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Abstract—We address the application of Barnes-Wall (BW)
lattice codes for communication over additive white Gaussian
noise (AWGN) channels. We introduce Construction A′ of com-
plex BW lattices that makes new connection between linear codes
over polynomial rings and lattices. We show that Construction
A′ of BW lattices is equivalent to the multilevel construction
from Reed-Muller codes proposed by Forney. To decode the BW
lattice code, we adapt the low-complexity sequential BW lattice
decoder (SBWD) proposed by Micciancio and Nicolosi. First we
study the error performance of SBWD for decoding the infinite
lattice, and demonstrate that it is powerful in making correct
decisions well beyond the packing radius. Subsequently, we use
the SBWD to decode lattice codes through a novel noise trimming
technique, where the received vector is appropriately scaled
before applying the SBWD. We show that the noise trimming
technique is most effective for decoding BW lattice codes in
smaller dimensions, while the gain diminishes for decoding codes
in larger dimensions.

Index Terms—Barnes-Wall lattices, lattice codes, low-
complexity lattice decoders.

I. INTRODUCTION

EVER since random coding schemes were demonstrated
to approach the capacity of additive white Gaussian

noise (AWGN) channels [1], enormous research has taken
place to find structured coding schemes which can accomplish
the same job. The need for structured codes is to facilitate
simpler analysis of the code performance and to achieve
reduced complexity in encoding and decoding operations. A
well known method to obtain such codes is to carve out a finite
set of points from special structures in Euclidean space called
lattices [2]-[6]. These codes are referred to as lattice codes,
and are usually obtained as a set of coset representatives of
a suitable quotient lattice. Importantly, lattice codes have the
advantage of inheriting most of the code properties from the
parent lattice, and as a result, the choice of the lattice is crucial
to the performance of the code.
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A. Motivation and contributions

In this paper we are interested in carving lattice codes
from Barnes-Wall (BW) lattices [7], [8]. Specifically, we
choose codes from complex BW lattices as (i) efficient low-
complexity decoders for such lattices are readily available in
[9], [10], and (ii) complex BW lattice codes with hypercube
shaping are nothing but codes over quadrature amplitude mod-
ulation (QAM), and hence, are readily applicable in practice.

In [9] two low-complexity implementations of the bounded
distance decoder for BW lattices have been proposed, namely
(i) the sequential bounded distance decoder, and (ii) the
parallel bounded distance decoder. Inspired by the parallel
bounded distance decoder in [9], list decoders based on paral-
lel implementation have been proposed in [10]. We point out
that the parallel decoders of [9] and [10] have low-complexity
only when implemented on a sufficiently large number of
parallel processors. If the above decoders are implemented
on a single processor, then the complexity advantages are lost,
and specifically, the complexity of the list decoder grows larger
than that of the sequential decoder in [9]. We are interested in
lattice codes of large block lengths, and hence, we focus on
the sequential bounded distance decoder which seems more
suitable for practical implementation. The sequential decoder
in [9] was proven to correct any error up to the packing
radius. However, the possibility of a correct decision is not
known when the received vector falls outside the bounded
decoding ball of packing radius. In a nutshell, the exact error
performance of the decoder is not known. The existence of
this low-complexity decoder has motivated us to study its error
performance, and use it to decode BW lattice codes. We refer
to this decoder as the sequential BW lattice decoder (SBWD).
This work stems from the preliminary results available in [11],
[12]. The contribution of this paper on encoding and decoding
of complex BW lattices are given below.

1) We introduce Construction A′ of BW lattices which
enables us to generate them from linear codes over
polynomial rings. The proposed method is yet another
construction of BW lattices and makes a new connection
between codes over polynomial rings and lattices. We
show that Construction A′ is equivalent to the multilevel
construction of BW lattices from Reed-Muller codes.

2) We study the error performance of the SBWD in AWGN
channels. Since the SBWD exploits the multilevel con-
struction from Reed-Muller (RM) codes, we study the
error performance of the soft-input RM decoders as used
in the SBWD. First, we use the Jacobi-Theta functions
[13] to characterize the virtual binary channels that arise
in the decoding process. Subsequently, we study the
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noise statistics in the algorithm, and provide an upper
bound on the error performance of the soft-input RM
decoders. Through computer simulations, we showcase
the error performance of the SBWD, and highlight that
the decoder is powerful in making correct decisions well
beyond the packing radius.

3) To decode the lattice code in AWGN channels, we
adapt the SBWD along with a noise trimming technique,
wherein the components of the received vector are
appropriately scaled before passing them to the SBWD.
With the noise trimming technique, the SBWD is forced
to decode to a codeword which in turn improves the
error performance. We refer to this decoder as the
BW lattice code decoder (BWCD). We obtain the bit
error rate (BER) of the BWCD for codes in complex
dimensions 4, 16, 64, 256, and 1024, and show that the
BWCD outperforms the SBWD by 0.5 dB in smaller
dimensions. We also show that the gains of the noise
trimming technique diminishes with larger dimensions.

B. Prior work on Barnes-Wall lattices

BW lattices [7] is a special family of N -dimensional lattices
that exists when N is a power of 2. These lattices were
originally discovered as a solution to finding extreme quadratic
forms in 1959. In 1983 the now well known connection
between BW lattices and Reed-Muller codes was discovered
in [14]. This connection can be found in [15], [16], [19] in
different forms. Apart from the connection to classical linear
codes, generator matrices of BW lattice can also be obtained
though recursive Kronecker operation on the kernels [17], [9][

1 1

0
√
2

]
and

[
1 1
0 1 + i

]
,

for real and complex lattices, respectively (where i =
√−1).

In 1989 G.D. Forney has proposed a low-complexity
bounded distance decoding algorithm for Leech lattices [22].
As a generalization, in the same paper, a similar algorithm has
been shown to work in decoding all Construction D lattices.
As BW lattices can be obtained through Construction D [15],
bounded distance decoders for BW lattices were known in
principle since [22]. In the 1990’s, explicit bounded distance
decoders for BW lattices were implemented for dimension up
to 32, and numerical results on the error performance were
reported [21], [23], [24]. In 2008, Micciancio and Nicolosi
[9] have proposed two low-complexity implementations of
the bounded distance decoder for BW lattices, namely (i)
the sequential bounded distance decoder, and (ii) the parallel
bounded distance decoder. If N = 2m denotes the dimension
of a complex BW lattice, then the worst-case complexity of the
decoders has been shown as O

(
N log2(N)

)
and O

(
log2(N)

)
for the fully sequential decoder and the fully parallel decoder,
respectively. For the fully sequential decoder, the algorithm
is implemented on a single processor, whereas for the fully
parallel decoder, the algorithm is implemented on N2 parallel
processors. Inspired by the fully parallel implementation in
[9], list decoder for BW lattices has been recently proposed
in [10] where the decoder outputs a list of BW lattice points
within any given radius from the target vector. The complexity

of the list decoder is polynomial in the dimension of the lattice,
and polynomial in the list size, which is a function of the
Euclidean radius. Note that the SBWD exploits the multilevel
construction of BW lattices from Reed-Muller (RM) codes. On
the other hand, the list decoder does not exploit the multilevel
construction of BW lattices, and hence, does not need the
support of RM decoders.

The rest of this paper is organized as follows: In Section
II, we provide a short background on BW lattice encoders
from linear codes. In Section III, we introduce Construction
A′ of complex BW lattices. In Section IV, we study the error
performance of the SBWD, while in Section V and Section
VI, we use the SBWD to decode the BW lattice code. Finally,
in Section VII, we conclude this paper and provide some
directions for future work.

Notations: Throughout the paper, boldface letters and capi-
tal boldface letters are used to represent vectors and matrices,
respectively. For a complex matrix X, the matrices XT , �(X)
and �(X) denote the transpose, real part, and imaginary part of
X, respectively. The set of integers, real numbers, and complex
numbers are denoted by Z, R, and C, respectively. We use i
to represent

√−1. For an n-length vector x, we use xj to
represent the j-th component of x. Cardinality of a set S is
denoted by |S|. Magnitude of a complex number x is denoted
by |x|. The number of ways of picking n out of m objects is
denoted by Cm

n . The symbol �·� denotes the nearest integer
of a real number, and we set �a + 0.5� = a for any a ∈ Z.
Finally, we use Pr(·) to denote the probability operator.

II. BACKGROUND ON BW LATTICE CONSTRUCTION FROM

REED-MULLER CODES

A complex lattice Λ over Z[i] is a discrete subgroup
of Cn [15]. Alternatively, Λ is a Z[i]-module generated
by a basis set {v1, v2, . . . , vn | vj ∈ Cn} as Λ ={∑n

j=1 qjvj | ∀qj ∈ Z[i]
}
. It is well known that dense lat-

tices can be obtained via binary linear codes [15]. Depending
on the structure of the underlying linear codes, lattice con-
struction can be categorized into different types e.g., Construc-
tion A [18], Construction B, and Construction D [15]. In this
section, we recall the well known construction of complex
BW lattices from Reed-Muller codes [15], [20].

Construction D:

If {g1, g2, . . . , gkr
| gj ∈ F2m

2 } denotes a basis set of the r-th
order binary RM code RM(r,m) for 0 ≤ r ≤ m−1, then the
complex BW lattice BW2m of dimension 2m can be obtained
using Construction D [9], [16] as⎧⎨
⎩(1 + i)mZ[i]2

m

+
m−1∑
r=0

kr∑
j=1

(1 + i)rar,jgj | ∀ar,j ∈ {0, 1}
⎫⎬
⎭ .

Complex code formula from Reed-Muller codes

A complex BW lattice can also be obtained from nested Reed-
Muller codes using the complex code formula [16], [19] as
given in (1), where ψ : F2 → Z[i] is given by ψ(0) = 0
and ψ(1) = 1 on the alphabet of C, where F2 = {0, 1}. For
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BW2m =

{
(1 + i)ma +

m−1∑
r=0

(1 + i)rψ(cr) | ∀cr ∈ RM(r,m), ∀a ∈ Z[i]2
m

}
(1)

notational convenience, we also write (1) as

BW2m = (1 + i)mZ[i]2
m

+

m−1∑
r=0

(1 + i)rRM(r,m). (2)

Although Construction D and the complex code formula
look similar, there is a significant difference between them.
Construction D generates a lattice with arbitrary nested linear
codes, while the complex code formula does not generate
lattices for arbitrary nested linear codes. A recent study has
shown that the nested linear codes must satisfy an additional
property of closeness under Schur’s product to generate a
lattice via complex code formula [27]. Nested RM codes is
one such example, and hence, complex code formula generates
BW lattice.

Motivation for Construction A′:

In this work we facilitate one-shot encoding of all RM
codewords by using a single linear code over polynomial rings,
and then obtain the lattice code

EC2m =

{
m−1∑
r=0

(1 + i)rψ(cr) | ∀cr ∈ RM(r,m)

}
(3)

as embedding of the codewords of the linear code into the
Euclidean space. Since we obtain the lattice code EC2m as
an embedding of single code, our construction resembles
Construction A [15], and hence, we refer to it as Construction
A′.

III. CONSTRUCTION A′ OF BW LATTICE

To introduce Construction A′, we first define polynomial
rings and codes over polynomial rings.

Definition 1: We define the polynomial quotient ring Um =
F2[u]�u

m in variable u for any m ≥ 1 as

Um =

{
m−1∑
k=0

bku
k | bk ∈ F2

}
,

with regular polynomial addition and multiplication over F2

coefficients along with the quotient operation um = 0, which
is equivalent to cancelling all the terms of degree greater than
or equal to m.

Definition 2: A linear code C over Um is a subset of Un
m

which can be obtained through a generator matrix G ∈ Uk×n
m

as
C =

{
zG | ∀z ∈ Uk

m

}
,

for some k ≤ n and the matrix multiplication is over the ring
Um.

We now introduce Construction A′ of BW lattices in the
following definition.

Definition 3: A complex BW lattice BW2m is obtained by
Construction A′ from a linear code C over Um for m ≥ 1 if
BW2m can be written as

BW2m = (1 + i)mZ[i]n + EC, (4)

where EC = {Φ(c) | ∀c ∈ C} ⊆ Z[i]n is a lattice
code obtained from the linear code C through the mapping
Φ : Um → Z[i] given by

Φ

⎛
⎝m−1∑

j=0

bju
j

⎞
⎠ =

m−1∑
j=0

ψ(bj) (Φ(u))
j
,

where ψ : F2 → Z[i] is given by ψ(0) = 0 and ψ(1) = 1, and
Φ(u) = 1 + i.

In the rest of this section, we use Construction A′ to obtain
complex BW lattices from a suitable linear code C2m over the
quotient ring Um.

A. Linear codes for Construction A′:

In order to obtain BW2m through Construction A′, we first
need to find a suitable linear code C2m over the ring Um.
We propose such a linear code which can be obtained by the
generator matrix

G2m =

[
1 1
0 u

]⊗m

,

where the tensor operation is over the ring Um.
Example 1: To obtain BW4, the linear code C4 can be

generated using the generator matrix

G4 =

⎡
⎢⎢⎣

1 1 1 1
0 u 0 u
0 0 u u
0 0 0 0

⎤
⎥⎥⎦ ∈ U4×4

2 .

Encoding of linear code C2m

By using G2m as a matrix over Um, the code C2m is
obtained as follows: Let z ∈ U2m

m i.e., the j-th component of
z is given by

zj =

m−1∑
k=0

bk,ju
k, (5)

where bk,j ∈ F2 for all k, j. Using z and G2m , the code
C2m ⊆ U2m

m can be obtained as

C2m =
{

x = zG2m | ∀z ∈ U2m

m

}
, (6)

where the matrix multiplication is over Um.
We now provide an example for the above encoding tech-

nique showing the positions of the information bits that get
encoded to the codewords of C2m .

Example 2: For m = 2, the input vector z and the generator
matrix G4 are of the form

zT =

⎡
⎢⎢⎣
b0,1 + b1,1u

b0,2
b0,3
0

⎤
⎥⎥⎦ and G4 =

⎡
⎢⎢⎣

1 1 1 1
0 u 0 u
0 0 u u
0 0 0 0

⎤
⎥⎥⎦ .
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We define the rate of the linear code C2m as the ratio of
the number of information bits per codeword and the length
of the code.

Proposition 1: The rate of the code C2m is m
2 .

Proof: Each component of z carries m information bits
in the variables {bk,j}m−1

k=0 as shown in (5). This amounts to a
total of m2m bits carried by z. However, since the matrix
multiplication is over Um, not all the information bits of
{bk,j}m−1

k=0 are encoded onto the codewords of C2m (since
uk = 0 for k ≥ m). Using the structure of G2m it is possible to
identify the indices (k, j) whose information bits are encoded.
Let Iq for 0 ≤ q ≤ m − 1 denote the set of row indices
of G2m that contains either 0 or uq. Due to the quotient
operation um = 0, the components of z having indices in
Iq are essentially of the form,

zj =

m−1−q∑
k=0

bk,ju
k ∀j ∈ Iq.

For instance, z1 =
∑m−1

k=0 bk,1u
k and z2m = 0. Using the

structure of G2m we observe that |Iq| is Cm
q , and hence,

the total number of information bits per codeword of C2m
is

∑m−1
k=0 (m− k)Cm

k = m
2 2

m.
We now show the equivalence between our encoding tech-

nique and the complex code formula [16]. In other words, the
following theorem shows that the codewords generated in (6)
can be uniquely represented as vectors of a multi-level code
of nested RM codes.

Theorem 1: The codewords generated in (6) can be
uniquely represented as codewords obtained through the com-
plex code formula in (1).

Proof: The entries of G2m take values from the set
{0, 1, u, u2, . . . , um−1}. After suitable row permutations, G2m

can be written as

G2m =

⎡
⎢⎢⎢⎢⎢⎣

R0

uR1

...
um−1Rm−1

umRm

⎤
⎥⎥⎥⎥⎥⎦ , (7)

where Rk ∈ F
Cm

k ×2m

2 . Note that [RT
0 RT

1 · · · RT
r ]

T is a
generator matrix of the r-th order RM code for r ≤ m.
Recalling the encoding technique, the code C2m is obtained
as

C2m =
{

x = zG2m | ∀ z ∈ U2m

m

}
,

where the matrix multiplication is over Um. Further, the vector
z can be written as z = uB, where

u =
[
1 u u2 · · · um−2 um−1

] ∈ U1×m
m

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0,1 b0,2 · · · b0,2m−1 b0,2m

b1,1 b1,2 · · · b1,2m−1 b1,2m
b2,1 b2,2 · · · b2,2m−1 b2,2m

...
... · · · ...

...
bm−2,1 bm−2,2 · · · bm−2,2m−1 bm−2,2m

bm−1,1 bm−1,2 · · · bm−1,2m−1 bm−1,2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that bk,j are the information bits to be encoded onto the
codewords of C2m . We partition the information matrix B as
[B0 B1 · · · Bm] where Bk ∈ F

m×Cm
k

2 for k = 1, 2, . . . ,m.
Incorporating the above partition, the BW lattice vector x can
be written as

x = u[B0 B1 · · · Bm]

⎡
⎢⎢⎢⎢⎢⎣

R0

uR1

...
um−1Rm−1

umRm

⎤
⎥⎥⎥⎥⎥⎦ .

The R.H.S of the above equation can be alternately written as

x = u[B̄0 B̄1 · · · B̄m]

⎡
⎢⎢⎢⎢⎢⎣

R0

R1

...
Rm−1

Rm

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
GRM

,

where B̄k =

[
0k×Cm

k

Bk([1 : m− k], :)

]
and Bk([1 : m − k], :)

denotes the first m − k rows of Bk. Note that GRM is the
matrix containing the generator matrices of nested RM codes.
We use the notation B̄ = [B̄0 B̄1 · · · B̄m], and point out
that the informations bits in each row of B̄ are encoded onto
the codewords of an appropriate RM code by the matrix
multiplication B̄GRM . Due to the presence of zeros in B̄,
the matrix B̄ has only

∑k−1
n=0 C

m
n information bits in the k-

th row of B̄ for k = 1, 2, . . . ,m. Since these
∑k−1

n=0 C
m
n bits

are placed in the first as many columns of B̄, the information
bits in the k-th row of B̄ are encoded onto a codeword of
RM(k − 1,m). Finally, by the multiplication of u from
left, the generated RM codewords are appropriately weighed
by different powers of u and then added. This proves the
equivalence of our construction to multilevel construction from
RM codes.

Remark 1: The equivalence shown in Theorem 1 implies
that Construction A′ provides the same bit labelling properties
as that of the multilevel construction.

B. Embedding the linear code into the Euclidean space

We now discuss the embedding operation of C2m into the
Euclidean space. By using the map Φ(·) on the components
of C2m , we get the lattice code EC2m . It can be verified that
EC2m is an arbitrary subset of BW2m and does not have
hypercube shaping. To fix this problem, we propose a one-to-
one mapping φ on EC2m to obtain a new lattice code (denoted
by L2m ) with the hypercube shaping property.

C. BW lattice codes with hypercube shaping property

We propose a one-to-one mapping φ on EC2m to ob-
tain a new lattice code L2m . Under such a mapping, we
get hypercube shaping property when m is even and the
rectangular shaping property when m is odd. For x =
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Fig. 1. Complex points generated by
∑m−1

r=0 (1 + i)rbr and

φ
(∑m−1

r=0 (1 + i)rbr
)

for m = 10.

[x1, x2, x3, . . . , x2m ] ∈ EC2m , the mapping φ operates on each
component of x as

φ(xj) =

{
xj mod 2

m
2 , when m is even

ϕ
(
xj mod 2

m+1
2

)
, when m is odd,

(8)

where ϕ(·) is defined on Z
2

m+1
2

[i] as

ϕ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z, when �(z) < 2
m−1

2

z +
(
2

m−1
2 − i2

m−1
2

)
, when �(z) < 2

m−1
2

and �(z) ≥ 2
m−1

2

z −
(
2

m−1
2 + i2

m−1
2

)
, when �(z) ≥ 2

m−1
2

and �(z) ≥ 2
m−1

2 .

(9)

The mapping φ guarantees the following property on L2m :

L2m ⊆

⎧⎪⎪⎨
⎪⎪⎩

{
Z
2

m
2
[i]

}2m

, if m is even

{
Z
2

m+1
2

}2m

+ i
{
Z
2

m−1
2

}2m

, if m is odd.

(10)

From (10), each component of a vector in L2m is in a
cubic box and a rectangular box, when m is even and
odd, respectively. In Fig. 1, we present the complex points∑m−1

r=0 (1+i)rbr with and without the mapping φ for m = 10.

Proposition 2: The mapping φ given in (8) is one-to-one.
Proof: Here we only provide the proof when m is even.

For any x1, x2 ∈ EC2m we prove that φ(x1) 
= φ(x2) if and
only if x1 
= x2. Applying the modulo operation in (8), xj

satisfies xj = 2
m
2 rj +φ(xj) for each j = 1, 2, where φ(xj) ∈

L2m and rj ∈ Z[i]2
m

. This implies

φ(xj) = xj − 2
m
2 rj = xj + (1 + i)mr′j , (11)

for some r′j ∈ Z[i]2
m

. The second equality in (11) follows as
(1 + i)m = a2

m
2 , where a ∈ {1,−1, i,−i}. Further, since xj

is of the form
∑m−1

r=0 (1 + i)rψ(br) for br ∈ RM(r,m), the
RHS of (11) is nothing but the multilevel representation of
BW lattice from RM codes [16]. Since such a representation
is unique, we have φ(x1) 
= φ(x2) if and only if x1 
= x2. This

1: procedure SEQBW(r, y)
2: if y ∈ CN and N ≤ 2r

3: return �y�
4: else
5: b = ��(y)�+ ��(y)� mod 2
6: ρ = 1−2(max (|��(y)� − �(y)|, |��(y)�| − �(y)))
7: ĉ = RMDEC(r, b, ρ)
8: v = SEQBW(r + 1, (y − ĉ)/(1 + i))
9: return ĉ + (1 + i)v

10: end if
11: end procedure

Fig. 2. Algorithm for the SBWD of [9].

completes the proof when m is even. The one-to-one nature
of φ can be proved on the similar lines when m is odd.

The above proposition implies that mapping φ provides a
new lattice code with better shaping property. The following
theorem shows that L2m can be used as a tile to obtain the
BW lattice BW2m .

Theorem 2: The lattice code L2m and the lattice BW2m are
related as BW2m = (1 + i)mZ[i]2

m

+ L2m .
Proof: See the proof of Theorem 2 in [11].

IV. ON THE ERROR PERFORMANCE OF THE SBWD

We study the error performance of the SBWD for decoding
the infinite BW lattice. In [9] it has been shown that for x ∈
BW2m , if there exists y ∈ C2m such that d2(x, y) ≤ N

4 , where
N = 2m, then the SBWD correctly finds (or decodes) the
lattice point x̂ = x. In the context of using SBWD in AWGN
channels, y corresponds to y = x + n, where x ∈ BW2m and
nj ∼ CN (0, σ2) ∀j. This implies that the codeword error rate
(CER) of the SBWD given by Pr(x̂ 
= x) is upper bounded as

Pr(x̂ 
= x) ≤ Pr

(
|n|2 > N

4

)
.

Note that
√

N
4 is the packing radius of BW2m , and hence, the

above bound is the well known sphere upper bound (SUB)
[26]. In [9] the focus was only on the complexity of the
decoder but not on the analysis of the tightness of the SUB. In
other words, the possibility of correct decision is not known
when |n|2 > N

4 . We study the error performance and show
that the decoder is powerful in making correct decisions well
beyond the packing radius.

We first recall the SBWD algorithm of [9] in Fig. 2. This
decoder is a successive interference cancellation (SIC) type
decoder which exploits the BW lattice structure as multi-level
construction of nested RM codes. At each level, the algorithm
uses a variant of the soft-input RM decoder [25] (denoted by
the function RMDEC which is given as Algorithm 3 in [9]) to
decode the RM code in a modulo-(1 + i) channel. Thus, the
error performance of the SBWD is determined by the error
performance of the underlying soft-input RM decoders in the
modulo-(1 + i) channels. In particular, we have

Pr(x̂ 
= x) = Pr

(⋃
r

E(ĉr 
= cr)

)
, (12)
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Fig. 3. Comparison of the cross-over probability with the upper bound using
the Jacobi-Theta function.

where E(ĉr 
= cr) denotes an error event while decoding
RM(r,m). Hence, it is important to compute Pr(ĉr 
= cr)
for each RM(r,m). Along that direction, it is necessary to
model the effective modulo-(1 + i) channel induced for each
RM code RM(r,m).

A. Modulo-(1 + i) channel for RM(0,m)

We propose a model for the modulo-(1+ i) channel which
is accurate for RM(0,m). For r 
= 0, we cannot accurately
model the channel due to the error propagation in the SIC
decoder. Without loss of generality, we study the error perfor-
mance when the zero lattice point is transmitted. To decode
RM(0,m), a hard-decision binary value bj is obtained from
yj as

bj = ��(yj)�+ ��(yj)� mod 2. (13)

Note that the above expression is a realization of the modulo
(1 + i) operation. Due to the combination of the round and
the modulo operation (henceforth referred to as the round-
modulo operation) in (13), the codewords of RM(0,m) are
passed through a virtual binary channel with the cross-over
probability given by

Pc = Pr(bj = 1 | cj = 0).

Since the zero lattice point is transmitted, c is the all zero
codeword for each RM(0,m), and hence, the relevant cross-
over probability is Pr(bj = 1 | cj = 0). The following
theorem shows that Pc can be upper bounded by a Jacobi-
Theta function [13].

Theorem 3: The cross-over probability Pc induced by the
round-modulo operation in (13) is upper bounded as

Pc ≤
(
e−

1
4σ2

)
ϑ

(
i4

πσ2
,
i

πσ2

)
, (14)

where ϑ (z, τ) is the Jacobi-Theta function given by

ϑ (z, τ) =

∞∑
a=−∞

eπia
2τ+2πiaz.

Proof: We first compute Pc and then propose an upper
bound. To assist the computation of Pc, we compute the
probability that �(yj) (or �(yj)) falls within an interval

(z − 0.5, z + 0.5] centred around an integer z, when cj = 0.
Since the additive noise is circularly symmetric, it is sufficient
to calculate the above probability for either �(yj) or �(yj).
We use y to denote either �(yj) or �(yj). For the odd integer
case, we have

Po �
∞∑

a=−∞
Pr (2a+ 0.5 < y ≤ 2a+ 1.5)

=

∞∑
a=−∞

[∫ 2a+1.5

2a+0.5

Py(y)dy

]

=
∞∑

a=−∞

[
Q

(
2a+ 0.5

σ/
√
2

)
−Q

(
2a+ 1.5

σ/
√
2

)]
,(15)

where Py(y) is the probability density function of y, Q(x) =
1√
2π

∫∞
x e−

u2

2 du, and σ2/2 is the variance of y. For the even
integer case, we have

Pe �
∞∑

a=−∞
Pr (2a− 0.5 < y ≤ 2a+ 0.5)

=

∞∑
a=−∞

[∫ 2a+0.5

2a−0.5

Py(y)dy

]

=

∞∑
a=−∞

[
Q

(
2a− 0.5

σ/
√
2

)
−Q

(
2a+ 0.5

σ/
√
2

)]
.(16)

Note that bj is 1 whenever ��(yj)� + ��(yj)� is an odd
number. This can happen when (i) ��(yj)� is odd and ��(yj)�
is even, or (ii) ��(yj)� is even and ��(yj)� is odd. From (15)
and (16), we can write

Pc = Po(1− Po) + (1− Po)Po (17)

= 2Po − 2(Po)
2. (18)

By dropping the term 2(Po)
2, we upper bound Pc as

Pc ≤ 2Po

≤ 2

∞∑
a=−∞

[
Q

(
2a+ 0.5

σ/
√
2

)]
(19)

≤
∞∑

a=−∞
e−

(2a+0.5)2

σ2 (20)

= e−
(0.5)2

σ2

∞∑
a=−∞

e
−4a2−2a

σ2

=
(
e−

1
4σ2

)
ϑ

(
i4

πσ2
,
i

πσ2

)
,

where the bound in (19) comes from dropping the terms of
the form Q

(
2a+1.5
σ/

√
2

)
in (15), and the bound in (20) is due to

the Chernoff bound Q(x) ≤ 1
2e

−x2

2 .
Note that the Jacobi-Theta function can be evaluated at any

pair (τ , z). In Fig. 3, the empirical values of Pc are presented
along with the bound in (14) for various values of SNR = 1

σ2 .
We point out that the bound is not tight due to the Chernoff-
bound on each Q(·) function.
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Fig. 4. Equivalence between the modulo-(1+i) channel and the non-modulo
channel when n

(r)
e,j = 1− d

(r)
j .

B. Upper bound on the error performance for decoding
RM(r,m)

We provide an upper bound on Pr(ĉr 
= cr). To distinguish
the decoding operation for each RM(r,m), we denote the
hard-decision vector b and the soft-input vector d by b(r) and
d(r), respectively, where

b(r) = ��(y(r))�+ ��(y(r))� mod 2, and

d(r) = max
(
|��(y(r))� − �(y(r))|, |��(y(r))�| − �(y(r))

)
.

Note that d(r)j is the effective distance between the received

complex number y(r)j and the nearest coset representative of

b
(r)
j in the modulo-(1+ i) channel. As depicted in Fig. 4, d(r)j

is the effective distance between y(r)j (as shown in white circle
with diagonal stripes) and the nearest coset representative
of b(r)j = 1 (the complex number 1). We now propose an
equivalent non-modulo channel for the modulo-(1+i) channel
at each level. If c(r) denotes a codeword of RM(r,m), one
can imagine b(r) and d(r) to be obtained from an equivalent
non-modulo channel given by

y(r)e = c(r) + n(r)
e ,

where

n
(r)
e,j =

{
d
(r)
j , when b(r)j = c

(r)
j

1− d
(r)
j , when b(r)j 
= c

(r)
j ,

(21)

for 1 ≤ j ≤ N , where n(r)
e,j denotes the j-th component of

n(r)
e . This equivalence between the modulo-(1 + i) channel

and the non-modulo channel is shown in Fig. 4. Note that n(r)
e,j

has bounded support in the interval [0, 1]. For an analogy with
respect to the model in [25], the code alphabet of RM(r,m)
here corresponds to the code alphabet {−1, 1} in [25], and
the effective noise nr

e here corresponds to the AWGN in [25].
At the r-th level of the BW lattice, the code RM(r,m) has
the minimum squared distance of 2m−r. Since the soft-input
RM decoder is a bounded distance decoder with radius equal
to the minimum squared distance, the probability of incorrect
decision of the soft-input RM decoder is upper bounded (using
the proposition in Section IV.A of [25]) as

Pr(ĉr 
= cr) ≤ Pr

(
|n(r)

e |2 > 2m−r

4

)
. (22)
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Fig. 5. Histogram of n
(0)
e when SNR = 1

σ2 takes the values 0 dB, 5 dB,
10 dB, and 25 dB.

For r = 0, the bound becomes

Pr(ĉ0 
= c0) ≤ Pr

(
|n(0)

e |2 > N

4

)
.

It is important to note that the above bound is different from
Pr(|n|2 > N

4 ) since n is Gaussian distributed while n(0)
e is not.

We do not have a closed form expression on the distribution of
|n(r)

e |2. In Fig. 5, we display the histogram of the realizations
of n(0)

e for various values of σ2, when the zero RM codeword
is transmitted. Note that for σ2 = 0 dB, the histogram of n(0)

e

has a triangular shape centred around 0.5, which implies a very
high (close to 0.5) cross-over probability when obtaining the
hard decision vector b. On the other hand, at lower values of
σ2, the distribution is skewed towards zero indicating smaller
cross-over probability.

V. SBWD TO DECODE BW LATTICE CODE L2m FOR

AWGN CHANNEL

We discuss the use of SBWD to decode the lattice code
L2m . First, we describe a method to transmit the codewords
of L2m . For any x ∈ L2m , the transmitted vector is of the
form

xt = (2x − c) , (23)

where

c =

{ (
2

m
2 − 1

)
+ i

(
2

m
2 − 1

)
, when m is even(

2
m+1

2 − 1
)
+ i

(
2

m−1
2 − 1

)
, when m is odd.

(24)

The components of the transmitted vector are offset by a
constant c towards the origin to reduce the average transmit
energy. Using the scale and the shift operation in (23), each
component of xt takes a value from the regular 2m-QAM
constellation. In particular, the QAM constellation is square
and non-square when m is even and odd, respectively. When
xt is transmitted, the received vector ȳ is given by

ȳ = xt + n̄, (25)
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Fig. 6. CER of SBWD for decoding L4

.

where n̄ is the AWGN with n̄j ∼ CN (0, σ2) ∀j. In this
section, SNR of the channel is defined as Es/σ

2, where Es

denotes the average energy of 2m-QAM constellation. With
the inverse operation to (23) as y = 1

2 ȳ + c, the equivalent
AWGN channel becomes

y = x + n, (26)

where x ∈ L2m and nj ∼ CN (0, σ
2

4 ). We use the SBWD
[9] on (26) to recover the information. When a codeword of
L2m is transmitted, the SBWD decodes to a lattice point in the
infinite lattice BW2m . In such a decoding method, irrespective
of whether the decoded lattice point falls in the code or not,
the information bits can be recovered from the decoded RM
codewords at every level of SBWD (as shown in the algorithm
in Fig. 2).

A. Simulation results on the codeword error rate (CER) of
SBWD

In this subsection, we present the CER of the SBWD along
with some upper bounds and lower bounds. For the simulation
results, we use SNR = Es/σ

2, where Es denotes the average
energy of the regular 2m-QAM constellation. In each of Fig.
6-10, we present (i) the CER of the SBWD, (ii) the SUB
[26], (iii) the sphere lower bound (SLB) [26]), (iv) the CER
in decoding RM(0,m) at the first level of the SBWD, and (v)
the upper bound on the CER in decoding RM(0,m) given
by Pr(|n(0)

e |2 > N
4 ) (obtained through simulation results by

empirically generating n(0)
e ).

From Fig. 6-10, we make the following observations: the
SUB is not a tight upper bound on the CER of SBWD. Also,
Pr(|n(0)

e |2 > N
4 ) is an upper bound on the CER of SBWD,

and in particular, it is a tighter upper bound than the SUB. In
general, an upper bound on Pr(ĉ0 
= c0) need not be an upper
bound on Pr(x̂ 
= x). However, in this case, our observation
that Pr(|n(0)

e |2 > N
4 ) is an upper bound on the CER of SBWD

follows from Fig. 6-10. The CER of the soft-input RM decoder
for RM(0,m) is a tight lower bound on the CER of the
SBWD. This implies that if there is no error at the first level
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Fig. 7. CER of SBWD for decoding L16.
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Fig. 8. CER of SBWD for decoding L64.

of the decoder, then with high probability, there will be no
errors at subsequent levels of the soft-input RM decoder. We
have also marked the SNR required by a capacity approaching
scheme to achieve the spectral efficiency of m/2 bits per
channel use (using the expression C = log2(1 + SNR)). The
plots show that the SBWD performs away from the channel
capacity for large block lengths. In summary, the simulation
results highlight that the SBWD is powerful in making correct
decisions even beyond the packing radius, and the deviation
from the SUB increases for larger dimensions. As a result
SBWD can be employed to efficiently decode lattice codes of
large block lengths with low-complexity.

B. Comparing the complexity of the SBWD with the list
decoder in [10]

We compare the complexity of the SBWD with the
BW list decoder [10]. For a fair comparison, we assume
that the list decoder is implemented on a single processor.
On a single processor, the complexity of the SBWD is
O(N log2(N)), whereas the complexity of the list decoder
is O(N2)(l(m, η))2, where l(m, η) is the worst case list
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Fig. 9. CER of SBWD for decoding L256.
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Fig. 10. CER of SBWD for decoding L1024.

size at a relative squared distance of η (the relative squared
distance is the squared Euclidean distance normalized by
the dimension of the lattice). We compare the complexity
of the two decoders for a codeword error rate of 10−3. In
particular, we first approximate the error performance of the
SBWD as a bounded distance decoder for some radius η̄,
and then compute the complexity of the list decoder with the
corresponding value of η̄. In Table I, we display the lower
bound (as given in Theorem 1.3 in [10]) on the complexity of
the list decoder to achieve the error performance of SBWD.
The table shows that the list decoder has higher complexity
than the SBWD to achieve the same performance. In summary,
for single processor implementation, SBWD can be preferred
to the list decoder to decode BW lattice codes of large block
lengths. However, for codeword error rates lower than that of
SBWD, the list decoder has to be used, preferably on parallel
processors. Table I also shows the potential of SBWD to
decode well beyond the relative squared distance of η = 0.25.
For complex dimensions of 256 and 1024, the effective radius
of SBWD is as high as N

2 and 2N
3 , respectively.

Fig. 11. Geometric explanation of the noise trimming technique for each
component of the received vector.

1: procedure TRIM(y, ε) � Input y is either �(yj) or �(yj)
2: Δ = (2

m
2 − 1)/2

3: r = y - Δ
4: t = Δ + ε
5: if |r| > t � Check out of boundary components
6: s = t/|r| � Choose an appropriate scale value
7: b = sr � Scale the received component
8: else
9: b = r � Do not scale

10: end if
11: return b + Δ
12: end procedure

Fig. 12. Algorithm for the trimming technique when m is even.

VI. NOISE TRIMMING TECHNIQUE FOR THE SBWD

When a codeword of L2m is transmitted, the SBWD de-
codes to a lattice point in the infinite lattice BW2m . To
improve the error performance, we use a noise trimming tech-
nique that forces the SBWD to decode to a codeword of L2m .
We refer to such a decoder as the BW lattice code decoder
(BWCD). From (10), each component of a codeword is within
a rectangular box B ⊆ C. In particular, the box B shares its
edges with that of Z

2
m
2
[i] and Z

2
m+1

2
+ iZ

2
m−1

2
when m is

even and odd, respectively. To decode to a codeword, we first
trim the in-phase and quadrature components of the received
vector to lie within a box B′ ⊇ B marginally larger than B
by length ε on each dimension, and then feed the trimmed
received vector to the SBWD. A geometric interpretation of
the noise trimming technique is shown in Fig. 11. Note that
the choice of ε is crucial to decode a codeword. In Fig. 12, we
present the algorithm for the trimming method which works
independently on the in-phase and quadrature component of
the scalars in y = [y1, y2, . . . , y2m ] in (26) when m is even.
Extension to the case when m is odd is straightforward.

Using the BWCD, we have obtained the BER results for
dimensions 2m when m = 2, 4, 6, 8, and 10, and have
compared them with the BER of the SBWD (without noise
trimming technique). The plots as shown in Fig. 13 indicate
that the BWCD outperforms the SBWD by at most 0.5 dB
for m = 2 and by 0.1 dB for m = 10. Note that the
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TABLE I
COMPLEXITY OF THE LIST DECODER [10] TO ACHIEVE THE PERFORMANCE OF SBWD

Dimension N η̄ A lower bound on N2(l(m, η̄))2 N log2(N) (complexity of SBWD)
4 0.33 16 16

16 0.4 256 256
64 0.48 4096 2304
256 0.56 262144 16384

1024 0.67 1.07× 109 102400

trimming technique is most effective on the codewords near
the boundary of the code. For the simulation results, BER
is obtained by averaging over all the codewords of L2m with
the assumption that information bits are uniformly distributed.
For large values of m, the size of the underlying QAM
increases which in turn reduces the percentage of codeword
components along the boundary. Hence, the advantage of the
noise trimming technique diminishes for codes with larger
QAM constellations. For the presented results, we have used

ε = 1
2
√
2

, which corresponds to the packing radius of
√

N
4 .

The above value of ε was optimized based on the simulation
results by comparing the BER for various values of ε. Intu-
itively, trimming the received vector to fall within the packing
radius of a lattice point in the boundary of the lattice code
forces the SBWD to decode to a codeword instead of a lattice
point outside the code. In general, the proposed noise trimming
technique is applicable for any lattice code with hypercube
shaping property.

Remark 2: The proposed noise trimming technique may
remind the reader of minimum mean square error (MMSE)
scaling proposed in [5]. However, the two techniques have
the following significant differences: (i) MMSE scaling uses
a constant scale factor applied on every component of the
received vector irrespective of whether it falls outside the
boundary of the lattice code or otherwise, whereas the noise
trimming is applied with different scales to different compo-
nents depending on the relative distance from the boundary of
the lattice code. (ii) MMSE scaling can be applied to lattice
codes with arbitrary shaping. However, the noise trimming
technique is easily applicable for hypercube shaping. For ar-
bitrary shaping, generalization of the noise trimming technique
is too complex to implement.

VII. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

We introduced a new method of encoding complex BW
lattices using linear codes over polynomial rings and then
have studied the performance of complex BW lattice codes
for communication over AWGN channels. To encode the
code, we use Construction A′, and to decode the code we
adapt the SBWD. We have studied the error performance of
the SBWD, and have shown that the Jacobi-Theta functions
can characterize the virtual binary channels that arise in the
decoding process. We have also shown that the SBWD is pow-
erful in making correct decisions beyond the packing radius.
Subsequently, we have used the SBWD to decode the complex
lattice code through the noise trimming technique. This work
can be extended in one of the following ways: The SBWD
proposed in [9] uses a soft-input, hard-output RM decoder
at each level of BW lattice. It will be interesting to study
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Fig. 13. BER comparison between BWCD and SBWD.

the error performance of the lattice decoder with soft-input,
soft-output iterative RM decoders. We have presented the
error performance of the SBWD through simulation results,
and hence, we now know the SBWD error performance with
reference to the sphere lower bound and the sphere upper
bound. A closed form expression on the error performance
of the SBWD could be obtained for a better understanding of
the decoder performance.
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