E[aa†] = σ2
aI. Then,

a strictly bandlimited signal over H can be written in terms of
Fourier series as the weighted sum of (2M + 1)d harmonics:

s(x) =
1√

(2M + 1)d

∑
�

aν(�)e2πixT� (1)

where � = [�1, · · · , �d]T, �m = −M, · · · ,M is a vector of
integers,

∑
� represents a d-dimensional sum, and the function

ν(�) =
d∑

m=1

(2M + 1)m−1�m,

−N ≤ ν(�) ≤ +N , maps the vector � onto a scalar
index. Following [1], we write the vector of field values s
as a function of the spectrum: s = G†

da, where Gd is the
(2M + 1)d × r Fourier matrix:

(Gd)ν(�),q =
1√

(2M + 1)d
e−2πixT

q � (2)

If the sensor measures of the field, p = [p1, . . . , pr]T, are
affected by noise, then the relation between sensor samples
and field spectrum can be written as:

p = s + n = G†
da + n (3)

where the noise is represented by the r-size, zero-mean
random vector n, with covariance matrix E[nn†] = σ2

nI2M+1.
We define the signal-to-noise ratio on the measure as:

SNRm
�
=

σ2
a

σ2
n

�
=

1
α

B. Sampling rate

Following [2], we introduce the parameter β defined as:

β =
(2M + 1)d

r
(4)

This value represents the ratio between the number of har-
monics used for the field reconstruction and the number of
sensors sampling the field. In the case of regular sampling
perfect reconstruction is achieved for β ∈ [0, 1) and, for β = 1,
we have the limit fixed by the Nyquist theorem for the perfect
recovery of the signal. In the following we consider β ∈ [0, 1).
Note also that 1/β represents the oversampling factor with
respect to the Nyquist sampling rate.

C. Some results on reconstruction quality

Given an estimate â of the field spectrum a, the recon-
structed signal is:

ŝ(x) =
1√

(2M + 1)d

∑
�

âν(�)e2πixT� (5)

2Without loss of generality, 2M + 1 represents the maximum number of
harmonics among all spatial and temporal dimensions

As a reconstruction performance metric we consider the MSE
of the field estimate, which, for any given set of sampling
points X , is defined as:

MSEX = E
a,n

[∫
H
|ŝ(x) − s(x)|2 dx

]

=
1

(2M + 1)d E
a,n

[‖â − a‖2
]

(6)

where the operator E[·] averages with respect to the subscripted
random vectors. Note that (6) still assumes that the sampling
points are deterministic; later in the paper, this assumption will
be removed.

For linear models such as (3) we estimate the field spectrum
by using a linear filter, B, such that â = B†p where B is an
r × (2M + 1)d matrix. In particular, we consider the linear
filter providing the best performance in terms of MSE, that is,
the linear minimum MSE (LMMSE) filter, thus:

B = G†
d(Rd + αI)−1 (7)

where Rd = GdG
†
d. Notice that this reconstruction technique

does not require interpolation and can be viewed as a gener-
alization of the classical discrete Fourier transform (DFT) to
irregularly sampled signals.

In [2], we showed that a simple and effective tool to
evaluate the performance of large finite systems is asymptotic
analysis. We computed the MSE by letting the field number of
harmonics and the number of samples grow to infinity, while
their ratio β = (2M +1)d/r is kept constant. We observed the
validity of asymptotic analysis results, even for small values of
M and r. Similarly, here we consider as performance metric
the asymptotic average MSE, normalized to σ2

a:

MSE∞ = lim
M,r→+∞

β

1
σ2

a
E
X

[MSEX ] = E
λd,β

[
αβ

λd,β + αβ

]
(8)

where λd,β is a random variable with probability density func-
tion (pdf) fd,β(x), distributed as the asymptotic eigenvalues
of Td = βRd = βGdG

†
d. In (8), we consider that the

sampling points are randomly distributed in the hypercube H,
and the average is over all possible realizations of the set X .
In particular, from now on, we carry out our analysis under
the assumption that the elements of the set X are independent
random vectors, with i.i.d. entries, uniformly distributed in the
hypercube H. The subscripts d and β of λ indicate that the
distribution of the asymptotic eigenvalues of Td depends on
both the field dimension d and the parameter β.

The (2M + 1)d×(2M + 1)d Hermitian Toeplitz matrix Td

plays an important role in our analysis. Its entries are given
by

(Td)ν(�),ν(�′) =
1
r

r∑
q=1

e2πixT
q (�−�′) (9)

where �, �′ ∈ [−M, . . . , M ]d. A detailed definition of T2 can
be found in [4].
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III. CLOSED-FORM EXPRESSION OF THE MOMENTS OF

THE ASYMPTOTIC EIGENVALUE PDF

Let λd,β be the asymptotic eigenvalue of Td, in the d-
dimensional case and for a given β. Looking at the asymptotic
expression of the LMMSE in (8), we note that a closed-form
expression of the eigenvalue distribution of the reconstruction
matrix, fd,β(x), would be required for its analytical evaluation.
Unfortunately, this calculation seems to be prohibitive, thus, as
a first step, we derive a closed-form expression of the moments
of λd,β , i.e., E[λp

d,β ], for any d, β, and positive integer p.
In the limit for M and r growing to infinity with constant

β, the expression of E[λp
d,β ] can be easily obtained from the

powers of Td as

E[λp
d,β ] = lim

M,r→+∞
(2M+1)d

r =β

1
(2M + 1)d

Tr

{
E
X

[Tp
d]

}
(10)

From (10) and using (9), the expression of the p-th moment
of λd,β can be written as:

E[λp
d,β ] = lim

M,r→+∞
β

1
rp(2M + 1)d

∑
q∈Q

∑
L∈Ld

·

E
X

[
exp

(
2πi

p∑
i=1

xT
qi

(�i − �[i+1])

)]
(11)

where Q =
{
q | q = [q1, . . . , qp]T, qi = 1, . . . , r

}
and

Ld = {L |L = [�1, . . . , �p]}, �i = [�i1 , · · · �id
]T, �im

=
−M, · · · ,M and where [i + 1] = i + 1 if 1 ≤ i < p, and
[i + 1] = 1 if i = p. The average E

X
[·] is performed over the

set of independent random vectors X = {x1, . . . ,xr} with
independent entries uniformly distributed in [0, 1).

Now, to obtain a closed-form expression of the distribution
moments, we rewrite (11) by using set partitioning. Let P =
{1, . . . , p} be the set of integers from 1 to p. We observe that
any given vector q ∈ Q partitions the set P into 1 ≤ k(q) ≤ p
disjoint non-empty subsets P1(q), . . . ,Pk(q) where Pj , j =
1, . . . , k(q), is the set of indices of the entries of q taking the
same value γj . i.e., Pj(q) = {i ∈ P | qi = γj}, and k(q) is
the number of distinct values γj taken by the entries of vector
q.

To represent the partitions of P , we build a tree of depth p
as follows (see Figure 1). A label from the set P = {1, . . . , p}
is given to each node of the tree, starting from the root which
is labeled by 1. Each node generates m + 1 leaves, labeled in
increasing order from 1 to m+1, where m is the largest label
in the path from the root to such node. Note that, at level p,
any value in {1, . . . , p} is used to label the leaves at least once.
Then, given a tree of depth p, we define ω = [ω1, . . . , ωp] as a
path of length p from the tree’s root to a leaf. Also, let k(ω) be
the number of distinct labels in ω. We observe that any given
path ω partitions the set P into 1 ≤ k(ω) ≤ p disjoint non-
empty subsets P1(ω), . . . ,Pk(ω), where k(ω) = k(q) and
Pj(ω) (j = 1, . . . , k(ω)) is the set of integers corresponding
to the depths of the j-th label in the path, i.e.,

Pj(ω) = {i ∈ P | ωi = j} (12)

p = 4

p = 3

p = 2

p = 1

1 2 1 2 3 1 2 3 32 432

212

1

1

2

31

1 1

Fig. 1. Partitions tree of depth p = 4. As an example, the path ω =
[1, 2, 1, 1] is highlighted by using dashed lines

From the discussion above, it should be clear that consider-
ing a partition of P is equivalent to considering a path ω in a
tree of depth p. Thus, after some calculations, we can rewrite
(11) as

E[λp
d,β ] =

p∑
k=1

⎛
⎝ ∑

ω∈Ωp,k

v(ω)d

⎞
⎠ βp−k (13)

where Ωp be the set of vectors ω, each corresponding to a
distinct partition of P , and Ωp,k ⊆ Ωp is the subset of Ωp

containing paths with k distinct labels.
It can be shown that [3], for any ω ∈ Ωp (or, equiv-

alently, a partition of P) and any arbitrary integer n, with
n = 1, . . . , k(ω), the coefficient v(ω) is given by:

v(ω) =
∫

Rk(ω)−1

p∏
i=1

sinc
(
yωi

− yω[i+1]

) |yn=0 dyn (14)

where yn = [y1, . . . , yn−1, yn+1, . . . , yk(ω)]T; also 0 ≤
v(ω) ≤ 1. Equation (13) provides a closed-form expression
of the moment E[λp

d,β ], as a polynomial in β of degree p− 1.
As a final step, in order to compute E[λp

d,β ], we need to
enumerate the partitions, i.e., the vectors ω ∈ Ωp,k, for each
k = 1, . . . , p. We note that Ωp represents the set of partitions
of a p-element set, thus it has cardinality |Ωp| = B(p),
where B(p) is the p-th Bell number or exponential number.
Furthermore, the subset Ωp,k ⊆ Ωp has cardinality S(p, k),
which is a Stirling number of the second kind, with B(p) =∑p

k=1 S(p, k).

IV. CONVERGENCE TO THE MARČENKO-PASTUR

DISTRIBUTION

In Section III, we have shown that the moments of the
asymptotic eigenvalues of Td are polynomials in β, given
by (13). In particular, the p-th moment E[λp

d,β ] has degree
p − 1 and is given by the sum of B(p) positive contributions
of the form v(ω)dβp−k(ω). Since 0 < v(ω) ≤ 1 and β > 0,
for any d, the following inequality holds:

E[λp
d+1,β ] ≤ E[λp

d,β ]
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i.e., for any given p and β, the moments of the asymptotic
eigenvalues decrease as the field dimension increases. The
series E[λp

d,β ], as a function of d, is positive and monotonically
decreasing, thus it converges to:

E[λp
∞,β ] = lim

d→+∞ E[λp
d,β ] (15)

It can be shown that the moments E[λp
∞,β ] are the Narayana

polynomials, given by

E[λp
∞,β ] =

p∑
k=1

T (p, k)βp−k (16)

where T (p, k) are the Narayana numbers [5]. Furthermore,
the random variable λp

∞,β follows the Marčenko-Pastur distri-
bution with pdf:

f∞,β(x) =

√
(c1 − x)(x − c2)

2πxβ
(17)

where c1, c2 = (1 ±√
β)2, 0 < β ≤ 1, c2 ≤ x ≤ c1.

Next, we apply our findings to the study of the LMMSE of a
reconstructed multidimensional field; in particular, we exploit
the Marčenko-Pastur distribution to compute the expectation
in (8).
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Fig. 2. MSE of the reconstructed field, for β = 0.4 and d = 1, 2, 3.
Comparison between the MSE asymptotic value (8) and the fully analytical
expression derived using the Marčenko-Pastur distribution (18)

V. STUDY OF THE RECONSTRUCTION QUALITY THROUGH

THE MARČENKO-PASTUR DISTRIBUTION

Consider the expression in (8), which represents the MSE
obtained through the LMMSE filter. By using the Marčenko-
Pastur distribution f∞,β instead of fd,β , we have:

MSE∞ = E
λ∞,β

[
αβ

λ∞,β + αβ

]
=

2β − θ +
√

θ2 − 4β

2β
(18)

where θ = 1 + β(1 + α).
Equation (18) provides an accurate approximation to the

asymptotic MSE, which can be exploited to derive the quality
of the reconstructed field, given a finite d. This is shown in
Figures 2 and 3, which plot the results obtained through (8)
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Fig. 3. MSE of the reconstructed field, for β = 0.8 and d = 1, 2, 3.
Comparison between the MSE asymptotic value (8) and the fully analytical
expression derived using the Marčenko-Pastur distribution (18)

and (18), respectively, for β equal to 0.4 and 0.8. We com-
puted (8) by averaging over the eigenvalues of 200 realizations
of the matrix Td. The results are presented as the SNRm varies
and for different values of the field dimension d. We notice
that for d = 3 our approximation is tight, for all values of
SNRm, and that the approximation tightens as β decreases.

VI. CONCLUSIONS

We studied a wireless sensor network sampling a ban-
dlimited, multidimensional field. We noted that, for an exact
analytical study of the quality of the reconstructed field, the
eigenvalue distribution of the reconstruction matrix is required.
Since such a distribution is unknown, we first derived a
closed-form expression of the distribution moments. By using
this expression, we showed that the eigenvalue distribution
of the reconstruction matrix tends to the Marčenko-Pastur
distribution as the field dimension tends to infinity. We applied
our results to the study of the MSE of the reconstructed field,
when linear filtering is used. We found that, by using the
Marčenko-Pastur distribution instead of the actual eigenvalue
distribution, we obtain a close approximation to the MSE
of the reconstructed signal, which is already excellent for a
3-dimensional field. We believe that our work is the basis
for an analytical study of various aspects concerning the
reconstruction quality of multidimensional sensor fields, and,
more generally, of irregularly sampled signals.
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[1] H. G. Feichtinger, K. Gröchenig, and T. Strohmer, “Efficient numerical
methods in non-uniform sampling theory,” Numerische Mathematik,
Vol. 69, pp. 423–440, 1995.

[2] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Quality of field reconstruc-
tion in sensor networks,” IEEE Infocom, Anchorage, AK, May 2007.

[3] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Bandlimited field recon-
struction for wireless sensor networks,” http://arxiv.org/abs/0707.1954

[4] T. Strohmer, “Computationally attractive reconstruction of bandlimited
images from irregular samples,” IEEE Transactions on Image Process-
ing, Vol. 6, No. 4, pp. 540–545, Apr. 1997.

[5] The on-line encyclopedia of integer sequences, http://www.research.att.
com/∼njas/sequences/A001263

Int. Zurich Seminar on Communications (IZS), March 12-14, 2008

59


