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Abstract—In this paper, we consider multiuser space-time
block codes (STBCs) for 2 × 2 multiple–input multiple–output
(MIMO) uplink transmissions. Using a truncated union–bound
(UB) approximation, we propose design criteria of multiuser
STBCs for quasi-static fading MIMO multiple access channels
(MACs). Next, we demonstrate how, by combining the structure
of algebraic perfect STBCs in [10], a family of multiuser STBCs
can be constructed to fulfill the design criteria, and show that
the proposed STBC outperforms all previously known codes over
quasi-static fading MIMO MACs.

Index Terms—space-time block codes, multiuser, MIMO,
MAC.

I. INTRODUCTION

Space-time block codes (STBCs) have been inten-

sively studied for single-user multiple–input multiple–output

(MIMO) [1–10]. Recently, Gärtner and Bölcskei [11] extended

the idea of single user STBC to multiuser cases. Using a con-

cept of dominant error regions, the design criteria of multiuser

STBCs were proposed in [11] to increase information rate over

quasi-static fading MIMO multiple access channels (MACs). A

2×2 MIMO multiuser STBC was proposed based on Alamouti

structure.

Motivated by the above design criteria, an algebraic con-

struction of multiuser STBCs was presented in [15] to achieve

the diversity-multiplexing tradeoff for users using a single

transmit antenna (nt = 1) and any number of receive antennas

nr.

Another family of multiuser STBCs were proposed in [13],

where the design criteria were generalized for more than two

users from the perspective of minimizing an upper bound of

pairwise error probability (PEP). However, these codes incur

in large peak-to-average penalties, since some elements in the

codeword matrices are zero.

In our paper, we consider 2 × 2 multiuser MIMO over

quasi-static fading MACs, which was also discussed in [11,

13]. Unlike the multiuser codes in [11, 13], we propose the

code design criteria based on a truncated union-bound (UB)

approximation. Motivated by algebraic perfect space–time

block codes in [10], we demonstrate the construction of a

family of multiuser STBCs in order to minimize the error

probability of the truncated UB, without the peak-to-average

penalty of [13]. Within this family, we present a code design

example for a two–user 2×2 MIMO case. Finally we show by

simulation that the proposed codes outperform the previously

known STBCs [11, 13].

The outline of this paper is organized as follows. Section II

introduces system model. In Section III we present the design

criteria of algebraic multiuser MIMO STBCs. In Section IV,

we show a design example of two-user 2 × 2 STBCs, which

outperform previously known multiuser MIMO STBCs in [11,

13]. Finally, conclusions are drawn in Section V.

Notations: Boldface letters are used for column vectors,

and capital boldface letters for matrices. Superscripts T and †

denote transposition and Hermitian transposition, respectively.

Let Q and C denote the field of rational and complex numbers,

respectively. The vec(·) operator stacks the m column vectors

of a n×m complex matrix into a mn complex column vector.

Let ‖ · ‖ denote the Frobenius norm and let E[·] denote mean

of a random variable.

II. SYSTEM MODEL

We consider an uplink scenario, where K uncoordinated

users simultaneously communicate with a base station over a

quasi-static fading MIMO MAC. We assume that each user

employs an identical nr × nt MIMO system.

A. Transmitter

At the transmitter of the k-th user, let

s
(k) ,

[
s
(k)
1 , . . . , s

(k)
i , . . . , s

(k)
N

]T
∈ CN

be the information symbol vector of length N , where s
(k)
i ,

i = 1, . . . , N , denote independent information symbols drawn

from a complex Q−QAM constellation.

Then, for any k-th user, the symbol vector s
(k) is encoded

by its individual STBC. This produces the k-th user codeword

matrix Ck ∈ Cnt×N from the codebook Ck spanning over N
channel uses, defined as

Ck ,

[(
c
(k)
1

)T

, . . . ,
(
c
(k)
j

)T

, . . . ,
(
c
(k)
nt

)T
]T

∈ Ck

where c
(k)
j , {c

(k)
j,n}

T ∈ CN ,j = 1, . . . , nt, and c
(k)
j,n denotes

the space-time block coded symbol transmitted at the j-th

transmit antenna of user k over the n-th channel use. The

above choice implies that the users transmit at a rate of one

symbol per channel use.
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All K users are assumed to simultaneously transmit their

codeword matrices Ck yielding the following joint codeword

matrix

X , [CT
1 , . . . ,CT

k , . . . ,CT
K ]T ∈ C (1)

where C is the joint codebook. In this paper, we assume that

each user employs a linear STBC [12, Definition 5], so that the

elements c
(k)
j,n are linear combinations of N complex Q–QAM

symbols.

B. Receiver

At the receiver, the received signal matrix Y ∈ Cnr×N can

be written as

Y = HX + N, (2)

where N ∈ Cnr×N is the complex white Gaussian noise with

i.i.d. entries ∼ NC(0, N0) and H ∈ Cnr×Knt is defined as

H =
[
H

(1), . . . ,H(k), . . . ,H(K)
]

where H
(k) , {H

(k)
i,j } ∈ Cnr×nt , denotes the channel matrix

associated with the k-th user, assumed to remain constant

during the transmission of a codeword of user k, and to take

on independent values from one codeword to another of user

k. The elements H
(k)
i,j are the channel coefficients from the

j-th transmit antenna to the i-th receive antenna for user k,

assumed to be i.i.d. circularly symmetric Gaussian random

variable ∼ NC(0, 1). The channel matrices of all K users are

assumed to be perfectly known at the receiver, but not at the

transmitter.

III. NEW MULTIUSER SPACE-TIME BLOCK CODES

In this Section, we present the jointly full-rank design and

code design criteria, respectively.

Let us consider all K users, assuming that a joint codeword

matrix X ∈ C is transmitted, it may occur that

‖Y − HX‖2 > ‖Y − HX̂‖2

with X 6= X̂, resulting in a pairwise error.

Let X− X̂, with X 6= X̂, be the joint codeword-difference

matrix and let

A , (X − X̂)(X − X̂)†

be the joint codeword-distance matrix.

Similarly, when only user k is in error, assuming that a code-

word matrix Ck ∈ Ck is transmitted and Ĉk is erroneously

detected at the receiver, we call Ck − Ĉk the user codeword

difference matrix. The corresponding user codeword distance

matrix is defined as

E
(k) , (Ck − Ĉk)(Ck − Ĉk)†

Let rk denote the minimum rank of E
(k) for all user

codeword pairs in Ck. We will assume rk = min(nt, N) = r
for all k, i.e., all user codes have full–rank.

If this full–rank condition holds for all K users, it is not

guaranteed that the joint code is also full rank. We say a

multiuser STBC is jointly full–rank, if all E
(k) 6= 0 then

rank(A) = Kr. Note that this property still holds for any

subset of the K users. We will show in the following how to

design the such codes.

A. Jointly full-rank design

Here, we assume that there are K users each with nt = 2
antennas, a receiver with nr = 2 antennas. We choose N =
2K channel uses so that the joint codeword matrix X is a

square matrix. Given the k-th user information symbol vector

s
(k), we use an algebraic unitary matrix M with full diversity

(see reference in [14]) to generate

v
(k) = Ms

(k) =
[
v
(k)
1 , . . . , v

(k)
N

]T
k = 1, . . . , K (3)

The matrix M is obtained from the canonical embedding

of an integral basis {ωj}, j = 1, . . . , N of an ideal of an

algebraic number field L of degree N over Q(i) [16]. The

full diversity property implies that all the elements of v
(k) are

non-zero for any non-zero information vector s
(k) [16]. The

user codewords are generated as

C1 =

[
v
(1)
1 v

(1)
2 . . . v

(1)
N

γv
(1)
N v

(1)
1 . . . v

(1)
N−1

]

C2 =

[
γv

(2)
N−1 γv

(2)
N . . . v

(2)
N−2

γv
(2)
N−2 γv

(2)
N−1 γv

(2)
N . . . v

(k)
N−3

]

C3 = · · ·

where γ 6= 1 is a complex number on the unit circle in order

to preserve a uniform transmitted power from each antenna.

In such a manner, the code will not incur in extra peak–to–

average penalty, since all entries are non-zero with the same

average power (see design example for details).

Lemma 1: For γ 6= 1, the above user codes Ck are full

rank r = 2 for all K users. �

Proof. It is enough to show that the two rows of Ck are

linearly independent, which is equivalent to saying they can

not be scalar multiples for any non zero information vector

s
(k). This is the case thanks to the term γ 6= 1 which multiplies

a different number of elements in each row. �

Lemma 2: If N = ntK the joint codeword matrices X

are square and the multiuser code C is jointly full–rank if γ
is transcendental. �

Proof. Looking at the structure of the N ×N square codeword

matrix X we note that the elements of the lower triangular

part are multiplied by γ. It can be easily verified that the

determinant of X is a polynomial p(γ) in the variable γ by

using the well known expression

det(X) =
∑

π

N∏

i=1

xi,π(i)

where the sum runs over all the permutations π. This polyno-

mial has degree N − 1 since the coefficient of the term γN−1

is given by

x1,N · x2,1 · x3,2 · · ·xN,N−1 6= 0



which is not zero thanks to the full diversity rotation in (3),

yielding vectors v
(k) with all non-zero entries. The coefficients

of p(γ) are in the algebraic number field L defined after

equation (3). The roots of the polynomial equation p(γ) = 0
are in some algebraic extension L′ of L [16]. By choosing γ
to be transcendental (i.e. in no finite extension of L) we can

guarantee that

p(γ) = det(X) 6= 0

�

Note that the above Lemma gives only a necessary condition

and some specific not transcendental γs not belonging to L′

can also yield a jointly full–rank multiuser code.

B. Design criteria

To simplify analysis, we assume that the jointly full–rank

multiuser STBC is linear [12]. Then, the error probability of

the multiuser MIMO is upper bounded by the following union

bound [13]:

P (e) ≤
∑

X6=0

P (e|X)

≤
∑

X6=0

K∑

k=1

Ak∑

(i1,...,ik)

P (ei1 ∩ · · · ∩ eik
|X) (4)

where ek represents the k-th user error event, the sum
∑Ak

(i1,...,ik) is over all Ak ,

(
K

k

)
possible k-tuples of users in

error. The k-tuple (i1, . . . , ik) denotes the indices of k distinct

users. Using the Chernoff bound, we can upper bound each

term in (4) with:

P (ei1 ∩ · · · ∩ eik
|X) ≤

(
Es

N0

)−nrkr

[δ(i1,...,ik)(X)]−nr (5)

where

Es ,
1

KntN

∑

i,j

E[|xi,j |
2]

is the average energy per QAM information symbol and the

determinants:

δ(i1,...,ik)(X) , det

(
k∑

`=1

Ci`
Ci`

†

)
(6)

We can further define the corresponding minimum determi-

nants among all the k-tuples

δ
(min)
k = min

(i1,...,ik)

X6=0

δ(i1,...,ik)(X)

Finally, we consider a truncated union bound based only on

the terms corresponding to the minimum determinants δ
(min)
k

P (e) ≈
K∑

k=1

AkBkP (δ
(min)
k )

where the AkBk is the multiplicity of the term

P (δ
(min)
k ) =

(
Es

N0

)−nrkr (
δ
(min)
k

)−nr

(7)

which represents the dominant error probability of a k-tuple

of users.

The codes designed in the previous section satisfy the

following lemma.

Lemma 3: The determinants in (6) are all non-zero. �

Proof. Since the terms Ci`
Ci`

† in (6) are positive definite we

use the determinant inequality

det

(
k∑

`=1

Ci`
Ci`

†

)
≥

k∑

`=1

det
(
Ci`

Ci`

†
)

where the determinants on the rhs are all greater than zero due

to Lemma 1. �

Hence, under the full–rank and linearity assumption, in

order to minimize the error probability P (e), we should design

multiuser STBCs to

1) maximize the minimum determinants δ
(min)
k , ∀k;

2) minimize the associated multiplicity AkBk.

IV. CODE DESIGN EXAMPLE

As an example, we consider K = 2 users each employing

a 2 × 2 MIMO with N = 4 over quasi-static fading MACs.

The unitary matrix M in [10] is chosen and γ = i. Note

that this γ is not transcendental but still guarantees the non-

zero determinant. We also note that the proposed code and

the known codes in [11, 13] are “full–rank” joint multiuser

STBCs, i.e., rk = 2 and rank(A) = 4. We recall that the error

probability P (e) takes into account the total number of errors

of both users.

Let us define the peak-signal-to-noise ratio as

Peak-SNR , ntEp/N0

where

Ep = max
i,j

E[|xi,j |
2]

denotes the peak average energy of a transmitted QAM symbol

from one antenna. We have

Ep = Es

for the proposed code and the one in [11], while

Ep = 2Es

for the code in [13] which has some zero entries in the

codeword.

In Table I, the proposed STBCs together with multiuser

STBCs in [11, 13] are compared in terms of

1) the minimum determinant δ
(min)
k when k users are

simultaneously in error;

2) the associated multiplicities AkBk and the SNR (dB) at

codeword error rate (CER) of 10−3.

We see in Table I that

1) when one user is in error, the minimum determinant

of the code of [11] is slightly larger than that of the

proposed code;



Codes δ
(min)
1 A1B1 δ

(min)
2 A2B2

New 13.2 16 52 16

GB 16 64 32 256

ZL 4 64 8 256

TABLE I
COMPARISON OF MINIMUM DETERMINANTS WHEN ONE OR TWO USERS ARE IN ERROR, ASSOCIATED MULTIPLICITIES.

2 4 6 8 10 12 14 16 18
10

−3

10
−2

10
−1

10
0

Peak−SNR

P
(e

)

New Code
GB
ZL

Fig. 1. Comparison of the CER performance of the new code, known codes in [11] and [13], 4-QAM signalling, quasi-static fading channel.

2) when both users are in error, the minimum determinants

of our code is the largest among all multiuser STBCs.

In both conditions, the associated multiplicities of the pro-

posed code are significantly smaller than those of [11, 13].

With 4-QAM signalling, we show CER performance of the

proposed code and other previously known codes in Fig. 1. At

CER= 10−3, it is shown that the proposed code outperforms

3dB to that of the code in [13], while it also outperforms

slightly to that of the code in [11].

V. CONCLUSION

In this paper, we propose new algebraic multiuser

2 × 2 STBCs for quasi-static MIMO MACs. Using a UB

approximation, we first present the code design criteria.

Combining algebraic perfect STBC structures, we show how

to design a family of multiuser STBCs to satisfy the design

criteria, yet without peak–to–average penalty. Within this

family, we present a code design example for a two-user case.

It is shown that the proposed multiuser STBC for quasi–static

fading outperforms all previously known codes.
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