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Abstract. Wireless sensor networks are often used for environmental
monitoring applications. Sampling and reconstruction of a physical field
is therefore one of the most important problems to solve. We focus on
band-limited fields and investigate the relationship between the random
topology of a sensor network and the quality of the reconstructed field.
By reviewing irregular sampling theory, we derive some guidelines on
how sensors should be deployed over a spatial area for efficient data
acquisition and reconstruction. We analyze the problem using random
matrix theory and show that even a very irregular spatial distribution
of sensors may lead to a successful signal reconstruction, provided that
the number of collected samples is large enough with respect to the field
bandwidth.
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1 Introduction

One of the most popular applications of wireless sensor networks is environmental
monitoring. In general, a physical phenomenon (hereinafter also called sensor or
physical field) may vary over both space and time. In this work, we address the
problem of sampling and reconstruction of a one-dimensional, spatial field at
a particular time instant. We focus on a band-limited field (e.g., pressure and
temperature), and assume that sensors are randomly deployed over the area of
interest. Also, nodes can represent each sample with a sufficient number of bits,
so that the quantization error is negligible.

Data are transfered from the sensors to a common data-collecting unit, the
so-called sink node. In this work, however, we are concerned only with acquisition
and reconstruction of the sensor field, and we do not address issues related to
information transport. Thus, although studying the effect of errors and losses due
to data transfer is of great interest, we assume that all data is correctly received
at the sink. Furthermore, we assume that the sensors position are known. This
implies that nodes are either located at pre-defined positions, or, if randomly
deployed, their location can be acquired.
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Our objective is to investigate the relation between the network topology and
the quality of the reconstructed field. More specifically, we aim at identifying the
topology characteristics and, hence, a sample distribution that allows the sink
node to reconstruct the signal of interest with the desired precision. The main
contributions of this paper are the following:

(i) by reviewing irregular sampling theory, we derive some guidelines on the
number of sensors to be deployed and on how they should be spatially spaced
so as to successfully reconstruct the measured field;

(ii) by analyzing the problem using random matrix theory, we show that even a
very irregular spatial distribution of sensors may lead to a successful signal
reconstruction, provided that the number of collected samples is large enough
with respect to the field bandwidth;

(iii) we identify the theoretical basis to estimate the required number of active
sensors, given the field bandwidth.

2 Related work on data acquisition in sensor networks

To the best of our knowledge, few works have addressed the problem of sampling
and reconstruction in sensor networks. Efficient techniques for spatial sampling
in sensor networks are proposed in [5, 6]. In particular [5] presents an algorithm
to determine which sensor subsets should be selected to acquire data from an area
of interest and which nodes should remain inactive to save energy. The algorithm
chooses sensors in such a way that the node positions can be mapped into a blue
noise binary pattern. In [6], an adaptive sampling is described, which allows
the central data-collector to vary the number of active sensors, i.e., samples,
according to the desired resolution level. The problem of data acquisition is also
addressed in [4], where the authors consider a one-dimension field, uniformly
sampled at the Nyquist frequency by low precision sensors. The authors show
that the number of sensors (i.e., samples) can be traded-off with the precision
of sensors. Finally, the work in [7] proposes to use synthetic data generation
techniques to generate irregular data topology from some available experimental
data. The objective there is to obtain a field model to evaluate sensor network
algorithms.

3 Irregular sampling of band-limited signals

Let us consider the one-dimensional model where r sensors, randomly located in
the interval [0, 1), measure the value of a band-limited signal p(t). Let tj ∈ [0, 1)
for j = 1 . . . , r be the locations of the sampling points ordered increasingly and
p(tj) the corresponding samples.

A strictly band-limited signal over the interval [0, 1) can be written as the
weighted sum of M ′ harmonics in terms of Fourier series:

p(t) =

M ′

∑

k=−M ′

ak exp(2πikt) (1)



Note that for real valued signals the Fourier coefficients satisfy the relation a∗
k =

a−k so that

p(t) =

M ′

∑

k=−M ′

ρk cos(2πkt + φk)

where ak = ρk exp(iφk).
The reconstruction problem can be formulated as follows: given r pairs [tj , p(tj)]

for j = 1, . . . , r find the band-limited signal in (1) uniquely specified by the se-
quence of its Fourier coefficients ak.

Let the reconstructed signal be

p̂(t) =
M∑

k=−M

âk exp(2πikt) (2)

where the âk are the corresponding Fourier coefficients up to the M -th harmonic.
In general, the reconstruction procedure will minimize ‖p(t)− p̂(t)‖2 if M < M ′

and gives p(t) = p̂(t) if M = M ′.
Consider the (2M + 1) × r matrix F whose (k, q)-th element is defined by

(F)k,q =
1√
r

exp(2πiktq)
k = −M, . . . ,M
q = 1, . . . , r

the vector â = [a−M , . . . , a0, . . . , aM ]T of size 2M + 1 and the vector
p = [p(t1), . . . , p(tr)]

T. We have the following linear system

FF†â = Fp (3)

where (·)† is the conjugate transpose operator. In the following we will denote
T = FF† and b = Fp.

When the samples are equally spaced in the interval [0, 1), i.e., tq = (q−1)/r,
we observe that the matrix F is a unitary matrix (FF† = T = I2M+1)

1 and
its rows are orthonormal row vectors of an inverse DFT matrix. In this case (3)
gives the first M Fourier coefficients of sample sequence p.

When the samples tq are not equally spaced, the matrix F is no longer unitary
and the matrix T becomes a (2M + 1) × (2M + 1) Hermitian Toeplitz matrix

T = T† =








r0 r1 · · · r2M

r−1 r0 · · · r2M−1

. . .

r−2M · · · r0








where

(T)k,m = rk−m =
1

r

r∑

q=1

exp(2πi(k − m)tq) k,m = −M . . . ,M (4)

1 The symbol In represents the n by n identity matrix



It follows that the Toeplitz matrix T is uniquely defined by the 4M + 1
variables

r` =
1

r

r∑

q=1

exp(2πi`tq) ` = −2M, . . . 2M

The solution of (3), which involves the inversion of T, requires some attention
if the condition number of T (or equivalently of F) becomes large. We recall that
the condition number of T is defined as

κ =

√

λmax

λmin

where λmax and λmin are the largest and the smallest eigenvalues of T, respec-
tively. In practice, matrix inversion is usually performed by algorithms which
are very sensitive to small eigenvalues, especially when smaller than the ma-
chine precision. For this reason in [1] a preconditioning technique is used to
guarantee a bounded condition number when the maximum separation between
consecutive sampling points is not too large. More precisely, by defining wq =
(tq+1 − tq−1)/2 for q = 1 . . . , r, where t0 = tr − 1 and tr+1 = 1 + t1, and by
letting W = diag(w1, . . . , wr), the preconditioned system becomes

Twâ = bw

where Tw = FWF† and bw = FWp. By defining the maximum gap between
consecutive sampling points as

δ = max(tq − tq−1),

when δ < 1/2M , it is shown in [1] that

κ(Tw) ≤
(

1 + 2δM

1 − 2δM

)2

This result generalizes the Nyquist sampling theorem to the case of irregular
sampling, but only gives a sufficient condition for perfect reconstruction when
the condition number is compatible with the machine precision.

In Figure 1 and 2, we give an example of the reconstruction from irregular
samples of a band-limited signal, using (3). In Figure 1, we chose M = 10
and r = 26 and the samples have been randomly selected over the interval
[0, 0.8). The signal has been perfectly reconstructed even if large gaps are present
(δ > 0.2). In Figure 2, r = 21 samples of the same signal of Fig. 1 have been taken
randomly over the entire window. Due to the bad conditioning of the matrix T
(i.e., very low eigenvalues) the algorithm failed to reconstruct the signal due to
machine precision underflow.

4 The random matrix approach

4.1 Some statistics on r`

The above results are based on deterministic locations of the sampling points.
In this section we discuss instead the case where the sampling points tq are i.i.d.



-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

p(
t)

t

r=26, M=10, β=0.807, irregular sampling on [0,0.8]

True signal
Est. signal

Samples

Fig. 1. Example of a reconstructed signal from irregular sampling

random variables with uniform distribution U [0, 1]. The Toeplitz matrix T is
now defined by the complex random variables

r` =
1

r

r∑

q=1

exp(2πi`tq) ` = −2M, . . . 2M

where the complex random variable ξ = exp(2πi`tq), for some k, q, with tq ∼
U [0, 1] has E[ξ] = 0 and E[|ξ|2] = 1, where E[·] is the expectation operator.

Given a set of p random variables rl1 . . . , rlp from T we are now interested
in computing the mixed moments

µp(`1, . . . , `p) = E[r`1 · · · r`p
] (5)

These statistics are useful for analyzing the eigenvalue distribution of the random
matrix T, as shown later in Section 4.2. For this purpose we define the vectors
of integers l = [`1, . . . , `p] where `i = −2M, . . . , 2M , and q = [q1, . . . , qp] where
qi = 1 . . . , r, and the real vector uq = [uq1

, . . . , uqp
] ∈ [0, 1]p. ¿From (5) we have

µp(l) =
1

rp

∑

q

∫

[0,1]p
exp(2πi luT

q
) duq (6)
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Fig. 2. Example of a badly reconstructed signal due to numerical instability

In order to evaluate the above equation we need to consider the set of all parti-
tions of the integer p

P =






(p1 . . . p1
︸ ︷︷ ︸

m1

, · · · pL . . . , pL
︸ ︷︷ ︸

mL

)

∣
∣
∣
∣
∣

L∑

i=1

mi pi = p







Then we can write,

µp(l) =
1

rp

∑

P

∑

π

r
P

L
i=1

mi

L∏

i=1

mi∏

h=1

δ(

pi∑

k=1

`π(h,k)) (7)

where δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0 and the sum over π considers

the distinct permutations of the multiset of
∑L

i=1 mi distinct elements of multi-
plicities

p1 . . . , p1
︸ ︷︷ ︸

m1

, p2 . . . , p2
︸ ︷︷ ︸

m2

, · · · pL . . . , pL
︸ ︷︷ ︸

mL



up to permutations of the subsets of the same size pi. For a given partition, the
number of terms resulting from the sum over π is equal to

F =
1

∏L
i=1(mi!)

(
p

p1 · · · p1 p2 · · · p2 · · · pL · · · pL

)

where the term in parenthesis denotes the multinomial coefficient. Note that in
(7) for each l only one term is non null in the sums over P and π. For example
we have

µ1(`1) =

{
1 `1 = 0
0 otherwise

µ2(`1, `2) =







1 `1 = 0, `2 = 0
1/r `1 6= 0, `2 = −`1
0 otherwise

µ3(`1, `2, `3) =







1 `1 = `2 = `3 = 0
1/r `1 = 0, `2 6= 0, `3 = −`2
1/r `2 = 0, `1 6= 0, `3 = −`1
1/r `3 = 0, `1 6= 0, `2 = −`1
1/r2 `1, `2, `3 6= 0, `1 + `2 + `3 = 0
0 otherwise

4.2 Toeplitz distribution theorem [2]

Consider a (2M + 1) × (2M + 1) Hermitian Toeplitz matrix T defined by the
sequence of r` for ` = −2M . . . , 2M . Let

G(f) =
2M∑

`=−2M

r` exp(2πif`)

be the Fourier transform of the sequence {r`}2M
−2M , then

– the eigenvalues λ1, . . . , λ4M+1 of T are samples not necessarily equidistant
of G(f),

– for any function γ(·) we have,

lim
M→∞

1

4M + 1

4M+1∑

k=1

γ(λk) =

∫ 1/2

−1/2

γ
(
G(f)

)
df (8)

We will use the above results to evaluate the asymptotic eigenvalue distribution
of T. We recall that the asymptotic eigenvalue distribution of a HH† matrix
where H is a K ×N matrix with independent zero-mean complex random vari-
ables with variance 1/N and fourth moments of order O(1/N 2) was given by
Marčenko and Pastur [3]. In particular, as K,N → ∞ and K/N → β the em-
pirical distribution of HH† converges almost surely to a nonrandom limiting
distribution with density

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx



where a = (1 −
√

β)2, b = (1 +
√

β)2 and (x)+ = max(0, x). Unfortunately, this
result does not apply to T = FF† due to the dependence among the elements
of F, nevertheless it is useful for comparison.

As an example, we plot in Figures 3–5 the experimental eigenvalue distri-
bution of T, with r = 600 and M = 100, 150, 180 obtained by Monte Carlo
simulation. We compare it with the Marčenko–Pastur asymptotic eigenvalue
distribution. We observe that both distributions have a bounded support but
have significantly different shape as β increases. The bin width is set to 0.1 and
prevents from seeing the behavior of the distribution around zero. However, in
all cases, the experiments showed that the minimum eigenvalue is bounded away
from zero but less than a in the Marčenko–Pastur distribution. This is critical
for the condition number of T, therefore we are interested in evaluating the
probability that the minimum eigenvalue is greater than the machine precision,
i.e., the probability of correct field reconstruction.
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Fig. 3. Comparison between the Marčenko–Pastur distribution and the Monte Carlo
experimental distribution for β = 0.34

By using the Toeplitz distribution theorem [2], we evaluate the moments of
the eigenvalue distribution of T. In order to compute the p-th moment of λ,
E[λp], we employ (8) where we choose γ(x) = xp. Recalling the definition of
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Fig. 4. Comparison between the Marčenko–Pastur distribution and the Monte Carlo
experimental distribution for β = 0.50

µp(l) given in (5) and defining sl =
∑p

i=1 `i we have,

E[λp] = E

[
∫ 1/2

−1/2

G(f)p df

]

= E





∫ 1/2

−1/2

∑

l

r`1 · · · r`p
exp(2πifs`) df





=
∑

l

E
[
r`1 · · · r`p

]
∫ 1/2

−1/2

exp(2πifsl) df

=
∑

l

µp(l)
sin(πsl)

2πsl
=
∑

l

µp(l)δ(sl) (9)

In order to evaluate this sum we need to count the number qn(M) of integer
vectors with n components ranging from −2M to −1 and from 1 to 2M adding
up to zero. Using the generating functions method we find qn(M) for n ≥ 2, as
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the constant term of the rational function
(

2M∑

k=1

xk + x−k

)n

The general formula cannot be found in closed form and needs to be evaluated
explicitly for each n

q2(M) = 4M

q3(M) = 12M2 − 6M

q4(M) = (128/3)M3 − 16M2 + (28/3)M

q5(M) = (460/3)M4 − 60M3 + (65/3)M2 − 15M

We further define q1(M) = 1. We can finally write

E[λp] =
1

rp

∑

P

Fr
P

L
i=1

mi

L∏

i=1

qpi
(M)mi (10)

and in particular

E[λ] = 1



E[λ2] = 1 +
4M

r

E[λ3] = 1 +
12M

r
+

12M2 − 6M

r2

E[λ4] = 1 +
24M

r
+

96M2 − 24M

r2
+

(128/3)M3 − 16M2 + (28/3)M

r3

In the limit for M → ∞ and r → ∞ with constant β = 2M/r we get the
following central moments

E[(λ − 1)2] = 2β

E[(λ − 1)3] = 3β2

E[(λ − 1)4] = 12β2 + (16/3)β3

E[(λ − 1)5] = 60β3 + (115/12β4

We observe how the eigenvalues are concentrated around 1 when β is small.
Recall that M is the field bandwidth and r is the number of samples, i.e., the
number of active sensors over the observation area. We are interested in deriving
the eigenvalue distribution as M → ∞ and r → ∞ with constant β = 2M/r <
1. Indeed, given the eigenvalue distribution we could determine the condition
number of the matrix T, hence the probability of correct field reconstruction.
This will be the next step in our work.

5 Conclusions and Future Work

We considered a large-scale wireless sensor network sampling a physical field,
and we investigated the relationship between the random network topology and
the quality of the reconstructed field. We employed random matrix theory, and
gave the basis to derive the ratio of the field bandwidth to the number of samples
necessary for a successful reconstruction.

In our future research, we need to address several issues. First of all, we would
like to obtain the asymptotic eigenvalue distribution of the matrix employed for
the field reconstruction, so that the condition number, i.e., the probability of
correct field reconstruction can be determined. A two-dimensional field should
be analyzed, and several aspects should be taken into account. For instance, the
fact that sensors can represent the detected information with a limited number
of bits, data (i.e., sample) losses can occur during the information transfer to
the sink, and the sensor locations can be unknown, should all be included in the
analysis.
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