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Oblivious Transfer Over Wireless Channels
Jithin Ravi, Bikash Kumar Dey, Member, IEEE, and Emanuele Viterbo, Fellow, IEEE

Abstract—We consider the problem of oblivious transfer
(OT) over OFDM and MIMO wireless communication systems
where only the receiver knows the channel state information. The
sender and receiver also have unlimited access to a noise-free real
channel. Using a physical layer approach, based on the properties
of the noisy fading channel, we propose a scheme for honest-but-
curious parties that enables the transmitter to send obliviously
one-of-two files, i.e., without knowing which one has been actu-
ally requested by the receiver, while also ensuring that the receiver
does not get any information about the other file.

Index Terms—MIMO, oblivious transfer, OFDM, physical layer
security, secure function computation.

I. INTRODUCTION

C ONSIDER a movie server, or a server of medical
database. A subscriber wants a specific item (a movie, or

information about a specific disease) without the server being
able to know which item is desired by the subscriber. The sub-
scriber is also not allowed to gain any significant information
about any other item. This is an example of oblivious transfer.

In one-out-of-two string oblivious transfer (OT), one party,
Alice, has two files and the other party, Bob, wants one of these
files. Bob needs to obtain the required file without Alice finding
out the identity of the file chosen by him. Bob should also not
be able to recover any significant information about the other
file. Alice and Bob are assumed to be “honest-but-curious”, or
passive, participants - they follow the agreed protocol but are
also curious to gain additional knowledge of the other’s data
from their own observations during the protocol [1], [2].

OT has been studied in various forms for some time in
cryptography [3], [4]. It is a special case of secure function
computation problems, where multiple parties want to compute
a function without revealing additional information about their
data to other parties. It was shown by Kilian [5] that an OT

Manuscript received July 20, 2015; revised November 25, 2015; accepted
December 26, 2015. Date of publication January 8, 2016; date of current ver-
sion March 15, 2016. This paper was presented in part at the Information
Theory Workshop, ITW 2015, Jerusalem. The work of R. Jithin and B. K. Dey
was supported in part by the Department of Science and Techonolgy, Govt.
of India, under Grant SB/S3/EECE/057/2013, in part by the Information
Technology Research Academy, India, under Grant ITRA/15(64)/Mobile/
USEAADWN/01, and in part by the Bharti Centre for Communication at
IIT Bombay. The work of E. Viterbo was supported by the Australian
Research Council through the Discovery Project under Grant DP130100336.
The associate editor coordinating the review of this paper and approving it for
publication was V. Y. F. Tan.

R. Jithin and B. K. Dey are with the Department of Electrical Engineering,
Indian Institute of Technology Bombay, Mumbai 400076, India (e-mail:
rjithin@ee.iitb.ac.in; bikash@ee.iitb.ac.in).

E. Viterbo is with the Department of Electrical and Computer Systems
Engineering, Monash University, Melbourne, Vic. 3800, Australia (e-mail:
emanuele.viterbo@monash.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2016.2515593

protocol can be used as a subroutine to devise a protocol for
two-party secure function computation for any function that is
representable by a boolean circuit.

It is well known that OT can not be performed only by inter-
active communication over a noise-free channel. The OT is thus
studied with a noisy channel as a critical resource in addition to
unlimited access to a noise-free channel. The OT capacity is
the largest length of file that can be transferred, per use of the
noisy channel, between Alice and Bob. The OT capacity was
defined in [6], [2] as an extension of the concept from [7]. In
[1], [2], one-out-of-two string OT has been studied when the
noisy channel between Alice and Bob is a Discrete Memoryless
Channel (DMC). An upper bound for the OT capacity of a DMC
was given in [1] and it was shown that the given upper bound
is achievable by a simple scheme for binary erasure channels
(BEC). Multi-user variants of OT have been studied over broad-
cast erasure channels in [8], [9]. OT has been considered with
active or malicious participants in [10].

One-out-of-two string OT has been considered in the context
of AWGN channels in [11], where a protocol was proposed. The
case of fast fading wireless channels has also been discussed
in [11], where the fading state varies in each transmission and
is not known to the transmitter or the receiver. Under such
assumption, the channel can be modeled by the conditional
probability distribution pY |X with the channel state marginal-
ized. The fading state does not directly provide any additional
advantage in OT here, other than through its influence on pY |X .
The OT capacity is not known for many important channels
including AWGN and binary symmetric channels.

In this paper, we consider OT under honest-but-curious set-
ting over two classes of wireless slow-fading channels: orthog-
onal frequency division multiplexing (OFDM) channel and
multiple input multiple output (MIMO) channel, where the fad-
ing state information is available only at the receiver (CSIR),
[12]. Channels with CSIR (Fig. 1) have not been considered
for OT before to the best of our knowledge. CSIR is a com-
mon assumption in wireless communication which can be made
when the coherence block length n is sufficiently large. We
allow an interactive protocol to run over n uses of the chan-
nel during which the channel state remains fixed, and in that
period the noise-free channel can be used any finite number
of times. In other words, we assume that one run of the OT
protocol is completed in one coherence block. However, follow-
ing common principle of rate-adaptation used in many wireless
communication models, the OT rate may vary from block to
block depending on the channel state. As we will see in our
schemes, the knowledge of the state only at the receiver is the
key to some interesting techniques for OT. Our techniques have
the flavor of the protocol for BECs [1].

Communication under secrecy constraints has been stud-
ied by many authors (see [13]). In particular, private
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Fig. 1. Communication setup for oblivious transfer over channels with state.

communication over a wiretap channel in the presence of eaves-
dropper has been studied extensively [14], [15], [16], [17],
[18], [19]. In this work, we make use of coding techniques
for Gaussian wiretap channels as a building block for our
achievability schemes.

In both OFDM and MIMO, we rely on the modeling of the
channel as parallel fading channels. For the MIMO setup, this
is done using the SVD precoder matrix that is communicated
by Bob to Alice. The parallel channels are grouped in pairs.
OT is performed independently at different rates over differ-
ent pairs. For a MIMO channel, an apparently more general
protocol would be to reduce the channel into a pair of MIMO
channels, and then to perform OT over these parallel MIMO
channels using codes for MIMO wiretap channels. However,
we show that the rates achieved by such a protocol is upper
bounded by the rates achieved using our technique.

We show (Theorem 1) that the best pairing of the parallel
channels is that of the strongest channel with the weakest, and
so on with the rest of the channels. The idea of pairing good and
bad subchannels in OFDM and SVD-precoded MIMO was also
used in [20], [21] with the aim of designing signal sets that min-
imize error probability or maximize mutual information. Here,
we exploit subchannel pairing to guarantee that Alice is obliv-
ious to which file is requested and that Bob only receives one
of the two files. We also derive the optimal power allocation
among the pairs of channels.

The paper is organized as follows. Section II presents the
problem definition and the system model for both OFDM and
MIMO channels. In Section III, we present protocols for OT
over 2-channels OFDM, 2 × 2 MIMO and 2 × 1 MIMO chan-
nels. We present the general protocol for 2N -channels OFDM
and 2N × nB MIMO models in Section IV, following a com-
mon principle. Optimization of our protocol is discussed in
Section VI. High SNR asymptotics of OT rate for our proto-
col is analyzed in Section VII. We provide simulation results
of our OT scheme for simple OFDM and MIMO channels in
Section VIII. Finally, we conclude the paper in Section X.

II. SYSTEM MODEL

Alice (A) and Bob (B) are two parties in the system as shown
in Fig. 1. Alice has two binary strings K0, K1 of equal length,
and Bob wants one of these strings KC where C ∈ {0, 1} is
Bob’s choice bit. We assume that all the bits in (K0, K1, C)

are i.i.d. ∼ Ber(1/2). Alice can communicate with Bob over
a channel pY |X,S with state S, where the state remains fixed
over a large block length n, and varies from block to block

in an i.i.d. manner. The state is known to Bob at the begin-
ning of a block. This models wireless communication setups,
where in a large coherence block of length n, the fading state
remains fixed, and the fading state is known (estimated) by the
receiver. This is commonly known as the quasi-static channel
model [12], [13]. In addition to this channel, there is also a
noise-free channel over which Alice and Bob can communicate
real numbers between each other without any error/distortion.
During each block, the noise-free channel can be used any finite
number of times. The length L(S) of K0, K1 depends on S.
Since Bob knows the state S at the beginning of a block, he is
assumed to compute and communicate L(S) to Alice over the
noise-free channel. The goal of a protocol is to transfer KC to
Bob obliviously, within the current block, such that Bob has
negligible knowledge about KC , and Alice has no knowledge
about C (perfect secrecy against Alice).

Our setup can also be used to transfer large files. We then
need multiple coherence blocks to complete the OT session
for one pair of files. The two files can be broken into multi-
ple chunks to form one pair (K0i , K1i ) for each block i . Then
one run of the protocol is performed in each block, where the
choice bit C of Bob remains the same over the whole session
involving many runs of the protocol.

An (n, L(·)) OT protocol is parameterized by the number n
of channel uses and by a function L(·) of the state S. There
are a total of k rounds of communication between Alice and
Bob, including communication over both the noisy and noise-
free channels. These are indexed by 1, 2, · · · , k, where k can
be random and can be dependent on S. But for every S, it
is required to be finite with probability 1. The noisy channel
is used at rounds i1, i2, · · · , in ∈ {1, · · · , k}. At every round
before round i1, between consecutive i j and i j+1, and after
round in , Alice and Bob exchange a sequence of real num-
bers over the noise-free channel. In the following, Xi and Yi

denote respectively the input and the output of the noisy chan-
nel at time index i . In the following description of the protocol,
we denote Yi := (Y1, Y2, · · · , Yi ) for any positive integer i .
Ei , Fi are also similarly defined. In the rest of the paper, we
also denote the transmitted length-n vector by X. The length-
n vector transmitted by the l-th antenna (in case of MIMO) or
over the l-th subchannel (in case of OFDM) will be denoted by
Xl = (Xl1, Xl2, · · · , Xln).

A. The structure of an (n, L(·)) Protocol

1) Alice has two bit-strings K0, K1 of length L(S) each, and
Bob has a choice bit C . K0, K1 can be substrings of two
larger strings available with Alice, and their length L(S)

is computed by Alice based on some information about S
sent by Bob during the protocol.

2) Alice and Bob generate private random variables
WA, WB, respectively.

3) For i j < i < i j+1 for every j = 0, 1, · · · , n (assuming
i0 = 0 and in+1 = k + 1), Alice sends Ei = Ei (K0, K1,

WA, Fi−1) and Bob sends Fi = Fi (C, S, WB , Ei−1, Y j )

over the noise-free channel. Here F0 = E0 = Y 0 = ∅.

4) For i = i j , Alice transmits X j = X j (K0, K1, WA, Fi j −1)

over the noisy channel and Bob receives Y j . There is
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no communication over the noise-free channel in these
rounds, and thus Ei = Fi = ∅.

5) At the end of the protocol, Bob computes K̂C =
K̂(C, S, WB , Ek, Yn).

The rate L(s)/n of a protocol as described above is a function
of the state s, and is denoted by R(s).

Definition 1: A non-negative rate function R(s) is said to
be achievable if there is a sequence of (n, L(n)(·))-protocols

such that for every state s, L(n)(s)
n → R(s) as n → ∞, and the

protocols satisfy the conditions
• Reliability condition:

P
(
K̂C �= KC

) → 0 (1)

• Perfect secrecy condition on Bob’s choice bit:

I
(

K0K1WAFk; C
)

= 0 (2)

• Strong secrecy condition on the nonchosen string:

I
(

C SWBYnEk; KC

)
→ 0. (3)

The definition assumes the honest-but-curious (or pas-
sive) model. Here Alice’s and Bob’s views are respectively
K0K1WAFk and C SWBYnEk . The perfect secrecy condition
(2) for the choice bit is necessary because the protocol may be
used many times in a session to transfer one of two large files
in smaller chunks, while keeping the choice bit the same. Even
then the prefect secrecy of C guarantees that there is no leakage
of information to Alice about C . On the other hand, requiring
only strong secrecy would have resulted in accumulation of the
leakage over a large number of runs of the protocol.

The average rate R is the expectation of R(S). The OT
capacity is the supremum of all achievable average OT rates.

B. Gaussian Wiretap Channel

Wiretap channel has been studied as a standard model for
communication in the presence of an eavesdropper [14], [15].
We model our MIMO and OFDM channels as complex chan-
nels. If Alice and Bob are respectively the transmitter and
receiver of a complex AWGN channel, and if Eve is a wire-
tapper, whose received symbol is more noisy than that of Bob
(degraded channel assumption), then the secrecy capacity of the
wiretapper channel is given by

C

(
P

σ 2
B

,
P

σ 2
E

)
= log2

(
1 + P

σ 2
B

)
− log2

(
1 + P

σ 2
E

)
(4)

where σ 2
B and σ 2

E are the variance of the noise at Bob and
Eve, respectively, and P is the transmit power [15], [22].
Encoding for such channels involves mixing the message with
some random bits (with rate equaling the capacity of the wire-
tapper) before encoding for the complex AWGN channels.
Bob can decode both the message and the random bits as the
total rate of these is below his capacity, whereas the random
bits completely hide the message from Eve. Eve gets almost
no information about the message [16]. We will denote this

Fig. 2. The OT setup with independent parallel channels.

channel with power constraint P as WT(P, P
σ 2

B
, P

σ 2
E
). Practical

coding schemes approaching the secrecy capacity have been
proposed for discrete memoryless channels using polar codes
[23] and for the Gaussian channel based on lattice codes [24],
under semantic security.

In this paper we consider two channels with states, OFDM
and MIMO, as discussed below. The essential technique used
for OT over both these setups is the same.

C. The OFDM Setup

The OFDM setup is modeled in Fig. 2 as 2N parallel fading
AWGN channels between Alice and Bob. The channel states are
given by independent fading coefficients H0, H1, · · · , H2N−1.
If the vector Xl = (Xl1, Xl2, · · · , Xln) is transmitted in n chan-
nel uses over the l-th channel for l = 0, 1, · · · , 2N − 1, then
the received vector over the l-th channel is given by

Yl = HlXl + Zl ,

where Zl is the noise with i.i.d. real and imaginary parts ∼
N(0, 1/2). We assume that Hl are i.i.d. with Rayleigh distri-
bution. The channel gains remain fixed for a block of length n,
and change from block to block in an i.i.d. manner. We assume
that they are known to Bob in the beginning of the block. The
average transmitted power in any block is restricted to P , i.e.,∑2N−1

l=0
∑n

j=1 |Xl j |2 ≤ n P .

D. The MIMO Setup

Let us consider the MIMO system with transmitter Alice and
receiver Bob, as shown in Fig. 3. The transmitter has n A anten-
nas and the receiver has nB antennas. We assume that n A is
even. Let X = (Xl j )0≤l≤n A−1

1≤ j≤n
denote the complex matrix trans-

mitted by Alice over n uses of the MIMO channel. The received
matrix Y is given by

Y = HX + Z (5)

where Z ∈ C
nB×n is the complex Gaussian noise matrix with

all entries having i.i.d. real and imaginary parts ∼ N(0, 1/2)
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Fig. 3. MIMO system for oblivious transfer.

and H ∈ C
nB×n A represents the complex channel fading matrix.

The entries of H are assumed to be i.i.d. complex random vari-
ables with independent real and imaginary parts ∼ N(0, 1/2).
H remains fixed over the block of length n, and changes in an
i.i.d. manner from block to block. The average transmit power
in any block is constrained to be P , i.e.,

∑n A−1
l=0

∑n
j=1 |Xl j |2 ≤

n P . We assume that H is known only to Bob in the beginning
of each block.

III. THE PROTOCOL: SOME EXAMPLES

We now show our OT protocols for some simple examples
to illustrate the basic principle. In all the three examples, Bob
reveals some partial information about the channel state to
Alice so that there are, in effect, two parallel channels with
different SNRs, and Alice does not know which of them is
the better channel. Bob reveals the channel over which each
file is to be communicated – the desired file over the stronger
channel, and the other file over the weaker channel. Alice uses
encoding for a suitable wiretap channel so that Bob can decode
the file transmitted over the stronger channel, but not the file
transmitted over the weaker channel.

In Sec. III-A, we discuss our protocol for the simplest case of
2-channels OFDM. In Sec. III-B, we discuss our protocol for a
2 × 2 MIMO channel, where the MIMO channel is essentially
reduced to a pair of parallel channels with order uncertainty of
the gains for Alice. Finally, in Sec. III-C, we discuss our proto-
col for a 2 × 1 MISO channel, where the channel is reduced to
a pair of parallel channels, with one of them having zero gain.
In this case, we do not require encoding for wiretap channels.
These will be extended in Sec. IV for a general MIMO channel.

A. 2-Channels OFDM

Let us consider an OFDM setup with 2 subchannels, each of
which undergo independent and identical Rayleigh fading. For
a state (H0, H1), let us define

B = arg max
j

|Hj |.

In the following, we will show that the rate C(P|HB |2/2,

P|HB |2/2) is achievable for the state (H0, H1). Let us define

W = C ⊕ B

R = C
(

P|HB |2/2, P|HB |2/2
)

− ε

where ⊕ denotes the modulo-2 addition, C(·, ·) is given in (4),
and ε > 0 is a pre-chosen constant.

The protocol:
1) Bob reveals (W, |HB |, |HB |) to Alice over the noise-free

channel.
2) Alice takes strings K0 and K1 of length L(|H0|, |H1|) :=

n R each. She encodes KW and KW into two length-n
codewords X0 and X1 respectively, such that each has an

average power P/2. A code suitable for WT( P
2 ,

P|HB |2
2 ,

P|HB |2
2 ) is used to encode both the strings. X0 and X1 are

transmitted over the respective channels. Note that KC

has been encoded into XB , and KC has been encoded
into XB .

3) Bob receives Y0 and Y1 with SNR P|H0|2/2 and
P|H1|2/2 respectively. He decodes KC from YB using
the decoder for the wiretap channel referred above.

Correctness of the protocol: Note that KC is transmitted over
the stronger channel (B), and KC is transmitted over the weaker
channel (B). Bob’s received SNR in the stronger channel is
P|HB |2/2, whereas his received SNR in the weaker channel is
P|HB |2/2. Thus he can decode KC with vanishing probability
of error, whereas he can get negligible information about KC
as his SNR is that of the wiretapper in this channel. Since |H0|
and |H1| are independent and identically distributed, it is easy
to check that I (W ; C) = 0, thus Alice does not learn anything
about Bob’s choice C .

B. 2 × 2 MIMO

Consider a 2 × 2 fading MIMO channel between Alice and
Bob. Alice and Bob each has 2 antennas. Let H denote the
2 × 2 complex fading matrix. The input-output relation for the
channel is given by (5), where Y, X, Z are 2 × n matrices.

Let the SVD decomposition of H be given by

H = U�VH ,

where � is a diagonal matrix with diagonal elements λ0, λ1
such that λ0 ≥ λ1. These are the (real) singular values of H. We
will show that the OT rate C(Pλ2

0/2, Pλ2
1/2) is achievable for

the fading matrix H. Let V0, V1 denote the columns of V. We
define

(W0, W1) = (
VC , VC

)
and R = C

(
Pλ2

0/2, Pλ2
1/2

)
− ε (6)

for some pre-decided ε, where the C(·, ·) above is defined in
(4). Note that W0, W1 are the same as V0, V1, but permuted
depending on C . Bob shares (W0, W1) with Alice in our pro-
tocol, and Alice uses it as the precoding matrix. Bob first
pre-multiplies the received matrix by UH . The SVD precoding
as shown in Fig. 4 transforms the MIMO channel into a paral-
lel fading Gaussian channel, where Alice is unsure of which of
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Fig. 4. MIMO precoding for OT.

Fig. 5. The equivalent channel with a switch for 2 × 2 MIMO setup.

the two channels has the gain λ0, and which has gain λ1. The
resulting end-to-end system is shown in Fig. 5 where a switch,
controlled by Bob’s choice bit C , determines which input of
Alice passes through which channel to Bob. The firm lines and
dotted lines show the two positions of the coupled switch.

The protocol:
1) Bob reveals (W0, W1, λ0, λ1) to Alice over the noise-free

channel.
2) The basic transmitter and receiver block diagram is shown

in Fig. 4. Alice computes R using (6), and takes strings K0
and K1 of length L(λ0, λ1) := n R each. She encodes K0
and K1 into two length-n codewords X0 and X1 respec-
tively, such that each has an average power P/2. A code

suitable for WT( P
2 ,

Pλ2
0

2 ,
Pλ2

1
2 ) is used to encode both the

strings. She then transmits the matrix

[W0 W1]

[
X0
X1

]
= W0X0 + W1X1

= V0XC + V1XC

= V
[

XC

XC

]
.

3) Bob first multiplies the received 2 × n matrix by UH . The
resulting end-to-end channel is given by

Ỹ =
[

Ỹ0

Ỹ1

]
= UH HV

[
XC

XC

]
+ UH

[
Z0
Z1

]
=

[
λ0XC

λ1XC

]
+ UH

[
Z0
Z1

]
. (7)

Bob gets Ỹ0 and Ỹ1 with SNR Pλ2
0/2 and Pλ2

1/2 respec-
tively. He decodes KC from Y0 using the decoder for the
wiretap channel referred above.

Correctness of the protocol: First note that since Ỹ is
obtained by a unitary (hence invertible) transformation on Y, it

contains exactly the same information as Y. So we will hence-
forth treat Ỹ as Bob’s received matrix. Since U is a unitary
matrix, UH Z has the same distribution as that of Z. Also note
that KC is encoded into XC , which is received as Ỹ0 with SNR
Pλ2

0/2. Since this encoding is done by Alice for a complex
Gaussian wiretap channel with the same receiver SNR, Bob can
decode KC with vanishing probability of error. On the other
hand, KC is encoded into XC , which is received as Ỹ1 with
SNR Pλ2

1/2. Bob can get negligible information about KC as
his SNR in Ỹ1 is that of the wiretapper. This ensures secrecy of
Alice against Bob.

About the secrecy of Bob against Alice, first note that H is
circularly symmetric, and thus (V0, V1) and (V1, V0) have the
same distribution, that is, their joint distribution is symmetric in
V0 and V1. Also, note that λ0, λ1 are independent of C, V0, V1.
Thus

I (W0, W1, λ0, λ1; C) = I
(
VC , VC ; C

) = 0.

This ensures the secrecy of Bob against Alice.

C. 2 × 1 MISO

Consider a 2 × 1 fading MISO channel between Alice and
Bob. Let H = (H0, H1) denote the 1 × 2 fading matrix. The
input-output relation for the channel is given by (5), where X, Z
are 2 × n matrices, and Y is a 1 × n vector.

Let the SVD of H be

H = �VH

where � = (λ, 0), λ = √|H0|2 + |H1|2, the first column of
V is V0 = (1/λ)HH , and the second column of V is a unit
vector V1 orthogonal to H. We will show that the OT rate

log2

(
1 + Pλ2

2

)
is achievable for the fading matrix H.

The best way to communicate messages (without any secrecy
condition) is using SVD precoding wherein Alice multiplies her
message symbol with the first column of V0 and transmits. Bob
simply divides the received symbol by λ and chooses the mes-
sage symbol nearest to the result. Note that if in addition, Alice
added any scalar multiple of V1 to her transmission, it would
not contribute to the received symbol as V1 is orthogonal to H.
Thus this dimension which is orthonormal to H (the null-space
of H) is not useful for communication, as it has zero gain. This
reduces the MISO channel to a single fading AWGN channel
with fading coefficient λ.

We now give an OT protocol for this channel when only Bob
has the knowledge of H at the beginning of a block. We define

(W0, W1) = (VC , VC ) (8)

and R = log2

(
1 + Pλ2

2

)
− ε (9)

for some pre-decided ε. Bob shares (W0, W1) with Alice in
our protocol, and Alice uses it as the precoding matrix. The
resulting channel is equivalent to what is shown in Fig. 6 where
a switch, controlled by Bob’s choice bit C , determines which
input of Alice passes through the channel to Bob.
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Fig. 6. The equivalent channel with a switch for 2 × 1 MIMO setup.

The protocol
1) Bob reveals (W0, W1, λ) to Alice over the noise-free

channel. He sets (W0, W1) as in (8).
2) Both Alice and Bob compute L(λ) := Rn with R given

in (9). Alice encodes each of K0 and K1 (of length
L(λ) each) into a n-length vector. She uses a code suit-
able for a complex AWGN channel with SNR P

2 λ2. Let
these encoded vectors be X0 and X1 respectively. Over
n uses of the channel, Alice transmits the 2 × n matrix
W0X0 + W1X1.

3) Bob receives

Y = H(W0X0 + W1X1) + Z

= λXC + Z.

Bob now decodes KC from Y with probability of error
going to zero as n → ∞.

Correctness of the protocol: Since XC is transmitted in the
null-space of H, it does not contribute to Bob’s received vec-
tor. Thus Bob has no information about KC . Since H has i.i.d.
Gaussian entries, (V0, V1) has a distribution which is symmet-
ric in V0 and V1, and λ is independent of (V0, V1). Thus,
I (W0, W1, λ; C) = 0. Thus the secrecy of Bob against Alice
is met.

IV. THE GENERAL PROTOCOL

In this section, we present a protocol for the general
2N -channels OFDM and 2N × nB-MIMO models. Here we
assume that Alice has more (2N ) antennas than Bob has (nB).
The case nB > 2N is similar, and is discussed briefly later.

For the MIMO setup, we first discuss how Bob can reveal
some partial information about the channel matrix to reduce the
channel to a parallel channel. We will then treat both OFDM
and MIMO models as parallel channels and present a common
OT protocol. The OT protocol will group the parallel chan-
nels into pairs and perform OT over each pair using similar
technique as in the previous section.

A. Reducing MIMO Setup to Parallel Channels

Let the SVD decomposition of H be given by

H = U�VH ,

where � is a nB × 2N diagonal1 matrix with diagonal elements
λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λnB−1. Let P be a random 2N × 2N

1That is, its (i, j)-th element λi j = 0 for i �= j , and λi i is denoted by λi .

permutation matrix chosen by Bob. Note that a permutation
matrix is unitary, and thus PT = P−1. Let us add (2N − nB)

zero rows with UH to define the 2N × nB matrix

Ũ =
[

UH

0

]
.

Bob sends W = VP over the noise-free channel, and Alice uses
it as the precoding matrix to transmit VPX. Bob first multiplies
the received vector Y by PT Ũ to get

Ỹ = PT ŨY

= PT
[

�PX + UH Z
0

]
= PT

[
�

0

]
PX + PT

[
UH Z

0

]
Let us denote λ := (λ0, λ1, · · · , λ2N−1)

T as the 2N length vec-

tor of diagonal elements of

[
�

0

]
where λl = 0 for l ≥ nB .

Let us also denote Z̃ :=
[

UH Z
0

]
. Let π denote the permuta-

tion induced on a vector by pre-multiplication by PT , that is,
PT λ = (λπ(0), λπ(1), · · · , λπ(2N−1)) in particular. Then

Ỹl = λπ(l)Xl + Z̃π(l).

We note that for π(l) ≥ nB , λπ(l) = Z̃π(l) = 0. This gives a
set of parallel channels such that 2N − nB of them have zero
gain and zero noise. These channels are completely useless
for communication. Since UH is unitary, UH Z is also i.i.d.
with independent real and imaginary components ∼ N(0, 1/2).
Since Bob knows P (and so π ), he will neglect the channels l
for which π(l) ≥ nB . To reduce this model to a standard par-
allel AWGN channels model with constant noise variance in
all channels but different channel gains, we assume that Bob
adds some independent noise with real and imaginary parts
∼ N(0, 1/2) to each of the channels for which π(l) ≥ nB .

We now prove a lemma which states that in the resulting
parallel channels, Alice can not know the order of the channel
gains.

Lemma 1: Let H be the channel matrix and P is a per-
mutation matrix chosen uniformly at random. Let W = VP
denote the precoding matrix sent to Alice by Bob, and λ be
the zero-padded vector of ordered singular values. Then for any
W and λ, and for any two permutations P and P′, we have
Pr(P|W,λ) = Pr(P′|W,λ) = 1

(2N )! .

Proof: V is uniformly distributed over the set of 2N × 2N
unitary matrices (see [29], Lemma 5). Since P is a unitary
matrix W = VP is also unitary and both VP and VP′ are
Haar matrices with the same uniform distribution over the set
of 2N×2N unitary matrices. Hence fW,λ|P(W,λ|P) =
fV,λ(WPT ,λ) = fV,λ(W,λ), and also fW,λ(W,λ) =
fV,λ(W,λ). So we have Pr(P|W,λ) = 1

(2N )! . �
We have now reduced the MIMO channel to a standard par-

allel AWGN channels with different gains (singular values) in
different subchannels. The above lemma says that from the par-
tial channel state information given to Alice, she still would
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be ‘completely uncertain’ about the association of the singular
values to the resulting subchannels.

The case of nB > 2N: When nB > 2N , U is an nB × nB

matrix and � is a nB × 2N diagonal matrix with (nB − 2N )

zero rows. Let the last nB − 2N rows of UH ,� and UH Z be
removed to obtain respectively Ũ, �̃ and Z̃. As before, Alice
transmits VPX. Bob first multiplies PT Ũ to the received vector
to obtain

Ỹ = PT ŨY

= PT �̃PX + PT Z̃.

The protocol now continues with the 2N components of Ỹ
which constitute the output of the 2N parallel channels as
before.

In the following, we consider a set of parallel channels
indexed by 0, 1, · · · , 2N − 1, as depicted in Fig. 2. Such a
model could have resulted from an OFDM channel or a MIMO
channel under the scheme discussed above. To treat MIMO and
OFDM in a unified manner in the following, we also assume
λl = |Hl | to be the channel gains in case of OFDM as they
provide the same performance. For OFDM, we assume that
λ0, λ1, · · · , λ2N−1 are i.i.d. and Rayleigh distributed. We now
define an OT-pairing of the channels and a power allocation
under a given total power constraint.

Definition 2: An OT-pairing of the 2N channels is defined
using two maps �, k : {0, 1, · · · , N − 1} → {0, 1, · · · , 2N −
1} such that

1) �, k are 1 − 1
2) I m(�) ∩ I m(k) = ∅
3) λ�(l) > λk(l) ∀ l.

The ordered pairs of the channels are then (�(l), k(l)); l =
0, 1, · · · , N − 1.

B. Power Allocation

Alice divides the total average transmit power P between
the subchannels. In our OT protocol, Alice transmits the same
power over the subchannels in a pair. Let Pl the average power
transmitted on each of the subchannels in pair l, that is, in the
subchannels �(l) and k(l), be Pl . Then Pl ≥ 0 and

N−1∑
l=0

Pl ≤ P

2
. (10)

The rates for the pairs are taken as

Rl = C
(

Plλ
2
�(l), Plλ

2
k(l)

)
− ε (11)

for an arbitrarily small fixed constant ε > 0. We denote R =
(R0, R1, · · · , RN−1). Note that Rl is close to the capacity of
the wiretap channel WT(Pl , Plλ

2
�(l), Plλ

2
k(l)). Our OT protocol

for the 2-channels OFDM can be used with average power con-
straint 2Pl to achieve a rate Rl for each pair of subchannels. The
total rate achieved is thus

R =
N−1∑
l=0

C
(

Plλ
2
�(l), Plλ

2
k(l)

)
− εN . (12)

Fig. 7. The equivalent channel with a switch.

For simplicity, we assume that n Rl is an integer for each l. We
define for l = 0, 1, · · · , N − 1,

γ̃l = (γl0, γl1) = (�(l), k(l)) (13)

λ̃l = (
λ�(l), λk(l)

)
, (14)

and denote γ̃ := (γ̃0, γ̃1, · · · , γ̃N−1) and λ̃ = (λ̃0, λ̃1, · · · ,

λ̃N−1).
Let T denote the 2N × 2N permutation matrix representing

the transposition of consecutive pairs. T consists of N diagonal

2 × 2 blocks

[
0 1
1 0

]
. We define

γ =
{

γ̃ if C = 0

γ̃ T if C = 1
(15)

Bob shares (γ , λ̃) with Alice. From Alice’s point of view, the
parallel channels appear to be associated with the gains shown
in Fig. 7. The association of the gains to the channels has one
bit of uncertainty as depicted by the two possible positions of
the coupled switches. The position of the switches is controlled
by C , and is not known to Alice. We give the protocol below.

C. The Protocol

1) In case of a MIMO setup, Bob first reveals W to Alice,
and Alice uses it as the precoding matrix. Bob also does
appropriate pre-processing as discussed in Sec. IV-A to
reduce the channel to a set of parallel channels.

2) Bob selects an OT pairing �, k and reveals (γ , λ̃) to Alice
over the noise-free channel. He computes these using (15)
and (14) respectively.

3) Both Alice and Bob compute Rl using (11) and Ll = Rln
for l = 0, 1, · · · , N − 1. Let us denote L = ∑N−1

l=0 Ll .
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For each j = 0, 1, Alice breaks K j (of length L) into
N substrings K jl; l = 0, 1, · · · , N − 1 of lengths Ll

respectively. For each j = 0, 1, and l = 0, 1, · · · , N − 1,
she encodes K jl into a n-length vector X jl of aver-
age power Pl using a code for the wiretap channel
WT(Pl , Plλ

2
�(l), Plλ

2
k(l)). Alice transmits this vector over

n uses of the channel γl j .
4) Note that from (15), γlC = �(l) and γlC = k(l) for each

l = 0, 1, · · · , N − 1. Thus Bob receives

Y�(l) = λ�(l)XCl + Z�(l).

Bob now decodes KCl from Y�(l) with probability of error
going to zero as n → ∞.

Correctness of the protocol: Bob can decode KCl from Y�(l)

for each l with arbitrarily small probability of error. This fol-
lows from standard results in Gaussian wiretap channels [15].
It also follows that he gets only an arbitrarily small amount of
information about KC from Yk(l) in the sense of (3), [16].

Alice knows that γ̃ ∈ {γ , γ T }. Since γ and λ̃ are revealed to
Alice during the protocol, the uncertainty in C is equivalent to
the uncertainty in which of γ , γ T is the value of γ̃ .

Now, let us first consider an OFDM channel. From the point
of view of Alice,

Pr
(

C = 0
∣∣∣γ , λ̃

)
= Pr

(
γ̃ = γ

∣∣∣γ̃ ∈
{
γ , γ T

}
, λ̃
)

= Pr
(
γ̃ = γ T

∣∣∣γ̃ ∈
{
γ , γ T

}
, λ̃
)

(16)

= Pr
(

C = 1|γ , λ̃
)

.

Here (16) follows as we have assumed that the channel gains of
the parallel channels are i.i.d. This implies that I (C; γ , λ̃) = 0.

Similarly, if the parallel channels have resulted from a MIMO
channel, then Alice has also learned the precoding matrix W.
Now,

Pr
(

C = 0
∣∣∣W, γ , λ̃

)
= Pr

(
γ̃ = γ |W, γ̃ ∈

{
γ , γ T

}
, λ̃
)

= Pr
(
γ̃ = γ T

∣∣∣W, γ̃ ∈
{
γ , γ T

}
, λ̃
)

= Pr
(

C = 1
∣∣∣W, γ , λ̃

)
. (17)

Here (17) follows from Lemma 1. Thus we have I (C; W,

γ , λ̃) = 0. This proves that Alice does not gain any information
about C from what she learns during the protocol.

We now discuss the optimal OT-pairing and the optimal
power allocation.

V. A PROTOCOL USING PARALLEL MIMO CHANNELS

In this section, we consider a possible generalization of the
approach discussed in the last section for OT over a MIMO
channel. In general, we can use suitable unitary precoding and
equalization matrices to reduce the MIMO channel to a pair
of parallel MIMO channels. Here Alice knows the channel
matrices H0 and H1. The received vectors are given by[

Y0
Y1

]
=

[
H0XC

H1XC

]
+
[

Z0
Z1

]
.

A protocol similar to that for 2-channels OFDM can be used
over this channel. The achieved OT rate R is given by the
capacity of the MIMO wiretap channel [25]:

max
KX

(
log det

(
I + H0KX HH

0

)
− log det

(
I + H1KX HH

1

))
=

max
KX

(
log det

(
I + KX HH

0 H0

)
− log det

(
I + KX HH

1 H1

))
where the maximization is over all input covariance matrices
KX with Tr(KX ) ≤ P/2. We note that, the singular values of
the original MIMO channel is the union of the singular values of
H0 and H1. Let the singular values of H be λ0, λ1, · · · , λ2N−1
in decreasing order of magnitude. Let the eigenvalues of KX be
P0, P1, · · · , PN−1 in decreasing order.

Lemma 2: If A and B are two N × N positive semidefi-
nite Hermitian matrices with eigenvalues α0, α1, · · · , αN−1 and
β0, β1, · · · , βN−1, ordered in decreasing order, then∏

i

(1 + αiβN−1−i ) ≤ det(I + AB) ≤
∏

i

(1 + αiβi )

Proof: First let us assume that max{αN−1, βN−1} > 0.
Then, without loss of generality, let us assume that βN−1 > 0,
that is, det(B) �= 0. Then

det(I + AB) = det(B) det
(

B−1 + A
)

Now, for any two N × N positive semidefinite Hermitian
matrices C and D with eigenvalues γ0, γ1, · · · , γN−1 and
ν0, ν1, · · · , νN−1, ordered in decreasing order, it is known [26]
that ∏

i

(γi + νi ) ≤ det(C + D) ≤
∏

i

(γi + νN−1−i ).

Using this inequality for B−1 and A, we get the desired
inequality.

Now, if αN−1 = βN−1 = 0, then we can perturb and replace
all the zero eigenvalues of A and B by ε > 0 and leave the
unitary matrices in their eigenvalue decomposition unchanged.
For such perturbed matrices, the inequality holds. Now, since
both the determinant and its bounds are continuous functions of
the eigenvalues, the bounds also hold for A and B (that is, at
ε = 0). �

Using the lemma, we have

det
(

I + H0KX HH
0

)
≤

N−1∏
i=0

(
1 + λ2

i Pi

)
and

det
(

I + H1KX HH
1

)
≥

N−1∏
i=0

(
1 + λ2

2N−i−1 Pi

)
,

and thus

R ≤ max
P

N−1∑
i=0

(
log

(
1 + λ2

i Pi

)
− log

(
1 + λ2

2N−i−1 Pi

))
, (18)
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where the maximization is over all power allocations P =
(P0, P1, · · · , PN−1) with

∑
i Pi ≤ P/2. Our earlier protocol

(Sec. IV) which uses suitably paired parallel SISO channels,
achieves equality in (18). Thus using a MIMO wiretap channel
code for the two parallel MIMO channels can not give better
rates than full diagonalization of the channel.

We also note that if we are given an OFDM channel, the
channel matrix is already diagonal. Even then, (18) suggests
an optimal pairing, namely the best with the worst and so on.

VI. OPTIMIZATION OF THE PROTOCOL

Let us first consider the simple setup where equal power is
allocated in all pairs of subchannels, i.e.,

Pl = P

2N
∀l.

The capacity for this power allocation is

R =
N−1∑
l=0

log

(
1 + Pλ2

�(l)

2N

)
−

N−1∑
l=0

log

(
1 + Pλ2

k(l)

2N

)

Clearly, this is maximized if λ2
�(l) > λ2

k( j) for all l, j . That is,
provided the best half of the channels form the stronger chan-
nels of the pairs, the achieved rate is independent of the actual
pairing. However, this is not true if we have the freedom to
pair the channels as well as to allocate variable power Pl to
different pairs. In general, we would like to choose an opti-
mal pairing (�(l), k(l)); 0 ≤ l ≤ N − 1 and power allocation
Pl; 0 ≤ l ≤ N − 1 so as to maximize

R =
N−1∑
l=0

log

(
1 + Plλ

2
�(l)

2N

)
−

N−1∑
l=0

log

(
1 + Plλ

2
k(l)

2N

)
. (19)

For any given power allocation Pl; 0 ≤ l ≤ N − 1 arranged
in non-increasing order, i.e., P0 ≥ P1 ≥ · · · ≥ PN−1, (18)
directly implies the following result, which states that an opti-
mal OT pairing couples the best channel with the worst, and so
on with the remaining channels.

Theorem 1: A pairing which combines the best channel with
the worst channel and continues similarly with the remaining
channels is optimal. That is, the pairing given by �(l) = l and
k(l) = 2N − l − 1 for l = 0, · · · , N − 1 is optimal when the
channel gains are ordered in non-increasing order, i.e., λ2

l ≥
λ2

l+1 for 0 ≤ l < 2N − 1.
This result reduces the problem of joint optimization of (19)

for the best pairing and power allocation to separate optimiza-
tion of the pairing and the power allocation among the pairs of
channels. With high probability, all the gains (λ0, · · · , λ2N−1)

are distinct. Under this high probability event, Theorem 1 gives
a unique optimal pairing. We now find the optimal power
allocation.

Optimal Power Allocation: In light of Theorem 1, we assume
that the channels are ordered such that

λl ≥ λl+1 for 0 ≤ l < 2N − 1

and the channel with gain λl is paired with the channel with
gain λ′

l , where λ′
l = λ2N−l−1. Then for a given power allocation

Pl; 0 ≤ l ≤ N − 1, the achieved rate is

R(P0, · · · , PN−1) =
N−1∑
l=0

log
(

1 + Plλ
2
l

)

−
N−1∑
l=0

log
(

1 + Plλ
′2
l

)
.

We need to maximize this with respect to the Pls under the
condition

N−1∑
l=0

Pl ≤ P

2
.

Similar optimization was needed for power allocation over dif-
ferent fading states for block fading wiretap channel [27]. This
can be solved by defining the Lagrangian objective function

J = R(P0, · · · , PN−1) − η

(
N−1∑
l=0

Pl − P

2

)
.

The optimal power allocation is given by

Pl =

⎧⎪⎪⎨⎪⎪⎩
((

f
(
λl , λ

′
l , η

))1/2 − 1
2

(
1
λ2

l
+ 1

λ′2
l

))+
if λ′

l �= 0(
1
η

− 1
λ2

l

)+
if λ′

l = 0

where

f (λl , λ
′
l , η) = 1

4

(
1

λ′2
l

− 1

λ2
l

)[(
1

λ′2
l

− 1

λ2
l

)
+ 4

η

]
,

and η is determined by the condition

N∑
l=1

Pl = P

2
.

Power allocation across coherence blocks: If variable amount
of average power is allowed to be transmitted in different blocks
under a long term average power constraint, then potentially
higher rates are achievable. Let λ denote the random vector
that represents the ordered (non-increasing) channel vector in
a block, and let Pl(λ) denote the power allocated to the l-th pair
of channels. The optimum pairing in each block is still as given
by Theorem 1. The optimal power allocation is the maximizer
of the expected rate R̄:

E

[
N−1∑
l=0

(
log

(
1 + Pl

(
λ
)
λ2

l

)
− log

(
1 + Pl

(
λ
)
λ2

2N−l−1

))]

under the average power constraint

E

[
N−1∑
l=0

Pl(λ)

]
≤ P

2
.
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By similar steps as before, the solution is given by

Pl
(
λ
) =

⎧⎪⎪⎨⎪⎪⎩
((

f
(
λl , λ

′
l , η

))1/2 − 1
2

(
1
λ2

l
+ 1

λ′2
l

))+
if λ′

l �= 0(
1
η

− 1
λ2

l

)+
if λ′

l = 0.

where η is a global constant determined by the condition

E

[
N−1∑
l=0

Pl(λ)

]
= P

2
. (20)

Here η depends only on the channel statistics and P .

VII. HIGH SNR ASYMPTOTICS

Let us consider a set of parallel channels. We want to study
the asymptotic expected rate. Let us consider a fixed ordered
channel vector (λ0, λ1, · · · , λ2N−1) to start with. Note that in
the case of a (2N × nB) MIMO system with precoding, there
are 2N channels. If nB ≤ N , then there are nB useful pairs
of channels with channel gains (λ0, λ

′
0), (λ1, λ

′
1), · · · , (λnB−1,

λ′
nB−1), where λ′

l = λ2N−l−1 = 0, for l = 0, 1, · · · , nB − 1. If
N < nB < 2N , then there are N pairs. (2N − nB) of them have
the second channel gain zero, more specifically, λ′

0 = · · · =
λ′

(2N−nB−1) = 0.
Clearly, η → 0 as P → ∞. So, Pl → ∞ as P → ∞. Now,

for a pair of channels with λ′
l = 0, the rate contributed by the

pair is2

Rl = log
(

1 + Plλ
2
l

)
→ log(Plλ

2
l ). (21)

For such a channel pair,

Pl = 1

η

(
1 − η

λ2
l

)
⇒ ηPl → 1 as η → 0 (22)

When λ′
l �= 0 and λl �= λ′

l , as η → 0,

√
ηPl →

(
1

λ′2
l

− 1

λ2
l

) 1
2

. (23)

So, for such channel pairs,

Rl = log
(

1 + Plλ
2
l

)
− log

(
1 + Plλ

′2
l

)
→ log

(
λ2

l

λ′2
l

)
as P → ∞. (24)

Now, using (22) and (23), the power constraint gives

ηP → 2(2N − nB) as P → ∞. (25)

Inspired by similar concepts for communication over MIMO
channels, it is reasonable to define the OT-multiplexing gain as

2Here we mean Rl − log(Plλ
2
l ) → 0 as P → ∞

Fig. 8. OT Rate and MIMO capacity versus SNR for 2 × 1, 2 × 2 MIMO.

μOT = lim
P→∞

E
[∑

i Ri
]

log P
.

So,

μOT = lim
P→∞

E
[∑

l:λ′
l=0 Rl

]
log P

(using24))

= lim
P→∞

E
[∑

l:λ′
l=0 log(Pl)

]
log P

(using21))

= lim
P→∞

E
[∑

l:λ′
l=0(log(Pl) − log(ηPl))

]
log P − E(log(ηP))

= lim
P→∞

E
[∑

l:λ′
l=0(− log(η))

]
−E(log(η))

= E
[|{l : λ′

l = 0}|] (26)

Here (26) follows from (22) and (25). Thus our protocol
achieves the OT-multiplexing gain of

μOT =

⎧⎪⎨⎪⎩
nB if nB ≤ N

2N − nB if N < nB ≤ 2N

0 if nB ≥ 2N .

In contrast, for communication over a 2N × nB MIMO chan-
nel, the multiplexing gain is min{nB, 2N }. For nB ≥ 2N , the
average OT rate converges to a constant as P → ∞. This can
be seen as a consequnce of the fact that the secrecy capacity of
the Gaussian wiretap channel goes to a constant as P → ∞.

VIII. NUMERICAL RESULTS

In this section, we provide numerical results of our OT pro-
tocols for some simple MIMO and OFDM channels which
include the examples discussed in Section III.

In Fig. 8, we plot the average OT rate of our protocol for
2 × 1 and 2 × 2 MIMO channels. The average OT rate is
numerically evaluated using Monte Carlo simulation methods
for SNR varying from 0 dB to 50 dB. The channel capacities for
these channels with CSIT are also numerically evaluated and
shown. It can be seen that the average OT rate of 2 × 1 MIMO
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Fig. 9. OT Rates for MIMO with n A = 4 transmit antennas, and nB =
1, 2, 3, 4 receive antennas.

Fig. 10. OT Rate and OFDM capacity versus SNR for 2, 4 Channels OFDM.

channel at SNR P dB is approximately equal to the capacity of
2 × 1 MIMO channel with CSIT at 3 dB lower transmit power.
This is due to the fact that in our OT protocol, half of the power
is given to the null-space of H which is useless for communica-
tion. The average OT rate of 2 × 1 MIMO channel increases at
the rate of 1 bit/3dB, as μOT = 1.

Using (24) we see that at very high SNR, the average OT

rate for 2 × 2 MIMO system is given by R̄ ≈ E

[
log

(
λ2

0
λ2

1

)]
.

Recall that λ2
0, λ

2
1 are the eigenvalues of the Wishart matrix

HH†. The joint p.d.f. of the ordered eigenvalues, γ0 = λ2
0, γ1 =

λ2
1, is given by e−(γ0+γ1)(γ0 − γ1)

2 [30, Theorem 2.17]. The
asymptotic value of the average OT rate is thus

E

[
log

(
γ0

γ1

)]
=

∞∫
0

γ0∫
0

log

(
γ0

γ1

)
e−(γ0+γ1)(γ0 − γ1)

2dγ1dγ0

= 1 + 2 ln(2) nats ≈ 3.45 bits.

In Fig. 9, the average OT rates for MIMO with n A = 4 and
1 ≤ nB ≤ 4 are shown as a function of SNR. As expected from
Section VII, the best average OT rate is achieved when nB =
n A/2 = 2, with asymptotic slope of 2 bits/3dB (μOT = 2). The
asymptotic slope for nB = 1 and nB = 3 is 1 bit/3dB (μOT =
1). For nB ≥ 4, μOT = 0, and the rate is bounded.

In Fig. 10, we show the average OT rate for 2-channels
OFDM and 4-channels OFDM, along with the capacities of

the corresponding channels. The average OT rate of 2-channel
OFDM converges to a constant as SNR increases, since μOT =
0. To find this constant, we note that |H0| and |H1| are
i.i.d. with Rayleigh distribution. So |H0|2 and |H1|2 have
exponential distribution. Let S = max(|H0|2, |H1|2) and T =
min(|H0|2, |H1|2). Then the probability density functions of
S and T are 2(1 − e−s)e−s and 2e−2t respectively. As SNR
increases, the average OT rate for our protocol converges to

E[log(S/T )] =
∞∫

0

∞∫
0

log(s/t)2(1 − e−s)e−s2e−2t dsdt

= 2 ln(2) nats = 2 bits.

The average OT rate of 4-channels OFDM also converges to a
constant and μOT = 0. The figure also shows the average OT
rates achieved for 2 and 4 channels OFDM, when the fedback
channel gains are uniformly quantized with 4 bits in the range
0-3.72 (where the cdf value is 0.999). The OT rate plots for
8-bits quantization were observed to be indistinguishable from
those without quantization.

IX. DISCUSSION

In AWGN channels, the noise realization is used to per-
form OT in [11], [28]. Following similar principle, the noise
realization can potentially be further utilized in our setup to
achieve better rate. In particular, for a single point-to-point fad-
ing channel or for parallel fading channels with the same fading
coefficient, an obvious scheme is for Bob to first reveal the
channel state to Alice over the noise-free channel. Then they
can follow a protocol suitable for the resulting AWGN channel.
However, as pointed out in [28], the OT rate saturates to a con-
stant as P → ∞ in AWGN channels. Thus further utilization
of the noise realization in our protocol will not only result in a
much more complex protocol, but it will also not provide any
additional asymptotic OT-multiplexing gain.

With an odd number of OFDM channels, or an odd number of
transmit antennas in a MIMO system, we have an odd number
of parallel channels. In such a case, our protocol will leave one
channel of middle rank in strength unused. That channel-state
can be revealed to Alice by Bob, and the OT protocol of [28]
can be used in the resulting AWGN channel. This also does
not give any asymptotic (P → ∞) improvement in terms of
multiplexing gain.

In the presence of a more practical noise-free finite rate chan-
nel instead of a noise-free real channel, our OT protocols can
be used with some modifications. For parallel fading chan-
nels, directly applicable to OFDM setup, this can be done as
below. We illustrate this for a pair of parallel fading channels.
The pair of fading coefficients can be quantized before sending
them to Alice. Let �h� and �h� denote the q-bits quantization
reconstruction levels above and below a fading magnitude h
respectively. For an ordered pair of channel magnitudes (λ0, λ1)

with λ0 ≥ λ1, Bob sends (�λ0�, �λ1�). This requires the trans-
mission of 2q bits over the noise-free channel. Alice decides
the OT rate assuming these to be the true ordered states. If
�λ0� ≤ λ1 ≤ λ0 ≤ �λ1�, then Alice sees that the first quantized
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state is not larger than the second, and thus the OT rate is taken
as zero by her in that block. The OT rate achieved for a pair of
channels using this scheme is given by

R =
(

log

(
1 + �λ0�2 P

2

)
− log

(
1 + �λ1�2 P

2

))+

where (x)+ := max{x, 0}. In simulations, we observed that an
8-bit quantized feedback in the range 0-3.72 provided almost no
difference in average OT rate from the unquantized feedback.
The rates for 4-bits quantization are plotted in Fig. 10.

For a MIMO channel, the precoding matrix needs to be also
sent in a quantized form if the noise-free channel has finite rate.
This will not result in an exact set of parallel SISO channels,
and will leave some amount of mixing between the channels.
For such channels, there will be rate loss due to several issues.
First, like in OFDM, there will be a rate loss due to inaccu-
rate estimate of the channels available for Alice. Second, there
will be a rate loss due to inter-channel interference. Lastly, the
leakage of information encoded in one channel into other chan-
nels need to be handled using appropriate additional encoding,
resulting in additional rate loss. Designing OT protocols over
such channels is outside the scope of this paper, and will be
considered in future work.

X. CONCLUSION

We presented a technique for OT for honest-but-curious par-
ties over parallel fading AWGN channels with receiver CSI
with application to OFDM and MIMO. For privacy of Bob
against Alice, our techniques use primarily Bob’s exclusive
knowledge of the fading states, whereas the additive noise is uti-
lized for privacy of Alice against Bob. Altogether, the technique
proposed in this paper can be an important tool for performing
OT efficiently over wireless channels.
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