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Abstract—We consider secure communications over MIMO
wiretap channels, in the presence of a passive eavesdropper
with an unlimited number of antennas. In this scenario, we
characterize the performance of the artificial noise scheme
proposed by Goel et al., and show that non-zero secrecy capacity
is available even when the eavesdropper has more antennas than
the transmitter. Our results are derived based on the fraction of
the transmission power used for artificial noise and the ratio
of the channel noise variances of the eavesdropper and the
intended receiver. Finally, we investigate the attack option for
the eavesdropper to drive the secrecy rate to zero by increasing
the number of antennas.

I. INTRODUCTION

The issues of establishing a private and secure link at the
physical layer have known a growing interest in the past
few years. Physical layer security lays its foundation on the
wiretap channel [1], where the pre-exchanged secret key in
Shannon’s model [2] is replaced by the channel noise to
provide randomness. For this model, the notion of secrecy
capacity is further developed to characterize the maximum
transmission rate at which the eavesdropper (Eve) is unable to
obtain any information [3]. For quasi-static fading channel, the
average secrecy rate is derived in [4]. For the ergodic fading
channel, [5] provides a detailed analysis of secrecy capacity.
In the literature, the achievable average secrecy rate has been
adopted as a metric of security [4–6].

The artificial noise (AN) recently emerged as a promising
method to increase secrecy rate [6], where the transmitter
(Alice) aligns a jamming signal named artificial noise within
the null space between itself and the legitimate receiver (Bob),
thus AN only degrades Eve’s channel. In [6], assuming that
both signal and AN follow a multivariate Gaussian distribu-
tion, non-zero average secrecy rate is observed in simulation,
when the number of Eve’s antennas NE is strictly smaller than
the number of Alice’s antennas NA, i.e., NE < NA. Several
channel models have been considered to generalize the idea
of AN. When the number of Bob’s antennas NB = 1, [7]
provides an asymptotic analysis of the secrecy capacity. When
all channel matrices (including Eve) are fixed and known to all
the terminals, [8] provides a detailed characterization in terms
of the secrecy capacity. More recently, the notion of practical
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secrecy is proposed for the AN-based systems that make use
of a finite alphabet (e.g., M-QAM) [9]. Instead of increasing
secrecy rate, Eve’s error probability is maximized by the
randomly distributed AN (e.g., not necessarily Gaussian).

In this work, we investigate the comprehensive relationship
between secrecy capacity, multiple antennas and signal-to-
noise ratio (SNR) within the framework of the original Gaus-
sian distributed AN scheme [6]. The contributions of the paper
are as follows.

• We show that the average secrecy capacity is achieved
with Gaussian input alphabets when NE ≤ NA − NB.

• We provide upper and lower bounds on both average and
instantaneous secrecy rates with Gaussian input alphabets
that accounts for arbitrary Eve’s SNR and NE.

• From Bob’s perspective, given NE, we derive the values
of NA and NB to ensure positive average secrecy rate.

• From Eve’s perspective, given NA and NB, we derive the
value of NE to null the instantaneous secrecy rate.

The paper is organized as follows: Section II presents the
system model, followed by the analysis of secrecy capacity in
Section III. Section IV discusses the attack to drive the secrecy
rate to zero. Conclusions are drawn in Section V. Proofs of
the theorems are given in Appendix.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the Hermitian transpose,
inverse, pseudoinverse of a matrix B by BH , B−1, and B†,
respectively. |B| denotes the determinant of B. Let {Xn, X}
be defined on the same probability space. We write Xn

a.s.→ X

if Xn converges to X almost surely or with probability one.
The identity matrix of size n is denoted by In. An m × n

null matrix is denoted by 0m×n. We write � for equality in
definition. A circularly symmetric complex Gaussian random
variable x with variance σ2 is defined as x � NC(0, σ2).
The real, complex, integer and complex integer numbers are
denoted by R, C, Z and Z [i], respectively. I(x; y) represents
the mutual information of two random variables x and y. We
use the standard asymptotic notation f (x) = O (g (x)) when
lim sup

x→∞
|f(x)/g(x)| < ∞. �x� rounds to the closest integer.

II. SYSTEM MODEL

We consider a MIMO wiretap system, including a transmit-
ter (Alice), an intended receiver (Bob), and a passive eaves-
dropper (Eve), with NA, NB, and NE antennas, respectively.
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We assume that the matrices H ∈ CNB×NA and G ∈ CNE×NA

represent the channels from Alice to Bob and Alice to Eve. H

and G are assumed to be independent (i.e., all terminals are
not co-located) and have i.i.d. entries ∼ NC(0, 1).

Assuming NB < NA, H then has a non-trivial null space
Z = null(H), i.e., HZ = 0NB×(NA−NB). Let H = UΛVH be
the singular value decomposition (SVD) of H. The relationship
between matrices Z and V is given by

V = [V1,Z], (1)

where V1 represents the matrix with the first NB columns of
V. Using the AN scheme [6], Alice transmits

x = V1u + Zv = V

�
u

v

�
, (2)

where u is the secret data vector and v is the artificial noise.
Gaussian input alphabets are assumed, i.e., both u ∈ CNB×1

and v ∈ C(NA−NB)×1 are mutually independent Gaussian vec-
tor with i.i.d. entries ∼ NC(0, σ2

u) and NC(0, σ2
v), respectively.

The signals received by Bob and Eve are given by

z = HV1u + HZv + nB = HV1u + nB, (3)
y = GV1u + GZv + nE. (4)

where nB and nE are additive white Gaussian noise vectors at
Bob and Eve, respectively, with i.i.d. entries ∼ NC(0, σ2

B) and
NC(0, σ2

E).
From Equations (3) and (4), we see that v only increases

eavesdropper’s uncertainty about the secret message u, but
does not affect Bob.

Since V is unitary, the total transmission power ||x||2 is

||x||2 =

�
u

v

�H

VHV

�
u

v

�
= ||u||2 + ||v||2. (5)

We set the average transmit power constraints Pu and Pv:

Pu = E
�
||u||2

�
= σ2

uNB,

Pv = E
�
||v||2

�
= σ2

v(NA − NB). (6)

We define Bob’s and Eve’s SNRs as

SNRB � σ2
u/σ2

B,
SNRE � σ2

u/σ2
E. (7)

Throughout the paper, we assume the worst-case scenario
for Alice and Bob described in [6]:

• Alice only knows H.
• Eve knows H, G, Z and V1.
Different from [6], we assume no upper bound on NE.
To simplify our analysis, we define three system parameters:
• α � σ2

u/σ2
E (SNRE)

• β � σ2
v/σ2

u (AN power fraction)
• γ � σ2

E/σ2
B (Eve-to-Bob noise-power ratio)

If γ > 1, we say Eve has a degraded channel. Note that
SNRB = αγ. For convenience, we fix σ2

B = 1, thus Pu = αγNB.
To evaluate the asymptotic secrecy rate, we assume
• NA/NE → β1

• NA/NB → β2

• NB/NE → β3

III. NON-ZERO SECRECY CAPACITY

In this section, we revisit the problem of guaranteeing
non-zero instantaneous and average secrecy capacities using
artificial noise. To present our result, we first define some
useful functions.

A. Definitions

We recall the definition of instantaneous secrecy capacity:

CS � max
p(û)

{I(û; z) − I(û;y)} , (8)

which is a special case of the definition in [10]. The maximum
is taken over all possible input distributions p (û). Note that CS
is a random variable depending on Gaussian random matrices
H and G, which are embedded in z and y.

We further define average secrecy capacity, as in [6]

C̄S � max
p(û)

{I(û; z|H)−I(û;y|H,G)} . (9)

where I (X; Y |Z) � EZ [I (X; Y ) |Z] [11].
Since closed form expressions for CS and C̄S are not always

available (except for Theorem 1), we often resort to lower
bounds given by

CS ≥ I(u; z)−I(u;y) � RS, (10)

C̄S ≥ I(u; z|H) − I(u;y|H,G) � R̄S, (11)

assuming Gaussian input alphabets, i.e., v and u are mutually
independent Gaussian vector with i.i.d. entries NC(0, σ2

v) and
NC(0, σ2

u), respectively.
We then define the following function, as in [12]

Θ(m, n, x) � e−1/x
m−1�

k=0

k�

l=0

2l�

i=0

�
(−1)i(2l)!(n − m + i)!

22k−il!i!(n − m + l)!

·
�

2(k − l)

k − l

��
2(l + n − m)

2l − i

�
n−m+i�

j=0

x−jΓ(−j, 1/x)

�
,

(12)

where
� a

b

�
= a!/((a− b)!b!) is the binomial coefficient, n ≥

m are positive integers, and Γ(·, ·) is the incomplete Gamma
function.

Finally, we define

Nmax = max {NE, NA − NB} ,
Nmin = min {NE, NA − NB} . (13)

B. Non-zero Average Secrecy Capacity

We provide some analytical insights relating R̄S and C̄S to
NA, NB, NE, α, β, and γ. We first derive an upper bound on
I(u;y|H,G).

Lemma 1:

I(u;y|H,G) ≤ NE log(1 + αNB) − Θ(Nmin, Nmax, αβ)

+Θ(Nmin, Nmax, αβ/(1 + αNB))

= (NE − Nmin) log αNB + O

�
1

α

�
+ O

�
1

β

�
.

Proof: See Appendix A.



Lemma 1 reveals the following relation between C̄S and R̄S.
Theorem 1: If NE ≤ NA − NB, as α, β → ∞, then

C̄S = R̄S. (14)

Proof: See Appendix B.
In Theorem 1, we demonstrated the achievability of the

average secrecy capacity of the AN scheme using Gaussian
input alphabets under the above condition. This result was not
given in [6], where only R̄S > 0 was observed by simulation.

The assumption that NE is bounded can be un-natural in
practice. In the following theorem, we derive a lower bound
on the achievable rate R̄S, without any limitation on NE.

Theorem 2:

R̄S ≥ Θ(NB, NA, αγ) + Θ(Nmin, Nmax, αβ)

− NE log(1 + αNB) − Θ(Nmin, Nmax, αβ/(1 + αNB)) � R̄LB,
(15)

Proof: See Appendix C.
To gain further intuition, we provide the following corollary,

giving a sufficient condition for positive average secrecy rate
as NB → ∞.

Corollary 1: If β2 → 1, lim
NB→∞

R̄S/NB > 0 when

NE < NA +
NB (log γ − 1 + Υ(Pu))

log Pu − log γ
, (16)

where

Υ(Pu) =

√
1 + 4Pu − 1

2Pu
+ 2 tanh−1 1√

1 + 4Pu
. (17)

Proof: See Appendix D.
Corollary 1 gives an example of application of Theorem 2,

and shows that positive secrecy capacity is in fact achievable
for any NE, thus removes the restriction NE < NA in [6], since
the second term in (16) can be increased by γ.

Example 1: Fig. 1 compares the values of R̄S and R̄LB in
(15) as functions of NE with α = β = 3 dB, γ = 6 dB, NB = 3

and NA = 4. In this case, (16) reduces to NE < 6. We observe
that R̄LB > 0 when NE < 6. This example shows the usability
of Corollary 1 for finite numbers of antennas. Although the
gap between R̄S and R̄LB increases with increasing NE, the
curve of R̄LB can still confirm the fact that positive average
secrecy rate is available even when NE ≥ NA.

C. Non-zero Instantaneous Secrecy Capacity
We now analyze the instantaneous secrecy rate RS as a

random variable depending on the random matrices G and
H. An interesting case that leads to a closed form bound can
be found when β = 1 (or 0 dB).

Theorem 3: If β = 1, as NB, NA − NB and NE → ∞ with
fixed β1, β2 and β3,
RS
NB

a.s.→ Φ(Pu, β2)−
Φ(Pu/(γβ3), β1)

β3
+

Φ(Pu/(γβ3), β1 − β3)

β3
,

where

Φ (x, y) � y log

�
1 + x − 1

4
F (x, y)

�
− F (x, y)

4x

+ log

�
1 + xy − 1

4
F (x, y)

�
, (18)
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Fig. 1. R̄S and R̄LB vs. NE with α = β = 3 dB, γ = 6 dB, NB = 3 and
NA = 4.
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Fig. 2. R̄S vs. NB and NE with NA = 20, α = 10 dB, β = 0 dB, and
γ = 3.

F (x, y) �
��

x (1 +
√

y)2 + 1 −
�

x (1 −√
y)2 + 1

�2

. (19)

Proof: Using [13, Eq. 1.14], the proof is straightforward.

Corollary 2: Under the same assumptions of Theorem 3,
if NE ≥ NA (i.e., β1 ≤ 1), as Pu → ∞, the maximum R̄S is
achieved when

NB = min

�
max

��
NA − NE

1 + γ

�
, 1

�
, NA − 1

�
. (20)

Proof: Available in the journal version.
Corollary 2 reveals the relationship between the maximum

R̄S, NB and γ for given NA and NE: the larger the channel
degradation γ is, the smaller the null space size NA − NB is
required.

Example 2: Fig. 2 shows the variation of R̄S by simulation,
as a function of NB and NE, with NA = 20, α = 10 dB, β = 0

dB, and γ = 3. We observe that for NE = 20 and 40, R̄S
is maximized when NB =

�
NA − NE

1+γ

�
= 15 and 10. Once

NB exceeds the optimum value, R̄S starts to decrease. Thus,
Corollary 2 is very accurate even for a finite system model.

The results for general β and β1 will be reported in the
journal version.

IV. ATTACK ON AN

In the previous section, we took the side of Alice and Bob,
and we established the conditions that ensure non-zero secrecy
rate for given α and NE. This provided a design strategy of



defence against eavesdropping. In this section, we play the part
of Eve. We want to estimate how many antennas Eve needs
to drive the instantaneous secrecy rate RS to zero, assuming
the worst case scenario that NA, NB, α, β, and γ are known to
Eve. We define Eve’s activity as the attack on the AN scheme.

In summary, attack and defence are related to upper and
lower bounds on the secrecy rate, respectively.

Let ŷ be a processed form of y. Thanks to the data
processing inequality, we have

I(u;y) ≥ I(u; ŷ). (21)

Let R̂S � I(u; z)−I(u; ŷ). From (10) and (21), we obtain

RS ≤ R̂S. (22)

In other words, data processing cannot decrease RS, but may
be used to obtain an easily computable upper bound. We use
zero-forcing (ZF) processing, since it can remove the artificial
noise and hence the dependency on parameter β.

In particular, if NE ≥ NA, G has a left inverse, denoted
by G†, then the interference term GZv can be removed by
multiplying y by W = HG†, i.e.,

Wy =HV1u + WnE � ŷZF. (23)

Note that if NE < NA, ZF processing is not applicable.
Theorem 4: Let R̂S, ZF � I(u; z)−I(u; ŷZF). As NA, NB and

NE → ∞ with fixed β1, β2 and β3,

R̂S, ZF

NB
< Φ (Pu, β2) − log

Pu(1 −
�

β1)
2

γβ3
, (24)

almost surely, where Φ (x, y) is given in Theorem 3.
Proof: See Appendix E.

From (22), for large scale system models, we have RS/NB <

R̂S, ZF/NB. By setting R̂S, ZF/NB equal to zero, RS/NB is forced
to be zero as stated in the following corollary.

Corollary 3: Under the same assumptions of Theorem 4,
RS/NB

a.s.→ 0, if

NE =

⎡
⎢⎢⎢

��
exp {Φ (Pu, β2)}

α
+

�
NA

�2
⎥⎥⎥⎦ . (25)

Proof: The proof is straightforward.
Corollary 3 provides Eve an analytical expression for choos-

ing NE to attack the AN scheme.

V. CONCLUSIONS

This paper characterizes the trade-off between the multiple
antennas and the secrecy rate achieved by the artificial noise
scheme. By taking all the system parameters into account, we
developed explicit lower and upper bounds on the secrecy rate
with Gaussian input alphabets. We have shown that, the lower
bound tells Alice how many antennas she needs to ensure
non-zero secrecy rate, while the upper bound provides the
minimum number of antennas for Eve to drive the secrecy
rate to zero. Based on our analysis, we describe the antenna
number race between Alice and Eve as a defence versus attack
battle over physical layer security.

APPENDIX

A. Proof of Lemma 1

Since all entries in H and G are mutually independent,
I(u;y) can be expressed as a function of these independent
random entries. This allows us to take two steps to compute
the expected value of I(u;y): we first compute I(u;y|G) given
H, then compute EH [I(u;y|G)|H]. The advantage is that for
given H, V = [V1, Z] is a fixed unitary matrix. Then, using
[14, Th. 1], GV1 and GZ are mutually independent complex
Gaussian random matrices with i.i.d. entries ∼ NC(0, 1).

Let G1 = GV1, G2 = GZ, W1= G1G
H
1 and W2= G2G

H
2 .

According to [11], we have

I(u;y|G)

= EG1,G2

⎛
⎝log

���INEσ
2
E + σ2

uW1+σ2
vW2

���
��INEσ

2
E+σ2

vW2
��

⎞
⎠

a
≤ EG2

⎛
⎝log

���INEσ
2
E + σ2

uEG1 (W1) +σ2
vW2

���
��INEσ

2
E+σ2

vW2
��

⎞
⎠

= EG2

⎛
⎜⎝log

���INE +
σ2

v
σ2

E+NBσ2
u
W2

���
���INE +

σ2
v

σ2
E
W2

���

⎞
⎟⎠ + NE log

σ2
E + NBσ2

u

σ2
E

,

(26)

where (a) holds due to the concavity of log-determinant
function (Jensen’s Inequality).

Note that
���I + G2G

H
2

��� =
���I + GH

2 G2

��� and define

W =

�
G2G

H
2

GH
2 G2

if NE ≤ NA − NB
if NE > NA − NB

Then W is a Wishart matrix ∼ WNmin(Nmax, INmin), where
Nmin and Nmax are given in (13).

Recalling the definitions of α and β in Sec.II. Based on
above analysis and [12, Th. 1], the first term of (26) can be
written as

EG2

⎛
⎝log

���INmin + αβ
1+αNB

W
���

|INmin + αβW|

⎞
⎠

= Θ(Nmin, Nmax, αβ/(1 + αNB)) − Θ(Nmin, Nmax, αβ) (27)

where Θ(x, y, z) is given in (12).
From (26) and (27), we have

I(u;y|H,G) = EH [I(u;y|G)|H]

≤ NE log(1 + αNB) − Θ(Nmin, Nmax, αβ)

+Θ(Nmin, Nmax, αβ/(1 + αNB))

= (NE − Nmin) log αNB + O

�
1

α

�
+ O

�
1

β

�
.

�
B. Proof of Theorem 1

If NE ≤ NA−NB, from Lemma 1 and (10), as α and β → ∞,

R̄S = I(u; z|H). (28)



Moreover, we have

C̄S ≤ max
p(û)

{I(û; z|H)} = I(u; z|H). (29)

The last equation holds since the input u is a circularly
symmetric complex Gaussian random vector [11, Th. 1].

Based on (28) and (29), as α and β → ∞, we have

R̄S = C̄S.

�C. Proof of Theorem 2
Since (HV1) (HV1)

H = HHH , using [11, Th. 2] and [12,
Th. 1], we have

I(u; z|H) = EH

�
log

���INB + αγHHH
���
�

= Θ(NB, NA, αγ).
(30)

where Θ(x, y, z) is given in (12).
From Lemma 1 and (30), we obtain

R̄S ≥ Θ(NB, NA, αγ) + Θ(Nmin, Nmax, αβ)

− NE log(1 + αNB) − Θ(Nmin, Nmax, αβ/(1 + αNB)), (31)

where Nmin and Nmax are given in (13). �
D. Proof of Corollary 1

If β2 → 1, according to [11], we have

lim
NB→∞

I(u; z|H)

NB
= log Pu − 1 + Υ(Pu), (32)

where Υ(Pu) is given in (17).
From Lemma 1, we have

lim
NB→∞

I(u;y|H,G)

NB
≤ lim

NB→∞
NE − Nmin

NB
log

Pu

γ
. (33)

Moreover, if β2 → 1, we have

Nmin = NA − NB. (34)

Based on (32), (33) and (34), lim
NB→∞

R̄S/NB > 0 if

NE < NA +
NB (log γ − 1 + Υ(Pu))

log Pu − log γ
. (35)

�E. Proof of Theorem 4
We recall that

R̂S, ZF = I(u; z)−I(u; ŷZF), (36)

According to [13, Eq. 1.14], we have

lim
NB→∞

I(u; z)

NB

a.s.→ Φ (Pu, β2) , (37)

where Φ(x, y) is given in (18).
Moreover, since W = HG†, we have

I(u; ŷZF)

= log

���σ2
u (HV1) (HV1)

H + σ2
EWWH

���
���σ2

EWWH
���

= log

����INBσ2
u + σ2

EV
H
1

�
GHG

�−1
V1

����
���σ2

EV
H
1

�
GHG

�−1
V1

���

= log

�
NB�

i=1

(1 + α/λi)

�
, (38)

where λi, 1 ≤ i ≤ NB, represent the eigenvalues of
VH

1

�
GHG

�−1
V1.

From (38), we have

I(u; ŷZF) > log

�
NB�

i=1

α/λi

�
. (39)

Let δmin be the smallest eigenvalue of 1
NE

GHG. Then

1/δmin is the largest eigenvalue of
�

1
NE

GHG
�−1

. According
to [15, Th. 8, pp. 69], we have

NB�

i=1

λiNE < δ−NB
min . (40)

Based on (39) and (40), we have

I(u; ŷZF) > NB log αNEδmin. (41)

As NA and NE → ∞, according to Marčenko-Pastur law,
δmin

a.s.→ (1 −
�

β1)
2 [13, Eq. 1.10], (41) reduces to

I(u; ŷZF)

NB
> log

Pu(1 −
�

β1)
2

γβ3
(42)

almost surely.
By substituting (37) and (42) into (36), as NA, NB and NE →

∞ with fixed β1, β2 and β3,

R̂S, ZF

NB
< Φ (Pu, β2) − log

Pu(1 −
�

β1)
2

γβ3
,

almost surely.
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