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Abstract—In this paper we study wireless sensor networks for
monitoring applications. We focus on the problem of sampling
and reconstruction of multidimensional bandlimited signals,
when the sensor locations are equally spaced points affected
by some jitter, and the sensor measurements are affected by
noise. We show how the mean square reconstruction error can
be estimated from the eigenvalue distribution of a certain Toeplitz
matrix. We analyze the d-dimensional case, and we show how the
mean square error can be easily estimated by using asymptotic
analysis.

I. INTRODUCTION

Sensor networks, whose nodes sample a physical field,
like air temperature, light intensity, pollution levels or rain
falls, typically represent an example of quasi-equally spaced
sampling [1]–[4]. Indeed, in general, sensors are not regularly
deployed in the area of interest due to terrain conditions and
deployment practicality and, thus, the physical field is not
regularly sampled in the space domain.

We consider that sensors report their measurements to a
common processing unit (or sink node), which is in charge
of reconstructing the sensed field, based on the received
samples and on the knowledge of their coordinates. If the
field is bandlimited in the space domain, then an estimate
of the discrete spectrum can be obtained by using linear
reconstruction techniques [1], [5], even in presence of additive
noise. We assume a d-dimensional physical field (d ≥ 1),
which can be represented with a certain number of harmonics
per dimension.

A convenient parameter commonly used to measure the
performance of such technique is the mean square error (MSE)
on the d-dimensional reconstructed signal. In [1], [6] it has
been shown that the asymptotic MSE (i.e., as the number of
harmonics and the number of samples tend to infinity while
their ratio is kept constant) is a function of the asymptotic
eigenvalue distribution fλ of a particular Toeplitz matrix Td,
which is related to the sampling system.

While several results have appeared in the literature for
Gaussian matrices or matrices with independent entries [7],
[8], few results are known for the matrices like the ones
studied in this paper. In particular, the asymptotic eigenvalue

distribution of Td is still unknown. Here, we derive the
moments of fλ, which are a useful basis for approximating
the distribution and for performing deconvolution [9], [10].
Furthermore, we show that, as d → ∞, fλ tends to the
Marčenko-Pastur distribution [11]. Finally, we present some
numerical results and applications where our findings are of
great use.

II. SYSTEM MODEL AND PREVIOUS RESULTS

As a first step, let us consider a one-dimensional field which,
when observed over a finite interval, it admits an infinite
Fourier series expansion [6]. However, one can think of the
largest index M of the non-negligible Fourier coefficients of
the expansion as the approximate one-sided bandwidth of the
field. We therefore represent the one-dimensional field, s(x),
by using 2M + 1 harmonics as

s(x) =
1√

2M + 1

M∑
k=−M

akej2πkx (1)

The field is observed within one period interval [0, 1) and sam-
pled by r sensors placed at positions1 x = [x0, . . . , xr−1]T,
xq ∈ [0, 1), q = 0, . . . , r − 1, which are independent
random variables with distribution fxq

(z), 0 ≤ z < 1.
The signal samples are denoted by the column vector s =
[s(x0), . . . , s(xr−1)]T. The field discrete spectrum is given by
the 2M +1 complex vector a = [a−M , . . . , a0, . . . , aM ]T . The
complex numbers ak represent amplitudes and phases of the
harmonics in s(x).

The vector s is related to the spectrum a through the
expression

s = G†
xa (2)

where the matrix G has entries

(G)kq =
1√

2M + 1
e−j2πkxq

k = −M, . . . ,M
q = 0, . . . , r − 1 (3)

1Column vectors and matrices are denoted by bold lowercase and bold
upper case letters, respectively. (X)kq is the (k, q) entry of the matrix X, and
I is the generic identity matrix. The conjugate transpose operator is denoted
by (·)†
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Note that these matrices appear in many signal processing
applications and they have been studied in a number of recent
works, e.g., [1], [6], [12]–[15]. More specifically, the work
in [1] considered the case where sampling positions are subject
to an unknown jitter, while [15] presented several applications
of the above Vandermonde matrix, which range from multiuser
MIMO systems to multifold scattering.

Now, consider linear techniques for reconstructing a signal
from the set of r irregularly-spaced samples with known
coordinates. In [6], [13]–[15], it has been observed that the
performance of these techniques are functions of the asymp-
totic eigenvalue distribution of the Hermitian Toeplitz matrix
T = βGG†, where

β =
2M + 1

r

is the aspect ratio (i.e., the ratio between the number of rows
and the number of columns) of the matrix G. The asymptotic
eigenvalue distribution of T is defined as the distribution of
its eigenvalues, fλ(β, z), in the limit of M and r growing to
infinity with constant aspect ratio β.

Unfortunately, such eigenvalue distribution is still unknown.
However, an explicit expression of the moments

E[λp] =
∫ ∞

0

zpfλ(β, z) dz

has been first derived in [12], when xq are uniformly dis-
tributed in [0, 1). Also, in the case where xq are independent,
quasi-equally spaced random variables, the analytic expression
of the second moment of the eigenvalue distribution of T,
i.e., E[λ2], has been obtained in [1]. Then, in [14] the
moments fλ(β, z) have been derived for the one-dimensional
case and any distribution fxq

(z), such that fxq
(z) = fx(z),

q = 0, . . . , r − 1.
In this work, we push the analysis of the matrix G further

and consider a more general formulation, which extends the
model in (1) to the multidimensional domain. We therefore
study the properties of (2M + 1)d × r random matrices with
entries given by

(Gd)ν(�),q =
1√

(2M + 1)d
e−j2π�Txq (4)

where the vectors xq = [xq1, . . . , xqd]T have independent
entries, characterized by the pdf fxqm

(z), q = 0, . . . , r − 1,
m = 1, . . . , d. The invertible function

ν(�) =
d∑

m=1

(2M + 1)m−1�m (5)

maps the vector of integers � = [�1, . . . , �d]T, �m =
−M, . . . ,M onto a scalar index, i.e., the row index of the
matrix Gd. In [12] it has been shown that the performance
of linear reconstruction techniques in sensor networks still
depends on the asymptotic eigenvalue distribution fλ(d, β, z)
of the matrix Td = βGdG

†
d. Notice that in the d-dimensional

case, β = (2M+1)d

r For given β and d, the analytic expression
of fλ(d, β, z) is still unknown, however, under the assumption

of xq uniformly distributed over [0, 1)d, we derived the
analytic expression of its moments [12]. Under the same
assumptions, in [12] we showed that as d → ∞, fλ(d, β, z)
tends to the Marčenko-Pastur law [11], i.e.,

lim
d→∞

fλ(d, β, z) = f∞(β, z) =

√
(c1 − z)(z − c2)

2πzβ

where c1, c2 = (1 ±√
β)2, 0 < β ≤ 1, c2 ≤ z ≤ c1

Next, we detail the problem addressed in this work and
introduce some useful notations.

III. PROBLEM FORMULATION: THE QUASI-EQUALLY

SPACED MULTIDIMENSIONAL MODEL

Let us consider that the vectors x are independent, quasi-
equally spaced random variables in the d-dimensional hyper-
cube [0, 1)d, i.e., the averages of x represent the coordinate of
the vertices of a d-dimensional grid in [0, 1)d. This is often the
case in measurement systems affected by jitter, or in sensor
network deployments, where the devices sampling the field of
interest cannot be regularly positioned due to terrain conditions
and deployment practicality [2]. Note that the distribution of
the variables x can be of any kind, the only assumption we
make is on their averages being equally spaced. Again, under
these conditions, the performance of a sampling system can
be expressed by using the eigenvalue distribution of the matrix
Td = βGdG

†
d, i.e., fλ(d, β, z) [1].

We define ρ as the number of samples per dimension,
thus the total number of samples is r = ρd. We denote
the coordinate of a generic vertex of the grid by the vector
q/ρ ∈ [0, 1)d, where q = [q1, . . . , qd]T, qm = 0, . . . , ρ − 1.
For notation simplicity and in analogy with (5), we identify
the vertex with coordinate q/ρ by the scalar index

μ(q) =
d∑

m=1

ρm−1qm (6)

Notice that 0 ≤ μ(q) ≤ r − 1 is an invertible function and
allows us to write

xμ(q) =
q
ρ

+
x̃μ(q)

ρ

where

E[xμ(q)] =
q
ρ

is the average coordinate of the sample identified by the scalar
label μ(q). Furthermore, we assume that the entries of the
vectors x̃μ(q) are i.i.d with pdf fx̃(z) and do not depend on
d, r, M , or q. By using this notation, the entries of Gd are
then given by

(Gd)ν(�),μ(q) =
1√

(2M + 1)d
e−j2π�Txµ(q) (7)

while the aspect ratio is

β =
(2M + 1)d

r
=

(
2M + 1

ρ

)d

(8)



The Hermitian Toeplitz matrix Td = βGdG
†
d is defined as

(Td)ν(�),ν(�′) =
1
ρd

∑
q

e−j2πxT
µ(q)(�−�′) (9)

where
∑

q is a d-dimensional sum over all vectors q such that
qm = 0, . . . , ρ − 1, m = 1, . . . , d.

In the following section, we derive the analytic expression of
the moments of fλ(d, β, z) with quasi-equally spaced vectors
xμ(q). Then, in Section V we show that as d → ∞, fλ(d, β, z)
tends to the Marčenko-Pastur law.

IV. CLOSED FORM EXPRESSION OF THE MOMENTS OF THE

ASYMPTOTIC EIGENVALUE PDF

Following the approach adopted in [16], [17], in the limit
for M and r growing to infinity with constant aspect ratio β
and dimension d, we compute the closed form expression of
E[λp], which can be obtained from the powers of Td as [7],

E[λp] = lim
M,r→+∞

β

Tr
{

E
X

[Tp
d]

}
(2M + 1)d

(10)

where the symbol Tr identifies the matrix trace operator, and
the average E

X
[·] is computed over the set of random variables

X = {x0, . . . ,xr−1}. An efficient method to compute (10)
exploits set partitioning. Indeed, the power Tp

d is the matrix
product of p copies of Td. This operation yields exponential
terms, whose exponents are given by a combination of p terms
of the form xT

μ(qi)
(�i − �[i+1]) (the proof is omitted for space

limitations). Each of these combinations can be represented
as a set of elements from the set P = {1, . . . , p}. In
particular, a combination, where k terms out of p take distinct
values, corresponds to a subset of P of size k. Therefore, a
fundamental step to calculate (10) is the computation of all
possible partitions of set P . To this goal, before proceeding
further in our analysis, we introduce some useful definitions
related to set partitioning.

A. Definitions

Let the integer p be the moment order and vector μ be a
possible combination of p integers. We define

• the scalar integer 1 ≤ k(μ) ≤ p as the number of entries
of the vector μ taking distinct values;

• γ(μ) as the vector of integers, of length k(μ), whose
entries γj(μ), j = 1, . . . , k(μ), are the entries of μ
without repetitions, in order of appearance within μ;

• Pj(μ) as the set of indices of the entries of μ with value
γj(μ), j = 1, . . . , k(μ);

• the vector ω(μ) = [ω1(μ), . . . , ωp(μ)] where ωi(μ) = j
if i ∈ Pj(μ), i = 1, . . . , p, j = 1, . . . , k(μ).

Example 1: Let μ = [1, 5, 2, 8, 5, 3, 2], then k(μ) = 5
since the entries of μ take 5 distinct values (i.e.,
{1, 5, 2, 8, 3}), γ(μ) = [1, 5, 2, 8, 3], and P1(μ) = {1},
P2(μ) = {2, 5}, P3(μ) = {3, 7}, P4(μ) = {4},
P5(μ) = {6}. The partition identified by μ is there-
fore

{{1}, {2, 5}, {3, 7}, {4}, {6}} or, equivalently, it is
given by ω(μ) = [1, 2, 3, 4, 2, 5, 3].

Also, we define:

• Ωp as the set of partitions of the P;
• Ωp,k as the set of partitions of P in k subsets, 1 ≤ k ≤ p,

with
p∪

k=1
Ωp,k = Ωp.

Note that: (i) the cardinality of Ωp, denoted by B(p) = |Ωp|,
is the p-th Bell number [18] and (ii) the cardinality of Ωp,k,
denoted by S(p, k) = |Ωp,k|, is a Stirling number of the second
kind [19].

Example 2: Let p = 3. Then, the set Ω3 has car-
dinality B(3) = 5 and the sets Ω3,1,Ω3,2,Ω3,3 have
cardinality S(3, 1) = 1, S(3, 2) = 3 and S(3, 3) =
1, respectively. In particular, Ω3,1 =

{{1, 2, 3}},

Ω3,2 =
{{{1, 2}, {3}},

{{1, 3}, {2}},
{{1}, {2, 3}}}

,

and Ω3,3 =
{{1}, {2}, {3}}.

From the above definitions, it follows that:

1) the vector μ induces a partition of the set P which is
identified by the subsets Pj(μ). These subsets have the
following properties

k(μ)∪
j=1

Pj(μ) = P, Pj(μ) ∩ Pj′(μ) = ∅

for j �= j′. Even though the partition identified by μ is
often represented as {P1, . . . ,Pk(μ)}, by its definition,
an equivalent representation of such partition is given by
the vector ω(μ). Therefore, from now on we will refer
to ω(μ) as a partition of the p element set P induced
by μ (for simplicity, however, we will not explicit the
dependency on μ);

2) k(ω) = k(μ), since the entries of ω take all possible
values in the set {1, . . . , k(μ)};

3) Pj(ω) = Pj(μ), for j = 1, . . . , k(μ).

B. Closed form expression of E[λp]

By using the definitions in Section IV-A and by applying
set partitioning to (10), we can state the first main result of
this work:

Theorem 4.1: Let Td be a (2M+1)d×(2M+1)d Hermitian
random matrix as defined in (9), where the properties of
the random vectors xμ(q) are described in Section III. Then,
for any given β and d, the p-th moment of the asymptotic
eigenvalue distribution of Td is given by:

E[λp] =
p∑

k=1

k∑
h=1

βp−h
∑

ω∈Ωp,k

∑
ω′∈Ωk,h

u(ω′)v(ω,ω′)d (11)



where

u(ω′) = (−1)k−h
h∏

j′=1

(|Pj′(ω′)| − 1)! (12)

v(ω,ω′)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Hp

k∏
j=1

C
(
−j2πβ1/dwj(ω)

)
dy

h = 1∫
Hp

k∏
j=1

C
(
−j2πβ1/dwj(ω)

)

×
h∏

j′=1

δD

⎛
⎝ ∑

i′∈Pj′ (ω′)

wi′(ω)

⎞
⎠ dy

1 < h < k∫
Hp

k∏
j=1

δD (wj(ω)) dy

h = k
(13)

and v(ω,ω′) = 1 for k = 1. We defined Hp as the p-
dimensional hypercube [−1/2, 1/2)p, C(s) = E

x̃
[esz] as the

characteristic function of x̃, δD(·) as the Dirac’s delta, and

wj(ω) =
∑

i∈Pj(ω)

yi − y[i+1]

yi ∈ R, i = 1, . . . , p, and j = 1, . . . , k(ω).
The proof is omitted due to space limitations.

With the aim to give an intuitive explanation of (11), note
that the right hand side of the equation counts all possible
partitions of the set P = {1, . . . , p}, while C(s) in (13)
accounts for the generic distribution of the variables x̃. The
quantity wj(ω), instead, represents the indices pairing that
appears in the exponent of the generic entry of the power Tp

d.

V. CONVERGENCE TO THE MARČENKO-PASTUR

DISTRIBUTION

In this section we show that the asymptotic eigenvalue
distribution of the matrix Td tends to the Marčenko-Pastur
law [11], as d → ∞. This is equivalent to prove that, as
d → ∞, the p-th moment of λ tends to the p-th moment of
the Marčenko-Pastur distribution, for every p ≥ 1.

Theorem 5.1: Let Td be a (2M+1)d×(2M+1)d Hermitian
random matrix as defined in (9), where the properties of the
random vectors xμ(q) are described in Section III. Let E[λp]
be the p-th moment of the asymptotic eigenvalue distribution
of Td, given by Theorem 4.1. Then, for any given β,

lim
d→∞ E[λp] = E[λp

∞] =
p∑

k=1

βp−kN(p, k) (14)

where N(p, k) are the Narayana numbers [20] and E[λp] are
the Narayana polynomials, i.e., the moments of the Marčenko-
Pastur distribution [11].
The proof is omitted due to space limitations.

Example 3: We compute here the analytic expression
of E[λ2]. Using (11), we get:

E[λ2] =
2∑

k=1

k∑
h=1

β2−h
∑

ω∈Ω2,k

∑
ω′∈Ωk,h

u(ω′)v(ω,ω′)d

By expanding this expression and using the fact that
Ω1,1 = {[1]}, Ω2,1 = {[1, 1]}, Ω2,2 = {[1, 2]}, u([1]) =
1, u([1, 1]) = −1, and u([1, 2]) = 1 we obtain E[λ2] as

βv([1, 1], [1])d − βv([1, 2], [1, 1])d + v([1, 2], [1, 2])d

We notice that, for k = 1, v([1, 1], [1]) = 1. The term
v([1, 2], [1, 2]) refers instead to the case k = h = 2, and
it is given by

v([1, 2], [1, 2]) =
∫
H2

2∏
j=1

δD (wj([1, 2])) dy

with w1([1, 2]) = y1 − y2 and w2([1, 2]) = y2 − y1. It
follows that

v([1, 2], [1, 2]) =
∫
H2

δD(y1 − y2)δD(y2 − y1) dy = 1

Finally,

v([1, 2], [1, 1]) =
∫
H2

2∏
j=1

C
(
−j2πβ1/dwj([1, 2])

)
dy

=
∫
H2

∣∣∣C (
−j2πβ1/d(y1 − y2)

)∣∣∣2 dy

Thus, we write

E[λ2] = 1+β−β

[∫
H2

∣∣∣C (
−j2πβ1/d(y1 − y2)

)∣∣∣2dy
]d

VI. NUMERICAL RESULTS

We can exploit our results on the asymptotic approximation
to fλ to estimate the MSE on the reconstructed field. We
assume that the sensor measurements are noisy and are given
by p = s + n where n is a vector of noise samples with
covariance matrix E[nn†] = σ2

nI. Also, let us denote by σ2
aI

the covariance matrix of the signal spectrum a. We define
SNRm = σ2

a/σ2
n as the signal-to-noise ratio on the sensor

measurements. We consider the linear minimum mean square
error (LMMSE) reconstruction technique, where the estimate
of the spectrum a is obtained by filtering the noisy measures
p with the filter (

GdG
†
d +

1
SNRm

I
)−1

Gd

Figure 1 shows the MSE obtained by using the LMMSE fil-
ter, as a function of SNRm. The curves labeled by “d = 1, 2, 3”
refer to the case where the sampling points are quasi-equally
spaced with jitter x̃, uniformly distributed over [0, 1)d, for
d = 1, 2, 3, and β = 0.729. In this case, the results have been
obtained by using the semi-analytical expression of the MSE



given in [12], which is a function of fλ(d, β, z). The curve
labeled by “Marčenko-Pastur” (thick line) reports the results
derived through our asymptotic (d → ∞) approximation to the
eigenvalue distribution, while the curve labeled by “Equally
spaced” (dashed line) represents the MSE achieved under an
equally spaced sensor placement, i.e., when the eigenvalue
distribution is given by fλ(d, β, z) = δD(z−1). Notice that the
MSE grows as d increases and tends to the MSE obtained by a
Marčenko-Pastur eigenvalue distribution. Instead, as expected,
the “Equally spaced” curve represents a lower bound to the
system performance.
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 MP, β=0.729

 Equally spaced, β=0.729

Fig. 1. MSE as a function of the signal-to-noise ratio on the sensor
measurements for d = 1, 2, 3. The curves are compared with the results
obtained through our asymptotic analysis and with the equally spaced case
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Fig. 2. Comparison between the Marčenko-Pastur distribution and the
empirical distribution obtained for β = 0.55 and d = 1, 2, 3

Figure 2 shows the empirical eigenvalue distributions of the
matrix Td for β = 0.55, d = 1, 2, 3, and x̃ distributed in the
hypercube [0, 1)d. The empirical distribution is compared to
the Marčenko-Pastur distribution (solid line).

VII. CONCLUSIONS

We studied the reconstruction of a bandlimited multidi-
mensional signal from quasi-equally spaced measurements

obtained from a wireless sensor network. As a measure of
the reconstruction quality we used the mean square error. By
using asymptotic analysis we derived the analytic expression
of the moments of the eigenvalue distribution of a certain
Toeplitz matrix characterizing the signal model. We also
showed that, as the dimension of the signal approaches infinity,
the eigenvalue distribution tends to the Marčenko-Pastur law.
This result allowed to obtain a simple and accurate bound to
the reconstruction MSE.
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[11] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some
sets of random matrices,” USSR Sbornik, Vol. 1, pp. 457–483, 1967.

[12] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Signal reconstruction in
multidimensional sensor fields,” IZS, Zurich, 2008.

[13] A. Nordio, A. Muscariello, and C.-F. Chiasserini, “Signal Compression
and Reconstruction in Clustered Sensor Networks,” ICC 2008, Beijing,
China, 2008.

[14] Ø. Ryan and M. Debbah, “Random Vandermonde Matrices-Part I:
Fundamental results”, http://arxiv.org/abs/0802.3570v1

[15] Ø. Ryan and M. Debbah, “Random Vandermonde Matrices-Part II:
Applications”, http://arxiv.org/abs/0802.3572v1

[16] P. Billingsley, Probability and measure (3rd edition), John Wiley and
Sons Inc, New York, 1995.

[17] L. Li, A. M. Tulino and S. Verdù, “Asymptotic eigenvalue moments for
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