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Abstract—A key issue in compute-and-forward for physical
layer network coding scheme is to determine a good function
of the received messages to be reliably estimated at the relay
nodes. We show that this optimization problem can be viewed
as the problem of finding the closest point of Z[i]n to a line in
the n-dimensional complex Euclidean space, within a bounded
region around the origin. We then use the complex version of
the LLL lattice basis reduction (CLLL) algorithm to provide
a reduced complexity suboptimal solution as well as an upper
bound to the minimum distance of the lattice point from the
line. Using this bound we are able to find a lower bound to the
ergodic rate and a union bound estimate on the error performance
of a lattice constellation used for lattice network coding. We
compare performance of the CLLL with a more complex iterative
optimization method as well as with a simple quantized search.
Simulations show how CLLL can trade some performance for a
lower complexity.

Index Terms—Ergodic rate, compute-and-forward, CLLL al-
gorithm, quantized error, successive refinement.

I. INTRODUCTION AND MOTIVATION

Suppose that a complex integer lattice Λ = Z[i]n and
a vector h ∈ Cn are given. We consider the following
optimization problem

min
(a,α)∈Λ∗×C∗

Q(a, α) (1)

where1

Q(a, α) , σ2|α|2 + ‖αh− a‖2.

The optimization problem in (1) has been investigated in
the recent physical layer network coding schemes [1, 4, 6–
10, 12, 15] and MIMO linear receivers [16]. In [4, 8], the
optimal non-zero Gaussian integer vector a is chosen based
on an exhaustive search within the ball of radius 1+ ‖h‖

2

σ2 and
then the optimum α was given to be the MMSE coefficient
in order to maximize the computation rate of a real-valued
AWGN network. However, it has been shown in [11] that the
degree of freedom for compute and forward is less than 2.
In [12], the search for the optimum vector a is modeled as a
shortest vector problem for a lattice Λ. However, an efficient
approach to jointly find the optimum value of (a, α) is not
presented in these papers. It is clear that for small σ2 the
searching region is large and finding the optimal a is expensive
in terms of computational complexity.

1For a set X , we let X∗ = X − {0}.

In our paper, we consider the lattice reduction strat-
egy to minimize Q(a, α), a critical problem appeared in
compute-and-forward protocol [8] and lattice network coding
scheme [4]. Different from previous approaches in [4, 8, 12],
we restrict our result to non-zero vector a ∈ Z[i]n and non-
zero scalar α ∈ C. We summarize our contributions as follows.

• We use the complex version of the LLL lattice reduction
algorithm (CLLL algorithm) [5] to jointly find (a, α) that
minimize Q(a, α). The algorithm also provides an upper
bound on Q(a, α). Furthermore, the CLLL algorithm en-
ables us to find simultaneously (a, α) ∈ (Z[i]n)

∗ ×Z[i]∗

with much lower complexity, when compared to the
simple quantized approach.

• We define the ergodic rate for compute-and-forward pro-
tocol in physical layer network coding [8]. We derive
a lower bound on the ergodic rate in terms of (a, α)
derived from the CLLL algorithm [5]. We compare this
bound with the ergodic capacity [3] of a multiple access
channel (MAC-MISO upper bound). We also study the
average error probability of a lattice network protocol [4]
and derive a union bound estimate on the average error
probability.

• We propose and compare the following three search
methods to find a and α that minimize Q(a, α). 1) The
naive algorithm uses a simple quantized search over all
possible complex values of α. Then quantizing αh yields
the integer vector a. 2) The CLLL algorithm for an
(n + 1)-dimensional complex lattice is considered. In
order to relax α from Z[i] to C, we propose a successive
refinement search around the initial integer value of α. 3)
An iterative MMSE based ([8]) quantization approach is
used to refine the α provided by 1).

The rest of the paper is organized as follows. In Section II,
we review the CLLL-reduced basis of [5]. In Section III, we
study the minimization problem with applications to compute-
and-forward protocol [8] and lattice network code design [4].
In Section IV, we present solutions to the optimization prob-
lem, which are based on the successive refinement of CLLL
and an iterative MMSE-based quantization. In Section V, we
show some experimental results. We conclude our results in
Section VI.

Notations. Boldface letters are used for column vectors, and
capital boldface letters for matrices. We let Z, C, R, and



Z[i] denote the ring of rational integers, the field of complex
numbers, the field of real numbers, and the ring of Gaussian
integers, respectively, where i2 = −1. We let In denote a
n × n identity matrix. We let the operations (·)T and (·)H
denote transpose and Hermitian transposition. The operations
<(·) and =(·) denote the real and imaginary parts of a complex
number. We let | · | denote the absolute value of a real number,
or the modulus of a complex number. The ‖ · ‖ operation
denotes the Euclidean norm of a vector. The Hermitian product
of two vectors a and b is denoted by 〈a,b〉 , bHa. The set
of orthogonal vectors generated by the Gram-Schmidt orthog-
onalization procedure are denoted by {bGS1 ,bGS2 , . . . ,bGSn }
spanning the same space of {b1,b2, . . . ,bn}. The operation
E(·) denotes mean of a random variable. We let bxe denote
the closest integer to x.

II. COMPLEX LATTICE BASIS REDUCTION

A complex lattice Λ with basis {g1,g2, . . . ,gn}, where
gk ∈ Cn, includes points represented as a linear combination
of basis vectors with Gaussian integer coefficients. Let us
define the generator matrix for Λ as the n×n complex matrix

G ,
[

g1 g2 · · · gn
]
.

One can express Λ as {p = Gz|z ∈ Z[i]
n}. In the lattice

reduction, we let B = GU, where U is an unimodular matrix.
Let us define

µ`,j =
< b`,b

GS
j >

‖bGSj ‖2

where 1 ≤ `, j ≤ n. A generator matrix

B =
[

b1 b2 · · · bn
]

is said to be CLLL-reduced if the following two conditions
are satisfied [5]

1)
|<(µ`,j)| ≤ 1/2 |=(µ`,j)| ≤ 1/2

for 1 ≤ j < ` ≤ n;
2)

‖bGSk ‖2 ≥
(
δ − |µk,k−1|2

)
‖bGSk−1‖2

where 1 < k ≤ n, δ ∈ (1/2, 1] is a factor selected to
achieve a good quality-complexity tradeoff.

In [5], an algorithm was introduced to compute a CLLL-
reduced basis matrix B for a lattice Λ with a given generator
matrix G. Specifically, for an input matrix G and a factor δ,
the algorithm outputs the CLLL-reduced basis matrix B and
the unimodular matrix U such that B = GU. It was shown
in [5] that the first column of B, denoted by b1, satisfies

‖b1‖ ≤ β
n−1
4 vol(Λ)

1
n

where β = 1/(δ−1/2) and vol(Λ) is the volume of the lattice
Λ. This provides an upper bound to the length of the shortest
vector of a complex lattice Λ. The tightest upper bound is
found for δ = 1, which leads to β = 2.

III. MAIN RESULTS

In this section, we first solve the optimization problem using
CLLL algorithm. We then use this solution to derive a lower
bound on the ergodic rate of compute-and-forward protocol for
physical layer network coding. Similarly, we derive a union
bound estimate on the average probability of decoding error
for physical layer network coding.

A. Methodology

Let h = (h1, . . . , hn)T ∈ Cn and e` be the `-th unit vector
in Cn+1. Let us define an (n+1)−dimensional complex vector
as

h̄ = (h1, . . . , hn, σ)T

for some noise variance σ2. Let Λ be the lattice generated by

G =
[

e1 e2 · · · en h̄
]
. (2)

It follows that

vol(Λ) = |det(G)| = σ.

The (n+ 1)−dimensional CLLL-reduced basis generator ma-
trix B =

[
b1 b2 · · · bn bn+1

]
of Λ can be com-

puted using the aforementioned algorithm in [5]. For example,
for the first column of B, we can compute

‖b1‖2 ≤ 2
n
2 vol(Λ)

2
n+1 = σ

2
n+1 2

n
2 (3)

where
b1 = a1e1 + · · ·+ anen + an+1h̄

for some Gaussian integers a`’s, 1 ≤ ` ≤ n + 1. Defining
a = (a1, . . . , an) and taking −an+1 = α, we obtain

‖b1‖2 = ‖αh− a‖2 + σ2|α|2

= Q(a, α) ≤ σ
2

n+1 2
n
2 . (4)

B. Application

The above optimization can be straightforwardly applied to
the compute-and-forward protocol over finite rings [8, 14].
In [8], the optimization problem is in fact to maximize the
computation rate [8]

R(h,a) = max
α∈C∗

log+

(
1

σ2|α|2 + ‖αh− a‖2

)
(5)

where log+(x) = max{log(x), 0}. Maximizing (5) is equiva-
lent to minimizing Q(a, α). Using (1), we define

R1(h) , max
(a,α)∈Λ∗×C∗

log+

(
1

Q(a, α)

)
(6)

Then the definition of the ergodic rate is given below.
Definition 1: The ergodic rate Re of a compute-and-

forward protocol is defined as

Re , E (R1(h)) ,

where the mathematical expectation is taken over the channel
coefficient vector h. �

We have the following theorem.



Theorem 2: The ergodic rate of the compute-and-forward
protocol is lower bounded by

Re ≥ log+

(
1

σ
2

n+1 2
n
2

)
when the CLLL algorithm (discussed in Section III-A) is used
to find (a, α), given h.

Proof: The CLLL algorithm determines (a, α) accord-
ingly for a given h. Thus the ergodic rate is averaged over
various channel coefficients h. Moreover, since the function
g(x) , log(1/x) is a decreasing convex function for a positive
number x, we have

Re = E (R1(h))

= E
(

max
(a,α)∈Λ∗×C∗

log+

(
1

Q(a, α)

))
≥ E

(
log+

(
1

σ2|α|2 + ‖αh− a‖2

))
≥ log+

(
1

E(σ2|α|2 + ‖αh− a‖2)

)
(7)

≥ log+

(
1

σ
2

n+1 2
n
2

)
. (8)

where the first inequality follows from the fact that (a, α) is
suboptimal. The inequality in (7) holds because of Jensen’s
inequality and the inequality in (8) holds because of (4) and
the fact that g(x) is a monotone function.

In the compute-and-forward protocol, we assume that each
relaying node receives data transmitted simutaneously from n
users each with a single antenna. This scenario is very similar
to a n−user MAC case with one transmit antenna for each
user and one receiver antenna at the destination terminal. In
this protocol, assuming that x` is transmitted by the `−th user,
1 ≤ ` ≤ n, over a fading channel with coefficient h`, the
received signal at the relaying node is given by

y =

n∑
`=1

h`x` + CN (0, σ2),

and an upper bound on the instantaneous capacity is (MISO
bound)

Ch = log

(
1 +

(
n∑
`=1

|h`|2
)
/σ2

)
Considering h` ∼ CN (0, 1), we have the upper bound on the
ergodic capacity (MISO bound)

E(Ch) ,
∫ ∞

0

log(1 + t/σ2) e−ttn−1/(n− 1)! dt. (9)

In the next section we will compare the ergodic rate Re and
the ergodic capacity E(Ch) numerically.

Let Λ/Λ′ be a n-dimensional nested complex lattice con-
stellation and u be the desired linear combination of messages
with coefficient vector a ∈ Z[i]n, and α be the scalar. Then

the union bound estimate of the conditional probability of
decoding error is given by [4]

Pe(h,a) ≈ K exp

(
− d2

4σ2|α|2 + 4‖αh− a‖2

)
(10)

where d is the minimum inner coset distance and K is the
number of shortest vectors in the set Λ−Λ′. According to [2],
note that the sign ≈ can be replaced by the notation .. This
means an approximate upper bound, one that becomes closer
and closer to a true bound as σ2 goes to zero. Minimizing
Pe(h,a) in (10) is equivalent to minimizing Q(a, α) by
choosing the proper vector a and scalar α. By substituting
the upper bound (4) to the union bound estimate (10), we
have the following result.

Theorem 3: Let Λ/Λ′ be a nested lattice code and u be the
desired linear combination of messages with coefficient vector
a 6= 0 and α 6= 0 be the scalar both coming from CLLL
algorithm. Then the union bound estimate for the average
probability of decoding error is

E (Pe(h,a)) . K exp

(
− d2

σ
2

n+1 2
n
2 +2

)
. (11)

�

IV. SEARCHING APPROACHES

In [8], for a given a ∈ Z[i]n, the optimum value of α is
given by

αMMSE =
SNR· < h,a >

1 + SNR · ‖h‖2
(12)

where SNR = 1
σ2 . However the problem of finding non-zero

a ∈ Z[i]n is not well-addressed. In fact, the authors of [8]
suggest to find this vector by doing a brute force searching in
a bounded sphere of square radius 1 + SNR · ‖h‖2.

Here, we propose and analyze the following search tech-
niques to find the best a and α. In the following proposed
methods (except successive refinement of CLLL), we dis-
cretize α in its norm and phase and let the absolute value
of α vary from 1 to a maximum value and phase of α vary
from 0 to 89 degrees.

A. Simple Quantized Search

To obtain a = {a`}, 1 ≤ ` ≤ n, we quantize a` = bαh`e.
We then compute Q(a, α) and select the lowest one and its
corresponding a and α. Note that in this case a is a function
of α. We call this method as “simple quantized” search.
Specifically, this approach involves two passes: 1) We let |α|
vary from 1 to a maximum value in integer steps and the phase
of α vary from 0 to 89 degrees. We let α be the value that
minimizes Q(a, α). 2) We refine the search around this α in
steps of 0.1 around the real and imaginary parts in order to
find smaller values of Q(a, α). Note that in this case a is a
function of α.



B. Successive Refinement of CLLL

The CLLL algorithm finds the best α ∈ Z[i] and a ∈ Z[i]n

simultaneously, while previous technique performs a compo-
nentwise quantization of the vector αh for each α. Since the
derived α is a Gaussian integer, we perform successive refine-
ment to search for the best α in C. In particular, we search
around the best value of α delivered by the CLLL algorithm
to find smaller values of Q(a, α). Let α = αr + iαi be such
value. We then compute Q(a, α′), where α′ = α′r + iα′i,
αr − 1 < α′r < αr + 1 and αi − 1 < α′i < αi + 1. The
α′i and α′r are chosen in steps of η = 0.01 in our simulations.
If one results in smaller Q(a, α′) < Q(a, α), we replace α by
α′. We refer this method as “successive refinement of CLLL”.

C. Iterative MMSE-based Quantization

As in the first method we search through many values of α
to find the best vector a by quantizing αh componentwise. For
each α we substitute the vector a into (12) to compute αMMSE.
We let α = αMMSE and iterate the above procedure until we
reach a maximum number of iterations. We select the best α
and a that minimize Q(a, α). This method is named “iterative
MMSE-based quantization”.

D. Complexity Comparison

Let us assume that the ergodic rate and the parameter
Q(a, α) for M samples of n-dimensional channel vector h
at a fixed SNR are of interest. We find the complexity of
the above three proposed methods and the exhaustive search
provided in [4, 8].

A) Since we search for all possible non-zero integer
vectors where their square norms are less than
1 + SNR · ‖h‖2, the complexity of the brute force
search in [4, 8] is of order O (M · SNRn).

B) At high SNR’s, the optimal αMMSE is roughly
equivalent to ‖ ah‖. Therefore, the search space
for |α| can be upper bounded by SNR. The
best complexity for a sorting algorithm for each
h is O (M · SNR · log SNR). Hence the com-
plexity order of simple quantized search and
iterative MMSE-based quantization is at most
O
(
M · SNR2 · log SNR

)
.

C) The complexity of successive refinement of CLLL
equals to the complexity of finding an (n +
1)-dimensional complex reduced basis which is
O
(
M(n+ 1)2 log(n+ 1)

)
.

The complexity of successive refinement of CLLL is lower
than all the other schemes, since it only varies by n. However
the complexity of the other methods is based on SNR. We note
that the highest complexity is for exhaustive optimal search
presented in [4, 8].

V. EXPERIMENTAL RESULTS

We evaluate and compare the performance of the different
methods for the 2-dimensional complex space (i.e., the two

user case). The components of h are assumed to be circularly-
symmetric complex Gaussian, with mean zero and unit vari-
ance, as in the Rayleigh fading channel model.

For the simple quantized search, we let |α| vary from 1 to
300 in integer steps and the phase of α vary from 0 to 89
by steps of 1 degrees. In a second pass we refine the search
around α in steps of 0.05 to find smaller values of Q(a, α).
Similar refinement was performed for the CLLL method. For
the iterative MMSE method we selected a maximum of 10
iterations.
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Fig. 1. Complementary cumulative distribution function for Q(a, α) at
SNR = 10 dB. The complex channel gain is circularly-symmetric Gaussian
distributed CN (0, 1).

Figs. 1 and 2 compare the complementary cumulative
distribution (CCDF) of the minimum Q(a, α) at SNR =
10 and20 dB respectively.

Fig. 3 shows the CCDF of the minimum Q(a, α) at SNR =
40 dB for the three methods. We observe that iterative MMSE-
based quantization method exhibits the best performance at
the highest complexity. The CLLL method has the lowest
complexity but exhibits a slight degradation. In high SNR’s
the curve of CLLL algorithm via successive refinement breaks
the simple quantized search one.

In Fig. 4, for different values of SNR, we plot the upper
bound σ

2
n+1 2n/2 against the average values of the minimum

Q(a, α)’s for simple quantized search, successive refinement
of CLLL and iterative MMSE-based quantization. The bars on
curves show the standard deviation of the minimum Q(a, α)’s
for that specific SNR.

Finally, a comparison between the ergodic rates for the
different strategies is given in Fig. 5. For comparison we show
the capacity of a two-user MAC and the lower bound in (8).
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Fig. 2. Complementary cumulative distribution function for Q(a, α) at
SNR = 20 dB. The complex channel gain is circularly-symmetric Gaussian
distributed CN (0, 1). Exhaustive search is intractable at this SNR value.
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Fig. 3. Complementary cumulative distribution function for Q(a, α) at
SNR = 40 dB. The complex channel gain is circularly-symmetric Gaussian
distributed CN (0, 1). Exhaustive search is intractable at this SNR value.

VI. CONCLUSIONS

A novel method is introduced to find the closest point of
a Z[i]n lattice to a line, within a bounded region around
origin. This is also used to maximize the computation rate of
a compute-and-forward protocol for a physical layer network
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Fig. 4. Comparison between average minimum Q(a, α) for the different
approaches. The complex channel gain is circularly-symmetric Gaussian
distributed CN (0, 1). Exhaustive search is intractable at this SNR value.

coding. A lower bound on the ergodic rate and an estimation
of the error performance of a lattice constellation for lattice
network schemes is obtained.

We propose three methods for solving the optimization
problem for Q(a, α): simple quantized search, successive
refinement of CLLL and iterative MMSE-based quantization.
The successive refinement of CLLL has two specific properties
different from the simple quantized search and the iterative
MMSE-based quantization. First, CLLL algorithm determines
the vector (a, α) in one step. Second, the complexity of this
method is lower than the others.

Simulations are carried out to reveal the effectiveness of
CLLL algorithm along with successive refinement. The result
of using successive refinement of CLLL is approximately
equivalent to original exhaustive search for low SNR. In
particular, successive refinement of CLLL trades a little bit
of performance for a reduced complexity. However the sim-
ple quantized search and iterative MMSE-based quantization
method outperforms the CLLL setups.

Given the vector a, the best α is the one delivered by (12),
which is equivalent to a

h at low σ2’s. Since ‖a‖ has to
large [11], if h be very small, then αMMSE will be large as
well. This cannot happen because |αMMSE|2 has to be upper
bounded by σ2. This issue arises when we fix a for each
h and differentiate Q(a, α) to get the best α. This is also
impractical in ergodic situation because finding the best a is
costly at low σ2’s. The experimental results suggest us to find
α first and then put a = bαhe. This along with successive
refinement give better performance than the above approach
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Fig. 5. Comparison between ergodic rates for the different approaches. Two-
user MAC capacity and lower bound derived based on CLLL are also plotted.

at much lower complexity. Overall, we think the solution of
minimizing Q(a, α) has to be found jointly, because a and α
are dependent in general.

In future work, we will generalize these methods to wireless
network coding over finite rings [14]. We will further study
good lattice constellations derived from strong infinite lattices
including the ones introduced in [13].
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