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Abstract— The index coding problem involves a sender with
K messages to be transmitted across a broadcast channel, and a
set of receivers each of which demands a subset of the K messages
while having a prior knowledge of a different subset as side
information. We consider the specific case of noisy index
coding where the broadcast channel is Gaussian and every
receiver demands all the messages from the source. Instances
of this communication problem arise in wireless relay networks,
sensor networks, and retransmissions in broadcast channels.
We construct lattice index codes for this channel by encoding the
K messages individually using K modulo lattice constellations
and transmitting their sum modulo a coarse lattice. We introduce
a design metric called side information gain that measures the
advantage of a code in utilizing the side information at the
receivers, and hence, its goodness as an index code. Based on
the Chinese remainder theorem, we then construct lattice index
codes with large side information gains using lattices over the fol-
lowing principal ideal domains: 1) rational integers; 2) Gaussian
integers; 3) Eisenstein integers; and 4) Hurwitz quaternions.
Among all lattice index codes constructed using any densest
lattice of a given dimension, our codes achieve the maximum
side information gain. Finally, using an example, we illustrate
how the proposed lattice index codes can benefit Gaussian
broadcast channels with more general message demands.

Index Terms— Chinese remainder theorem, Gaussian
broadcast channel, index coding, lattice codes, principal ideal
domain, side information.

I. INTRODUCTION

THE CLASSICAL noiseless index coding problem
consists of a sender with K independent messages

w1, . . . , wK , and a noiseless broadcast channel, where each
receiver demands a subset of the messages, while knowing the
values of a different subset of messages as side information.
The transmitter is required to broadcast a coded packet, with
the least possible length, to meet the demands of all the
receivers (see [1]–[6] and references therein). In the noisy
version of this problem, the messages are to be transmitted
across a broadcast channel with additive white Gaussian
noise (AWGN) at the receivers (see [7]–[15] and references
therein). The exact capacity region (the achievable rates of
the K messages) with general message demands and side
informations is known only for the two-receiver case [7], [8].
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We consider the special case of noisy index coding
where every receiver demands all the messages at the
source. Instances of this communication problem are encoun-
tered in wireless relay networks [8]–[10], retransmissions
in broadcast channels [1], and communications in sensor
networks [15]. Fig. 1 illustrates a wireless version of the
‘butterfly’ network where noisy index coding is useful. Two
data packets w1 and w2, which are available at the base
stations BS1 and BS2, respectively, are to be broadcast to all
three users U1, U2, U3 in the network through a decode-and-
forward helper node BS3. The nodes U1 and BS3 are within
the range of BS1, U2 and BS3 are within the range of BS2,
and all three users are in the range of BS3. In the first phase
of the protocol, both BS1 and BS2 simultaneously broadcast
their corresponding data packets. While U1 and U2 decode
w1 and w2, respectively, the helper node BS3 experiences a
multiple-access channel and decodes both the messages. In the
second phase of the protocol, BS3 broadcasts w1 and w2
to all three users. While U1 and U2 are aided by the data
packets received in the first phase of the protocol, no such
side information is available at U3. The traditional approach
of broadcasting the bit-wise XOR of w1 and w2 in the second
phase is not useful, since it does not satisfy the demands
of U3. On the other hand, performing index coding at the
physical layer will allow us to convert the side informations at
U1 and U2 into performance gains while meeting the demands
of all three receivers.

Noisy index coding for broadcasting common messages is
also useful in the retransmission phase of satellite broadcasting
services, which was the original motivation for considering
(noiseless) index codes [1]. Consider a satellite downlink, as
shown in Fig. 2, where a common message consisting of
K data packets is broadcast to multiple terrestrial receivers.
Due to varying channel conditions, each receiver successfully
decodes (possibly different) parts of the transmitted frame.
In the retransmission phase of the protocol, the satellite can use
a noisy index code to simultaneously broadcast the K packets
while exploiting the side informations at all the receivers.

A. Background

The capacity region of the common message Gaussian
broadcast channel with receiver side information follows from
the results in [15]. Denote a receiver by (SNR, S), where
SNR is the signal-to-noise ratio, and S ⊂ {1, . . . , K } is the
index set of the messages wS = (wk, k ∈ S) whose values
are known at the receiver as side information. Note that this
terminology includes the case S = ∅, i.e., no side information.
Let R1, . . . , RK be the rates of the individual messages in
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Fig. 1. Common message broadcast with receiver side information in the wireless ‘butterfly’ network: (a) BS1 and BS2 simultaneously broadcast
files w1 and w2. At the end of Phase 1, U1 receives w1, U2 receives w2, and BS3 receives both. (b) In Phase 2, BS3 transmits w1, w2 using noisy
index coding to utilize side information at U1 and U2 while being intelligible to U3.

Fig. 2. Common message broadcast with receiver side information in satellite communications: (a) The satellite broadcasts a common message containing
K data packets to multiple terrestrial receivers. Due to intermittent channel variations, each receiver successfully decodes only a subset of the K packets.
Here, the first receiver decodes w1, w2, the second w3, and the third w1, wK . (b) In the retransmission phase the satellite performs noisy index coding to
exploit this side information at the receivers.

bits per dimension (b/dim), i.e., the number of bits to be
transmitted per each use of the broadcast channel. The source
entropy is R = R1 + · · · + RK , and the side information rate
at (SNR, S) is defined as RS �

∑
k∈S Rk . The rate tuple

(R1, . . . , RK ) is achievable if and only if [15]

1

2
log2 (1 + SNR) > H (w1, . . . , wK |wS) = R − RS,

for every receiver (SNR, S). Consequently, at high message
rates, the presence of the side information corresponding to
S at a receiver reduces the minimum required SNR from
approximately 22R to 22(R−RS), or equivalently, by a fac-
tor of RS × 20 log10 2 dB ≈ 6RS dB. Hence, a capacity-
achieving index code allows a receiver to transform each
bit per dimension of side information into an apparent SNR
gain of approximately 6 dB.

The notion of multiple interpretation was introduced
in [16] as a property of error correcting codes that allows
the receiver performance to improve with the availability of
side information. Binary multiple interpretation codes based
on nested convolutional and cyclic codes were constructed

in [17] and [18], respectively. These codes can be viewed as
index codes for the noisy binary broadcast channel. To the
best of our knowledge, there has been no prior work in
designing index codes for the AWGN broadcast channel.

B. Contributions

In this work, we propose lattice index codes C for the
AWGN broadcast channel, in which the K messages are
individually mapped to K modulo lattice constellations, and
the transmit symbol is generated as the sum of the individual
symbols modulo a coarse lattice.

Given the value of wS as side information, the optimal
decoder restricts its choice of symbols to a subset of C ,
thereby increasing the minimum squared Euclidean distance
between the valid codewords. We use this squared distance
gain, normalized by the side information rate RS , as the
design metric, and call it the side information gain of
the code C . We first motivate our results using a simple
one-dimensional lattice code over Z (Section II), and then
show that 20 log10 2 ≈ 6 dB/b/dim is an upper bound on



NATARAJAN et al.: LATTICE INDEX CODING 6507

the side information gain of lattice index codes constructed
from densest lattices (Section III). Note that this upper bound
characterizes the maximum squared distance gain, and is
independent of the information theoretic result of [15] which
characterizes the SNR gain asymptotically in both the code
dimension and probability of error. Based on the Chinese
remainder theorem, we construct index codes for the AWGN
channel using lattices over the following principal ideal
domains (PIDs): rational integers Z, Gaussian integers Z[i ],
Eisenstein integers Z[ω], and the Hurwitz quaternion
integers H (Sections IV and V). All the proposed lattice index
codes provide a side information gain of 20 log10 2 dB/b/dim.
Among all lattice index codes constructed using the densest
lattices in any given dimension, our codes provide the optimal
side information gain. Finally, using the example of a three
receiver Gaussian broadcast channel with private message
requests, we illustrate how the proposed lattice index codes can
be utilized under more general message demands (Section VI).

C. Recent Results

Since the submission of the initial version of this paper,
further results on index codes for the common message
Gaussian broadcast channel have been reported. The lattice
index codes presented in this paper are designed using tuples
of distinct prime numbers, and hence, the resulting rates of the
K messages are not all equal to each other, and the alphabet
sizes of the messages are not powers of 2. New lattice index
codes are reported in [19] that generalize the Z[i ] and Z[ω]
based constructions of Section IV to arbitrary algebraic num-
ber fields. Further, [19] constructs sequences of lattice index
codes, that consist of one code for each value of K, for
encoding all the K messages at the same rate. Index codes
based on multidimensional pulse amplitude modulation (PAM)
constellations have been obtained in [20] that encode all
the messages at the same rate and allow alphabet sizes that
are powers of 2. In [21], the achievable rate region of a
concatenated coding scheme that uses an inner index code for
modulation and K independent outer channel codes for noise
resilience has been analyzed. This concatenated scheme has
been shown to convert the noisy index coding channel into
a multiple-access channel and perform close to the channel
capacity.

Notation: We use i = √−1 and ω = exp
( i2π

3

)
. The

symbol Sc denotes the complement of the set S, and ∅ is
the empty set. For a complex number m, the symbols m,
Re(m) and Im(m) denote the conjugate, the real part, and
the imaginary part of m, respectively. The operator (·)ᵀ is the
transpose of a matrix or a vector, and ‖ · ‖ is the Euclidean
norm of a vector.

II. MOTIVATING EXAMPLE

The lattice index codes proposed in Sections IV and V
achieve a large side information gain by providing a squared
distance gain that is exponential in the side information rate RS

for S ⊂ {1, . . . , K }. In this section, we illustrate the key idea
behind our construction using a simple one-dimensional lattice
index code (Example 1).

Let w1, . . . , wK be K independent messages at the source
with alphabets W1, . . . ,WK , respectively. The transmitter
jointly encodes the information symbols w1, . . . , wK , to a
codeword x ∈ C , where C ⊂ R

n is an n-dimensional constel-
lation. The rate of the kth message is Rk = 1

n log2 |Wk | b/dim,
k = 1, . . . , K . Given the channel output y = x + z, where z is
the additive white Gaussian noise, and the side information
wS = aS , i.e., wk = ak for k ∈ S, the maximum-likelihood
decoder at the receiver (SNR, S) restricts its search to the
subcode CaS ⊂ C obtained by expurgating all the codewords
in C that correspond to wS �= aS . Denote the minimum
distance between any two points in C by d0. Let daS be the
minimum distance of the subcode CaS , and dS be the minimum
of daS over all possible values aS of side information wS . Then
the minimum squared distance gain corresponding to the side

information index set S is 10 log10

(
d2

S

d2
0

)

dB.

The performance improvement at the receiver due to
S is observed as a shift in the probability of error curve
(versus SNR) to the left. The squared distance gain

10 log10

(
d2

S
d2

0

)

dB is a first-order estimate of this apparent

SNR gain. Normalizing with respect to the side information
rate RS = ∑

k∈S Rk , and minimizing over all subsets S, we
see that each bit per dimension of side information provides
a squared distance gain of at least

�(C ) � min
S

10 log10

(
d2

S
d2

0

)

RS
. (1)

We call �(C ) the side information gain of the code C , and
its unit is dB/b/dim.

For a given code C , the gain available from S is at least
RS × �(C ) dB with respect to the baseline performance of
C in the classical point-to-point AWGN channel, i.e., with
no side information. For C to be a good index code for the
AWGN broadcast channel, we require that 1) C be a good
point-to-point AWGN code, in order to minimize the SNR
requirement at the receiver with no side information; and
2) �(C ) be large, so as to maximize the minimum gain from
the availability of side information at the other receivers.

An additional desirable property is that the normalized

gain 10 log10

(
d2

S
d2

0

)

/RS provided by the lattice index code be

constant for every S, i.e.,

� (C ) =
10 log10

(
d2

S

d2
0

)

RS
for every S ⊂ {1, . . . , K }. (2)

We say that a lattice index code provides uniform gain if it
satisfies (2). A necessary and sufficient condition for a lattice
index code to be a uniform gain code is that dS is exponential
in RS . All the index codes constructed in Sections IV and V
are uniform gain lattice index codes with �(C ) ≈ 6 dB/b/dim.

Example 1: Consider K = 3 independent messages w1, w2
and w3 assuming values from W1 = {0, 1}, W2 = {0, 1, 2}
and W3 = {0, 1, 2, 3, 4}, respectively. The three messages are
encoded to a code C ⊂ Z using the function

x = 15w1 + 10w2 + 6w3 mod 30,
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Fig. 3. Performance of the code of Example 1 for three different receivers.

where the operation a mod 30 gives the unique remainder in
C = {−15,−14, . . . , 13, 14} when the integer a is divided
by 30. Using Chinese remainder theorem [22], it is easy to
verify that C is the set of all possible values that the transmit
symbol x can assume. Since the dimension of C is n = 1, the
rate of the kth message is Rk = log2 |Wk | b/dim, i.e.,

R1 = 1, R2 = log2 3, and R3 = log2 5 b/dim.

With no side information, a receiver decodes the channel
output to the nearest point in C , with the corresponding
minimum inter-codeword distance d0 = 1. With S = {1},
the receiver knows the value of the first message w1 = a1.
The decoder of this receiver restricts the choice of transmit
symbols to the subcode

Ca1 = {15a1 + 10w2 + 6w3 mod 30|w2 ∈ W2, w3 ∈ W3}.
Any two points in this subcode differ by 10�w2 + 6�w3,
where �w2 and �w3 are integers, not both equal to zero.
Since the greatest common divisor (gcd) of 10 and 6 is
gcd(10, 6) = 2, the minimum non-zero magnitude of 10�w2+
6�w3 is 2 [22]. Hence, the minimum distance corresponding
to the side information index set S = {1} is dS = 2. The side
information rate is RS = R1 = 1 b/dim, which equals log2 dS .

When S = {1, 2}, the set of possible transmit symbols is

C(a1,a2) = {15a1 + 10a2 + 6w3 mod 30|w3 ∈ W3},
where w1 = a1 and w2 = a2 are known. The minimum
distance of this subcode is dS = 6, and the side information
rate is RS = R1 + R2 = log2 6 = log2 dS b/dim.

Similarly, for every choice of S ⊂ {1, 2, 3}, we have
RS = log2 dS , i.e., the minimum distance dS is exponen-
tial in the side information rate RS . As will be shown
in Sections IV and V, this property is satisfied by all the
proposed lattice index codes. Using RS = log2 dS in (1),

we see that the side information gain is uniform, and
� = 20 log10 2 ≈ 6 dB/b/dim. In Section III-C we show that
this is the maximum side information gain achievable by any
index code C ⊂ Z in which the messages are linearly encoded.
Fig. 3 shows the performance of the code with S = ∅, S = {1}
and S = {1, 2}. At the probability of error of 10−4, the side
informations corresponding to S = {1} and S = {1, 2} provide
SNR gains of 6 dB and 15.6 dB over S = ∅. This is close to
the corresponding squared distance gains of 10 log10

(
22

)
dB

and 10 log10
(
62

)
dB, respectively.

We now give an example of a non-uniform gain index
code with � > 20 log10 2 dB/b/dim based on a non-lattice
constellation. This example also highlights the notion that,
given a constellation C , the task of designing a good index
code is equivalent to designing a good labelling scheme.

Example 2 (A 2-Message Index Code Using 16-PSK): We
encode K = 2 messages with alphabets W1 = W2 =
{0, 1, 2, 3} to the 16-PSK constellation C . The encoder ρ :
W1 ×W2 → C is represented as a labelling scheme in Fig. 4a
where each of the 16 constellation points x is labelled with
the corresponding message tuple (w1, w2) = ρ−1(x). The
dimension of the code is n = 2, and the message rates are

R1 = R2 = 1

2
log2 4 = 1 b/dim.

A receiver with no side information, i.e., with S = ∅,
decodes the received channel vector to the nearest 16-PSK
constellation point. The error performance at this receiver
is equal to that of the 16-PSK signal set. Assuming that
the constellation points have unit energy, the corresponding
minimum Euclidean distance at this receiver is d0 = 2 sin

(
π
16

)
.

If S = {1}, the receiver has the knowledge of the value of the
first message w1. For example, if w1 = 0, this receiver knows
that the transmitted vector is one of the four points in the set
{ρ(0, w2)|w2 ∈ W2}; see Fig. 4b. The minimum Euclidean
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Fig. 4. The 16-PSK index code of Example 2 that encodes two 4-ary messages and provides � = 9.1 dB/b/dim. (a) The 16-PSK index code represented as a
labelling scheme. (b) The filled circles denote the codewords corresponding to w1 = 0. (c) The filled circles denote the codewords corresponding to w2 = 0.

distance of this subcode is 2 sin
(

π
4

) = √
2. The minimum

Euclidean distance corresponding to the other three values of
w1 is also

√
2. Hence, for S = {1}, we have dS = √

2 and

the normalized squared distance gain is 10 log10

(
d2

S
d2

0

)

/RS =
11.2 dB/b/dim.

A receiver with S = {2} decodes its channel output to one
of the four subcodes of C determined by the value of w2
obtained as side information. The subcode for w2 = 0 is
shown in Fig. 4c. All four subcodes have minimum Euclidean
distance dS = 2 sin

( 3π
16

)
. The squared distance gain for

S = {2} normalized by RS is 9.1 dB/b/dim. To conclude,
this 16-PSK index code does not have uniform gain, and has
� = min{11.2, 9.1} = 9.1 dB/b/dim.

Example 3 (A Bad Index Code): Labelling a given constel-
lation C by set partitioning [23] is apparently a related
problem, but it does not necessarily provide good index codes.
In set partitioning with binary ‘labels’ w1, . . . , wK , the con-
stellation C is recursively partitioned into two smaller signal
sets with larger minimum distance. For any S = {1, 2, . . . , k},
k < K , the set of points with a given label wS = aS forms
one of the 2k kth-level partitions of C . The minimum distance
of the partition improves with increasing k. Fig. 5 shows one

such labelling of 16-QAM, with K = 4, where the knowledge
of the values of the first k bits w1, . . . , wk increases the
minimum distance from d0 = 1 to dS = √

2k . However,
this does not guarantee squared distance gain for every side
information index set S ⊂ {1, . . . , K }. For instance, the
side information (w2, w3, w4) = (0, 0, 0), corresponding to
S = {2, 3, 4}, does not provide any improvement in minimum
distance. The performance of the code of Fig. 5 for S = ∅,
S = {1, 2} and S = {2, 3, 4} is shown in Fig. 6. When the
error rate is Pe = 10−4, the knowledge of the first two bits
provides an SNR gain of 6.2 dB. However, the SNR gain
with S = {2, 3, 4} is only 1 dB at Pe = 10−4 and is smaller
for diminishing Pe.

Set partition labelling is designed to provide squared dis-
tance gain when S is of the form {1, 2, . . . , k} for k < K .
When restricted to such side information index sets, set
partitioning provides side information gain ∼ 6 dB/b/dim. The
codes in Examples 1 and 2 allow us to achieve side information
gains when S is any subset of {1, . . . , K }.

III. LATTICE INDEX CODES

We first review the necessary background on lattices and
lattice codes, based on [24]–[26] (Section III-A), introduce
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Fig. 5. A set partition labelling of 16-QAM. The two points marked with
circles form the subcode for the side information (w2, w3, w4) = (0, 0, 0).

lattice index codes (Section III-B), and then derive an upper
bound on the side information gain of such codes constructed
from the densest lattices (Section III-C).

A. Lattices and Lattice Codes

An n-dimensional lattice in R
n is a discrete additive sub-

group � = {Gz|z ∈ Z
n}, where the full-ranked matrix

G ∈ R
n×n is called the generator matrix of �. Since the

difference between any two lattice points is also a lattice point,
the minimum distance dmin (�) between any two points in �
is the Euclidean length of the shortest non-zero vector of �.
The closest lattice point quantizer Q� : R

n → � is

Q�(x) = λ if ‖x − λ‖ ≤ ‖x − λ′‖ for every λ′ ∈ �,

where x ∈ R
n , λ ∈ �, and ties (if any) between compet-

ing lattice points are broken systematically. The fundamental
Voronoi region V� is the set of all points in R

n that are
mapped to 0 under Q�. The volume of the fundamental region
Vol(�) = ∫

V�
dx is related to the generator matrix G as

Vol(�) = | det G|. The packing radius rpack(�) = dmin(�)
2

is the radius of the largest n-dimensional sphere contained in
the Voronoi region V�. The center density of � is

δ(�) =
(
rpack(�)

)n

Vol(�)
=

(
dmin(�)

2

)n

Vol(�)
. (3)

The center density of a lattice is invariant to scaling,
i.e., δ(�) = δ(α�) for any non-zero α ∈ R. If � is scaled
by α = 2

dmin(�) , then rpack (α�) = 1 and δ = 1
Vol(α�) is

the average number of points in α� per unit volume in R
n ,

i.e., δ is the density of the lattice points in R
n when scaled

to unit packing radius. For the same average transmit power
constraint and minimum distance, a constellation carved from

a lattice with a higher value of δ has a larger size, and
hence, a higher coding gain. The densest lattices are known
for dimensions n = 1, 2, . . . , 8 and n = 24 [24], [27]. For
n = 1, . . . , 8, the densest lattices are Z, A2, D3, D4,
D5, E6, E7 and E8, respectively, while the Leech lattice �24
is densest in 24 dimensions. The lattice D4 is equivalent to its
dual lattice D∗

4 up to scaling and orthogonal transformation.
Hence, D∗

4 too has the highest density in 4 dimensions.
The modulo-� operation x mod � = x − Q�(x) ∈ V�, is

the difference between a vector and its closest lattice point,
and it satisfies the relation

(x1 + x2) mod � = (x1 mod � + x2) mod � (4)

for all x1, x2 ∈ R
n . Let �c ⊂ � be a sub-lattice of �,

and �/�c be the quotient group of the cosets of �c in �.
Each coset of �/�c can be identified by its representative
contained in V�c . We will identify the group �/�c with the
group of coset leaders � ∩V�c = � mod �c, where addition
is performed modulo �c. Further,

|�/�c| = |� mod �c| = Vol(�c)

Vol(�)
.

The constellation �/�c is called a (nested) lattice code, and
�c is called the coarse lattice or the shaping lattice [25], [26].

B. Lattice Index Codes

Consider K lattices �1, . . . ,�K , with a common sub-lattice
�c ⊂ �k , k = 1, . . . , K . We will use the lattice constellations
�1/�c, . . . ,�K /�c as the alphabets W1, . . . ,WK of the
K messages at the source.

Definition 1: A lattice index code for K messages consists
of K lattice constellations �1/�c, . . . ,�K /�c, and the injec-
tive linear encoder map ρ : �1/�c × · · · × �K /�c → C
given by

ρ (x1, . . . , xK ) = (x1 + · · · + xK ) mod �c, (5)

where xk ∈ �k/�c and C is the set of all possible values of
the transmit symbol x = ρ(x1, . . . , xK ).

We require that ρ be injective so that no two message tuples
are mapped to the same transmit symbol. We now relate some
properties of a lattice index code to those of its component
lattice constellations �1/�c, . . . ,�K /�c.

• The transmit codebook C : Let � = �1 + · · · + �K

be the lattice generated by the union of the lattices
�1, . . . ,�K . It follows from (5) that x1 + . . . + xK ∈ �,
and hence x ∈ �/�c. On the other hand, every point
in � is the sum of K lattice points, one each from
�1, . . . ,�K . It follows from (4) that every point in
the lattice constellation �/�c is the mod �c sum of
K points, from �1/�c, . . . ,�K /�c, respectively. Hence,
the transmit codebook is C = �/�c.

• Message rates: If � is an n-dimensional lattice, the rate
of the kth message is

Rk = 1

n
log2 |Wk | = 1

n
log2 |�k/�c|

= 1

n
log2

Vol(�c)

Vol(�k)
b/dim.
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Fig. 6. Performance of set partition labelling of Example 3.

• Minimum distance: Since C = �/�c is carved from the
lattice �, the minimum inter-codeword distance with no
side information is

d0 = dmin(�). (6)

Now suppose that a receiver has side information of the
messages with indices in S, say xS = aS (i.e., xk = ak ,
k ∈ S). The subcode CaS decoded by the receiver is
{

∑

k∈S

ak +
∑

k∈Sc

xk

∣
∣
∣xk ∈ �k/�c, k ∈ Sc

}

mod �c

=
(

∑

k∈S

ak +
∑

k∈Sc

�k/�c

)

mod �c

=
(

∑

k∈S

ak +
∑

k∈Sc

�k

)

mod �c,

where we have used (4). Thus, CaS is a lattice code carved
from a translate of the lattice

∑
k∈Sc �k , and hence its

minimum distance is

dS = dmin

(
∑

k∈Sc

�k

)

. (7)

Example 4: The code in Example 1 is a lattice index code
with K = 3, �1 = 15Z, �2 = 10Z, �3 = 6Z, �c = 30Z and
� = 15Z + 10Z + 6Z = Z.

The transmit codebook C = �/�c of a lattice index
code is a commutative group under addition modulo �c,
and �1/�c, . . . ,�K /�c are subgroups of C . It follows from
Definition 1 that the encoding map ρ is a group isomorphism
between C and the direct product �1/�c × · · · × �K /�c of
the subgroups �1/�c, . . . ,�K /�c, i.e., C is a direct sum
of these K subgroups. Thus, the problem of designing a
good lattice index code is to construct a pair �c ⊂ � of

nested lattices, and to find a decomposition of �/�c into
K subgroups, such that dS = dmin

(∑
k∈Sc �k

)
is large for

every choice of S ⊂ {1, . . . , K }. While constructions of pairs
�c ⊂ � of lattices [25], [26] and chains � ⊂ �′ ⊂ �′′ ⊂ · · ·
of nested lattices [26] are well known in the literature, we
require a lattice code �/�c and a set of its generating
subcodes �1/�c, . . . ,�K /�c such that all non-trivial direct
sums

∑
k∈Sc �k/�c, S ⊂ {1, . . . , K }, of the K subcodes have

large minimum Euclidean distances.
In Sections IV and V, we construct index codes using

lattices that possess the multiplicative structure of a principal
ideal domain (PID) or that of a module over a PID, besides
the additive structure of a commutative group. The structure
of a PID (or a module over a PID) enables us to control the
minimum Euclidean distance dS , and hence the side informa-
tion gain �, of the resulting codes. When the underlying PID
is commutative (Section IV), we use the Chinese remainder
theorem to construct pairs �c ⊂ � of nested lattices and
decompose the resulting code �/�c into a direct sum of K
lattice subcodes. We then construct lattice index codes using
the Hurwitz integral quaternions as the base PID (Section V).
The Chinese remainder theorem does not apply to quaternions
due to the technical reason that they are non-commutative
and their ideals are not two-sided. Nevertheless, we design
a family of quaternionic lattice index codes by identifying the
essential constituents of the techniques used in Section IV and
extending them to the non-commutative case.

C. An Upper Bound on the Side Information Gain

Consider the side information index set S = {1, . . . , K −1}.
The minimum distance is

dS = dmin

(
∑

k∈Sc

�k

)

= dmin (�K ),
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and the side information rate is

RS = R1 + · · · + RK−1 = 1

n
log2 |C | − RK

= 1

n
log2 |�/�c| − 1

n
log2 |�K /�c|

= 1

n
log2

Vol(�c)

Vol(�)
− 1

n
log2

Vol(�c)

Vol(�K )

= 1

n
log2

Vol(�K )

Vol(�)
.

Representing the volume of the fundamental region in terms of
the minimum distance dmin and the center density δ (see (3)),

RS = 1

n
log2

(
dmin(�K )

dmin(�)

)n

+ 1

n
log2

δ(�)

δ(�K )

= log2
dS

d0
+ 1

n
log2

δ(�)

δ(�K )
, (8)

If � is the densest lattice in n dimensions, then
δ(�) ≥ δ(�K ), and hence RS ≥ log2

(
dS
d0

)
. Thus the side

information gain of C can be upper bounded as follows

�(C ) = min
S

20 log10

(
dS
d0

)

RS
≤

20 log10

(
dS
d0

)

RS

≤
20 log10

(
dS
d0

)

log2

(
dS
d0

) = 20 log10 2 ≈ 6 dB/b/dim.

This upper bound on the side information gain holds only
for the family of lattice index codes in which the underlying
lattice � has the highest density in its dimension, such as
when � is Z, A2 or D∗

4 . This upper bound is independent of
the information-theoretic result of [15] which guarantees the
existence of codes that provide an SNR gain of ∼ 6 dB for
each b/dim of side information at the receiver. The SNR gain
of ∼ 6 dB/b/dim of [15] holds for capacity-approaching noisy
index codes at finite values of SNR in the asymptotic regime
where the code dimension goes to infinity and the probability
of error is arbitrarily small. On the other hand, � measures
the squared distance gain at a finite code dimension, and
approximates the SNR gain due to receiver side information
in the high SNR regime.

When � is not the densest lattice in R
n , for example when

� = Z
2, it is possible to have δ(�K ) > δ(�). In such cases,

from (8), RS < log2

(
dS
d0

)
, and � may exceed ∼ 6 dB/b/dim.

Note that � is a relative gain measured with respect to the
performance of C = �/�c with no side information. Any
amount of side information gain available over and above
∼ 6 dB/b/dim is due to the lower packing efficiency of �
when compared to �K , and hence due to the inefficiency of
C as a code in the point-to-point AWGN channel. We now give
an example of such a lattice index code with side information
gain more than ∼ 6 dB/b/dim.

Example 5: Consider K = 2 lattices �1 and �2 with
generator matrices

G1 =
(

4 2
0 3

)

and G2 =
(

0 3
4 2

)

, (9)

respectively, and the coarse lattice �c = 12Z
2. The above

lattices have been carefully chosen so that the densities
of �1 and �2 are greater than that of their sum lattice
� = �1 + �2. In order to prove that this choice of �1,�2
and �c indeed defines a valid lattice index code, we first show
that �c is a sub-lattice of �1 and �2, we then identify the
transmit lattice � and the codebook C , and then show that the
encoding map ρ is injective. Finally, we compute the minimum
distances of �1,�2 and �, and the side information gain �.

The following identities show that the basis vectors
(
12, 0

)ᵀ

and
(
0, 12

)ᵀ of �c = 12Z
2 can be expressed as integer linear

combinations of the columns of G1, and hence, �c ⊂ �1:
(

12
0

)

= 3

(
4
0

)

, and

(
0

12

)

= −2

(
4
0

)

+ 4

(
2
3

)

.

Similarly, the proof for �c ⊂ �2 follows from the observation
(

12
0

)

= −2

(
0
4

)

+ 4

(
3
2

)

, and

(
0

12

)

= 3

(
0
4

)

.

In order to identify the lattice � = �1 + �2, we first
note that �1,�2 ⊂ Z

2, and hence, � ⊂ Z
2. The following

expressions show that the basis vectors
(
1, 0

)ᵀ
and

(
0, 1

)ᵀ

of Z
2 are integer linear combinations of the columns of

G1 and G2:
(

1
0

)

= 2

(
2
3

)

−
(

0
4

)

−
(

3
2

)

,

(
0
1

)

= 2

(
3
2

)

−
(

4
0

)

−
(

2
3

)

.

We conclude that � ⊃ Z
2, and therefore, � = Z

2. The
transmit codebook C = �/�c is Z

2/12Z
2. Thus, the encoding

map ρ has domain �1/�c × �2/�c and range C . The
cardinality of the domain is

|�1/�c|·|�2/�c| = Vol(�c)

Vol(�1)
· Vol(�c)

Vol(�2)
= 144

12
· 144

12
= 144,

and that of the range is

|C | = |�/�c| = Vol(�c)

Vol(�)
= 144

1
= 144.

Since the domain and range are of the same cardinality, ρ is
injective, and consequently, C is a lattice index code. The
dimension of this code is n = 2, and the message rates are
R1 = R2 = 1

2 log2 12 b/dim.
To calculate the side information gain of this code we

require the values of d0 and dS , S = {1}, {2}. From (6),
d0 = dmin(�) = dmin(Z

2) = 1. From (7), dS = dmin(�2) for
S = {1}, and dS = dmin(�1) for S = {2}. We now show that
dmin(�1) = √

13. The proof for dmin(�2) = √
13 is similar.

From (9), we observe that every non-zero vector x1 ∈ �1 is
of the form

(
4a + 2b, 3b

)ᵀ
for some a, b ∈ Z, both not equal

to zero. The squared Euclidean length of x1 is

‖x1‖2 = (4a + 2b)2 + 9b2.

We now lower bound the value of ‖x1‖2 based on the value
of b. If b = 0, ‖x1‖2 = (4a)2 ≥ 16. If b is non-zero and even,
we have ‖x1‖2 = (4a +2b)2 +9b2 ≥ 9b2 ≥ 9 ·22 = 36. When
b is non-zero and odd, we have |2a + b| ≥ 1, and hence,

‖x1‖2 = (4a +2b)2+9b2 = 4(2a +b)2 +9b2 ≥ 4+9b2 ≥ 13.
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We conclude that ‖x1‖2 ≥ 13 for every non-zero x1 ∈ �1.
On the other hand, the choice of a = 0, b = 1 yields a vector
x1 with ‖x1‖2 = 13. It follows that dmin(�1) = √

13.
The non-trivial subsets of {1, . . . , K } = {1, 2} are S = {1}

and S = {2}. For both these choices of S, we have

10 log10

(
d2

S

d2
0

)

RS
= 10 log10 13 1

2
log2 12

= 20 log10 2 × log10 13

log10 12
≈ 6.2 dB/b/dim.

Since the normalized squared distance gain is the same for all
choices of S ⊂ {1, . . . , K }, we conclude that C is a uniform
gain lattice index code with � ≈ 6.2 dB/b/dim. The reason for
� to be more than ∼ 6 dB/b/dim is that the lattices �1 and
�2 have a larger center density than �. For both k = 1, 2,

δ(�k) =
(

dmin(�k)
2

)n

Vol(�k)
=

( 13
2

)2

12
= 13

48
,

while δ(�) = δ(Z2) = 1
4 .

IV. CONSTRUCTION OF LATTICE INDEX CODES

USING COMMUTATIVE PIDs

In this section, we construct uniform gain index codes
using lattices over commutative PIDs Z, Z[i ] and Z[ω] with
� ≈ 6 dB/b/dim. This includes the lattice Z

2, and the
hexagonal lattice A2 with generator matrix

(
1 1

2

0
√

3
2

)

,

which can be identified with Z[i ] and Z[ω], respectively.
In Section V we consider lattices over the Hurwitz integers
which form a non-commutative PID.

A. Review of Commutative PIDs and Complex Lattices

We assume that the reader is familiar with the notions of
ideals and principal ideal domains. We now briefly recall some
basic definitions and properties related to commutative PIDs
and complex lattices. We refer the reader to [24] and [28] for
further details.

Commutative PIDs: Let D be a commutative ring
with 1 �= 0. An ideal I in D is an additive subgroup of D

with the property that ab ∈ I for every a ∈ I and b ∈ D.
The ideal generated by an element a is the smallest ideal
containing a, and is given by aD = {ab|b ∈ D}. An ideal I
is principal if it is generated by a single element of D, i.e.,
I = aD for some a ∈ D. If the product of any two non-zero
elements of D is non-zero, D is said to be an integral domain.
If every ideal of an integral domain D is principal, then D is
a principal ideal domain (PID). In the rest of this section we
will assume that D is a commutative PID.

For a, b ∈ D we say that a is a divisor of b, i.e., a | b if
b = da for some d ∈ D. The units of D are the divisors of 1,
i.e., they are the elements with a multiplicative inverse. Two
elements a, b ∈ D are associates if a = ub (or equivalently,
b = u−1a) for some unit u.

The gcd of a and b is the generator of the smallest ideal
containing a and b, i.e., aD + bD = gcd(a, b)D. The gcd
is unique up to multiplication by a unit. If d | a and d | b,
then d | gcd(a, b). Two elements a and b are relatively prime
if gcd(a, b) is a unit. A non-unit φ ∈ D is prime if φ | ab
implies that either φ | a or φ | b. A prime can not be expressed
as a product of two non-units. Any two non-associate primes
are relatively prime. Every PID is a unique factorization
domain, i.e., every non-zero element of D can be factored
as a product of primes, uniquely up to multiplication by units.
If a = φe1

1 · · · φeK
K is the factorization of a as a product of non-

associate primes φ1, . . . , φK , and d | a, then d = uφ
e′

1
1 · · · φe′

K
K ,

where u is a unit and e′
k ≤ ek for k = 1, . . . , K .

Complex Lattices: Let D be either Z[i ] or Z[ω]. A D-lattice
�̃ is a discrete subgroup of a complex Euclidean space that is
closed under multiplication by elements m ∈ D. Since every
D-lattice is isomorphic to a real lattice of twice its dimension,
we will denote its complex dimension by n

2 , where the even
integer n is the real dimension. Let

�̃ =
{

G̃z|z ∈ D
n
2

}

be a D-lattice with the full-rank generator matrix G̃ ∈ C
n
2 × n

2 .
Let � : C

n
2 → R

n be the isomorphism that maps the complex
vector (v1, . . . , v n

2
)ᵀ to the real vector

(
Re(v1), . . . , Re(v n

2
), Im(v1), . . . , Im(v n

2
)
)ᵀ

.

The real lattice associated with �̃ is

� = �
(
�̃

) = {
�(v)|v ∈ �̃

} ⊂ R
n .

The lattice � is called Gaussian if D = Z[i ], and Eisenstein
if D = Z[ω]. The hexagonal lattice A2, the root lattice E6,
and the Coxeter-Todd lattice K12 can be viewed as Eisenstein
lattices, while the checkerboard lattice D4, the Gosset lat-
tice E8, the laminated lattices �max

12 , �16, and the Leech lattice
�24 can be viewed as both Gaussian and Eisenstein lattices.
If D = Z[i ], the real generator matrix G of � is related to the
complex generator matrix G̃ as

G =
(

Re(G̃) −Im(G̃)

Im(G̃) Re(G̃)

)

, (10)

and if D = Z[ω],

G =
⎛

⎜
⎝

Re(G̃) 1
2

(
Re(G̃) + √

3Im(G̃)
)

Im(G̃) 1
2

(
Im(G̃) − √

3Re(G̃)
)

⎞

⎟
⎠.

Since � preserves addition, for any two complex
lattices �̃1, �̃2, we have

�(�̃1 + �̃2) = �(�̃1) + �(�̃2).

Also, �̃1 ⊂ �̃2 if and only if �(�̃1) ⊂ �(�̃2).
We will use the symbols Vol(�̃) and dmin(�̃) to denote the

volume and the length of the shortest vector of the associated
real lattice �, i.e.,

Vol
(
�̃

)
� Vol

(
�(�̃)

)
and dmin

(
�̃

)
� dmin

(
�(�̃)

)
.
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For both Gaussian and Eisenstein lattices, scaling �̃ by a
complex number m ∈ C is equivalent to left-multiplying the
real generator matrix G by

M(m) =
(

Re(m)I −Im(m)I
Im(m)I Re(m)I

)

,

where I is the identity matrix of dimension n
2 × n

2 . Observing
that M(m) is an orthogonal matrix with determinant |m|n,
we have

Vol(m�̃) = | detM(m)| · | det G| = |m|nVol(�), and (11)

dmin(m�̃) = |m|dmin(�). (12)

B. Construction of Index Codes Using Commutative PIDs

Let D ⊂ C be a commutative PID. Consider K
non-associate primes φ1, . . . , φK ∈ D, and their product
M = ∏K

k=1 φk . The Chinese remainder theorem [22, p. 159]
states that the direct product D/φ1D × · · · × D/φK D is
isomorphic to the quotient ring D/MD. The one-to-one cor-
respondence between them is obtained using the map

(w1, . . . , wK ) → w1 M1 + w2 M2 + · · · + wK MK mod MD,

where wk ∈ D/φkD and Mk = M
φk

. Since wk Mk is
an element of MkD/MD, we observe that encoding the
K source messages individually using the constellations
M1D/MD, . . . , MK D/MD, and generating the transmit sym-
bol as their modulo-MD sum gives an injective encoding map.
Further, given the side information wS = aS , corresponding
to the index set S ⊂ {1, . . . , K }, the minimum distance dS

between the valid codewords can be readily obtained as the
magnitude of gcd(Mk , k ∈ Sc) (cf. Example 1). The codebook
D/MD can be thought of as a lattice index code built over the
one-dimensional D-lattice �̃ = D. In this section, we apply
this encoding technique to arbitrary D-lattices and show that
the resulting lattice index codes provide large side information
gains.

We first describe our construction with complex lattices,
i.e., D = Z[i ] and Z[ω], and prove that it provides a uniform
side information gain � ≈ 6 dB/b/dim. We then briefly
describe the case D = Z, the proof of which follows from
simple modifications of the proofs of Lemmas 2 and 3 below.

Construction of Index Codes Using Complex Lattices

Let D be Z[i ] or Z[ω], and φ1, . . . , φK be any K distinct
non-associate primes in D. Let

M =
K∏

k=1

φk, and Mk = M

φk
=

∏


 �=k

φ
 for k = 1, . . . , K .

Let �̃ be any D-lattice of real dimension n, and � = �(�̃) be
its real version. We construct our lattice index code by setting

�c = �(M�̃), and �k = �(Mk�̃), k = 1, . . . , K . (13)

Since Mk | M , we have M�̃ ⊂ Mk�̃, and hence, the coarse lat-
tice �c is a sub-lattice of each �k , k = 1, . . . , K . Using (11),
the message size of the kth symbol is

|�k/�c| = Vol(M�̃)

Vol(Mk�̃)
= |M|nVol(�)

|Mk |nVol(�)
= |φk |n,

TABLE I

ALL NON-ASSOCIATE GAUSSIAN PRIMES OF NORM UP TO 53

TABLE II

ALL NON-ASSOCIATE EISENSTEIN PRIMES OF NORM UP TO 61

and its rate is

Rk = 1

n
log2

(|φk|n
) = log2 |φk| b/dim.

Tables I and II list the first few non-associate Gaussian and
Eisenstein primes, respectively. These are unique up to unit
multiplication. In Table II, ω = −1 − ω is the complex con-
jugate of ω = exp

( i2π
3

)
. The tables also show the norm |φ|2

of the prime φ, and the corresponding message rate log2 |φ|
in b/dim.

Example 6: The lattice � = D4 is a Gaussian lattice with
the complex generator matrix

G̃ =
(

1 0
1 1 + i

)

.

Using (10), we obtain the 4 × 4 real generator matrix

G =

⎛

⎜
⎜
⎝

1 0 0 0
1 1 0 −1
0 0 1 0
0 1 1 1

⎞

⎟
⎟
⎠.

Let K = 2, φ1 = 1 + i and φ2 = 1 + 2i . Then M =
−1 + 3i , M1 = 1 + 2i and M2 = 1 + i . The real generator
matrix of �(m�̃) is M(m) × G. The generator matrices
of �1 = �(M1�̃), �2 = �(M2�̃) and �c = �(M�̃),
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thus obtained, are

G1 =

⎛

⎜
⎜
⎝

1 0 −2 0
1 −1 −2 3
2 0 1 0
2 3 1 1

⎞

⎟
⎟
⎠, G2 =

⎛

⎜
⎜
⎝

1 0 −1 0
1 0 −1 2
1 0 1 0
1 2 1 0

⎞

⎟
⎟
⎠ and

Gc =

⎛

⎜
⎜
⎝

−1 0 3 0
−1 −4 3 2
3 0 1 0
3 2 1 4

⎞

⎟
⎟
⎠,

respectively. The message sizes are |�1/�c| = 4,
|�2/�c| = 25, and the rates are R1 = log2 |1 + i | = 1

2 b/dim
and R2 = log2 |1 + 2i | = 1

2 log2 5 b/dim.
The following lemma will be useful in deriving the side

information gain of the proposed lattice index codes.
Lemma 1: For every index set S, we have

gcd(Mk , k ∈ Sc) = ∏

∈S φ
.

Proof: Let d = gcd(Mk , k ∈ Sc). Since each
Mk is a product of a subset of the primes φ1, . . . , φK ,
d = gcd(Mk , k ∈ Sc) is of the form φe1

1 · · · φeK
K with

ek ∈ {0, 1}. If k ∈ Sc, we have d | Mk , and since φk is not a
factor of Mk , we obtain ek = 0. It follows that d | ∏


∈S φ
.
On the other hand, it is easy to verify that

∏

∈S φ
 | Mk

for every k ∈ Sc, implying that
∏


∈S φ
 | d . Hence,
d = ∏


∈S φ
.
We now show, in Lemma 2, that the lattice index code C

is �/�c and the encoding map ρ is injective. Part (ii) of
Lemma 2 will later allow us to show that the minimum
distance dS with side information index set S is exponential
in RS .

Lemma 2: With the lattices �1, . . . ,�K and �c defined
as (13),

(i) the encoding map ρ in Definition 1 generates a lattice
index code with transmit codebook C = �/�c; and

(ii) for any S, we have
∑

k∈Sc �k = �
(∏


∈S φ
�̃
)
.

Proof: See Appendix I-A.
Lemma 3: For every choice of S, RS = log2

(
dS
d0

)
, and

hence the side information gain is uniform.
Proof: Using (7), (12) and Part (ii) of Lemma 2, we have

dS = dmin

(
∑

k∈Sc

�k

)

= dmin

(

�

(
∏


∈S

φ
�̃

))

=
∏


∈S

|φ
| d0. (14)

The side information rate corresponding to S is

RS =
∑

k∈S

Rk =
∑

k∈S

log2 |φk| = log2

(
∏

k∈S

|φk |
)

. (15)

From (14) and (15), we see that RS = log2

(
dS
d0

)
for every

choice of S, and 10 log10

(
d2

S
d2

0

)

/RS is independent of S.

Using the relation RS = log2

(
dS
d0

)
with (1), we obtain

�(C ) ≈ 6 dB/b/dim. Thus, when � is the densest lattice in its
dimension, the proposed construction achieves the optimal side
information gain over all lattice index codes constructed based

on �. Note that this optimality with respect to � holds only
among the family of lattice index codes of Definition 1, and
when � is densest in its dimension. While Example 5 gives
a lattice index code with � > 6 dB/b/dim using a lattice �
that does not have highest density, Example 2 shows an index
code with � > 6 dB/b/dim using a non-lattice constellation.

Example 7 (A 2-Message Constellation Using 25-QAM):
Consider the non-associate primes φ1 = 1+2i and φ2 = 1−2i
in D = Z[i ]. Setting

�̃ = Z[i ],
we obtain a constellation C carved from � = �(Z[i ]) = Z

2.
We have M = φ1φ2 = 5, M1 = 1 − 2i and M2 = 1 + 2i . The
coarse lattice �(5Z[i ]) = 5Z

2, and the lattice index code

C = � (Z[i ]) /� (5Z[i ]) = Z
2/5Z

2

is the 25-QAM constellation. The generator matrices of the
lattices �1 = �(M1Z[i ]) and �2 = �(M2Z[i ]) are

(
1 2

−2 1

)

and

(
1 −2
2 1

)

,

respectively. The constellations �1/�c and �2/�c consist
of 5 points each (see Fig. 7),

�1/�c = {
0, (1,−2)ᵀ, (2, 1)ᵀ, (−2,−1)ᵀ, (−1, 2)ᵀ

}
,

�2/�c = {
0, (1, 2)ᵀ, (2,−1)ᵀ, (−2, 1)ᵀ, (−1,−2)ᵀ

}
.

The minimum squared distance of � is 1, while that of
�1 and �2 is 5. When the side information index set is
S = {1} or {2}, the squared distance gain is 10 log10 5 dB,
and the side information rate RS = 1

2 log2 5 b/dim, yielding
a side information gain of � ≈ 6 dB/b/dim. Fig. 8 shows
the performance of the three different receivers with S = ∅

(no side information), S = {1}, and S = {2}, respectively.
The performance for S = {1} and S = {2} were obtained by
simulations, while that for S = ∅ was obtained through the
closed form expression for the error rate of 25-QAM [29].
From the simulation result, we observe that at the error rate
of 10−5, the knowledge of either of the two transmitted mes-
sages provides an SNR gain of 6.95 dB. When normalized by
the side information rate 1

2 log2 5 b/dim, we have a normalized
SNR gain of 5.98 dB/b/dim, which is a good match with
� ≈ 6 dB/b/dim.

Construction With D = Z

Let p1, . . . , pK ∈ Z be distinct rational primes,
M = p1 · · · pK be their product and Mk = M

pk
, k = 1, . . . , K .

Let � ⊂ R
n be any n-dimensional lattice. We let

�c = M� and �k = Mk�.

The rate of the kth message is

Rk = 1

n
log2

(
Vol (M�)

Vol (Mk�)

)

= 1

n
log2 pn

k = log2 pk .

Similar to Lemmas 2 and 3, we can show that C = �/�c,
ρ is injective, RS = log2

(
dS
d0

)
, and hence, � ≈ 6 dB/b/dim.
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Fig. 7. The constellation of Example 7. The dots constitute the code C = 25-QAM, the squares and circles correspond to �1/�c and �2/�c, respectively.

Fig. 8. Performance of the code of Example 7 for three different receivers.

Example 8: The code of Example 1 can be obtained by
using D = Z, � = Z, and the tuple of prime numbers
(φ1, φ2, φ3) = (2, 3, 5).

A construction of lattice codes using tuples of prime integers
in Z[i ] and Z[ω] is reported in [30] for low complexity

multilevel encoding and multistage decoding in compute-and-
forward applications.

When � is a Gaussian or Eisenstein lattice, the
message rates available from the proposed lattice index
codes are log2 |φ| b/dim, where φ ∈ D is prime
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(see Tables I and II). When D = Z, the codes allow one
message of rate log2 p b/dim for every rational prime p ∈ Z.
In Section V we construct a family of lattice index codes from
a class of quaternionic lattices, which includes D∗

4 and E8, that
allow encoding two messages, of rate 1

2 log2 p b/dim each, for
every odd rational prime p ∈ Z. The codes of Section V thus
provide further choices in terms of message rates at the source
and side information rates at the receivers.

V. CONSTRUCTION OF LATTICE INDEX

CODES USING HURWITZ INTEGERS

We construct lattice index codes using quaternionic lattices
by exploiting the fact that the Hurwitz integral quaternions H

form a non-commutative PID. Since the ideals in H are not
two-sided in general, the Chinese remainder theorem does
not apply to H. However, we identify a set of ideals that
lead to uniform gain lattice index codes with side information
gain ∼ 6 dB/b/dim.

We first consider the one dimensional H-lattice D∗
4 in

Section V-B, and then extend the results to a class of higher
dimensional H-lattices in Section V-C. We now briefly review
some properties of the Hurwitz integers H. We refer the reader
to [31] for more details.

A. Review of Hurwitz Integers

The set of Hurwitz integers H is the subring of quaternions
consisting of those elements whose coordinates are either all
in Z or all in Z + 1

2 , i.e.,

H = {
a + bi + cj + dk

∣
∣ a, b, c, d ∈ Z

}

⋃{

a + bi + cj + dk
∣
∣ a, b, c, d ∈ Z + 1

2

}

.

Addition in H is component-wise, and multiplication is defined
by the relations i2 = j2 = −1 and i j = − j i = k. This
makes H non-commutative. For A = a + bi + cj + dk ∈ H,
the conjugate of A is A = a − bi − cj − dk, and the norm is

N(A) = AA = AA = a2 + b2 + c2 + d2 ∈ Z.

The real part of A is Re(A) = a, and the trace is A + A = 2a.
The four-square theorem of Lagrange states that every positive
integer is a sum of four integer-squares, i.e., every positive
integer is the norm of some Hurwitz integer. The units of H

are the elements with norm 1. There are precisely 24 units
in H, eight of them ±1,±i,± j,±k have integer coordinates,
and the remaining 16 units ± 1

2 ± i
2 ± j

2 ± k
2 have half-integer

coordinates.
The ring H is a Euclidean domain, and hence it is a non-

commutative PID. Every left ideal I of H is generated by a
single element, and is of the form I = HA for some A ∈ H.
Similarly every right ideal is of the form I = AH. In the
rest of this section we will use only the left ideals in H to
construct our constellations. Similar results can be obtained
from right ideals. The generator of a (left) ideal is unique up
to left multiplication by a unit of H.

When viewed as a 4-dimensional lattice, in the basis
{1, i, j, k}, H yields D∗

4 , and its generator matrix is

G =

⎛

⎜
⎜
⎜
⎜
⎝

1
2 0 0 0
1
2 1 0 0
1
2 0 1 0
1
2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

For A = a + bi + cj + dk, let vec(A) = (a, b, c, d)ᵀ be the
vector of the coordinates of A in the basis {1, i, j, k}. For any
B ∈ H, we have vec(B A) = M(A)vec(B), where

M(A) =

⎛

⎜
⎜
⎝

a −b −c −d
b a d −c
c −d a b
d c −b a

⎞

⎟
⎟
⎠. (16)

Note that M(A) is an orthogonal matrix, and its determinant
is (a2 + b2 + c2 + d2)2 = N(A)2. The ideal HA generated by
A is a sub-lattice of D∗

4 , and its generator matrix is M(A)G,
where G is the generator matrix of D∗

4 , and M(A) corresponds
to left multiplication of a quaternion by A. Thus, the volume
of the fundamental region of the lattice HA is

Vol (HA) = |det M(A)| |det G| = N(A)2

2
. (17)

The norm operation is multiplicative on H, i.e., N(AB) =
N(A)N(B) for every A, B ∈ H. The units of H are the
elements with the shortest norm, and N(A) ≥ 1 for A ∈ H.
Let I = HD be the ideal generated by the element D, and
B ∈ I . Then, B = AD for some A ∈ H, and its norm satisfies

N(B) = N(AD) = N(A)N(D) ≥ N(D).

Hence, the generator of I is a shortest vector in the lattice I ,
and the minimum squared distance between any two points in
I = HD equals the norm N(D) of the generator.

For A, B ∈ H, we say that A | B if B ∈ HA,
i.e., if B belongs to the ideal generated by A. If A | B , we
have B = D A for some D ∈ H and hence N(A) | N(B).
The gcd of two elements A and B is the generator of the
ideal generated by A and B , i.e., HA + HB = H gcd(A, B).
If D = gcd(A, B), we have N(D) | N(A) and N(D) | N(B)
in Z, hence N(D) | gcd(N(A), N(B)) in Z.

B. Construction of Lattice Index Codes Based on D∗
4

Consider L distinct odd rational primes p1, . . . , pL ∈ Z.
From the four-square theorem [31], there exist P1, . . . ,
PL ∈ H such that pi = N(Pi ). In order to prove the injectivity
of ρ, we further require that the real parts of the Pi ’s be
powers of 2 (this technical assumption is used in the proof of
Lemma 4). Using Legendre’s three-square theorem [32], we
prove in Appendix II that for every odd rational prime p there
exists a Hurwitz integer P such that p = N(P) and Re(P) is
a power of 2. In particular, the proof only requires that p be
a positive odd rational integer (not necessarily a prime), and
shows that P can be chosen such that Re(P) ∈ {1, 2}.

Define K = 2L elements M1, . . . , MK , as

Mk = Pk

∏


 �=k

p
, and Mk+L = Mk = Pk

∏


 �=k

p
,
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TABLE III

EXAMPLES OF HURWITZ INTEGERS WITH ODD-PRIME
NORM AND REAL PART A POWER OF 2

for k = 1, . . . , L. Let M = p1 · · · pL be the generator of the
ideal Ic = HM . Note that for each k = 1, . . . , L, we have
Mk | M and Mk+L | M since

M = p1 · · · pL = pk

∏


 �=k

p
 = Pk Pk

∏


 �=k

p
 = Pk Pk

∏


 �=k

p
,

i.e., M = Pk Mk = Pk Mk+L .

Hence, Ic = HM is a sub-ideal of HMk , k = 1, . . . , K .
We use �c = Ic, and �k = HMk , k = 1, . . . , K , in
Definition 1 to construct our lattice index code. Using (17),

|HMk/HM| = Vol (HM)

Vol (HMk)
= N(M)2

N(Mk )2 =
{

p2
k , k ≤ L,

p2
k−L , k > L .

(18)

Since H is a 4-dimensional lattice, the rate of the kth

message is

Rk = log2 |HMk/HM|
4

=
{

1
2 log2 pk, k ≤ L,

1
2 log2 pk−L, k > L .

The side information rate for S ⊂ {1, . . . , K } is

RS =
∑

k∈S

Rk = 1

4
log2

(
∏

k∈S

|HMk/HM|
)

b/dim.

Table III provides one instance (among many possible) of
Hurwitz integer P with N(P) = p and Re(P) = 2m for
each of the first ten odd primes p. Table III also lists the
message rate 1

2 log2 p b/dim available from using each Hurwitz
integer P .

Example 9: Consider L = 2 and the odd primes p1 = 3
and p2 = 5. With P1 = 1 + i + j and P2 = 1 + 2i , we have
pk = N(Pk ) and Re(Pk) = 1 = 20. We have K = 2L = 4
information symbols with constellations HMk/HM , where
M = p1 p2 = 15,

M1 = P1 p2 = 5(1 + i + j), M2 = P2 p1 = 3(1 + 2i)

M3 = M1 = 5(1 − i − j), and M4 = M2 = 3(1 − 2i).

The cardinalities of the four constellations are 9, 25, 9 and 25,
respectively, and their rates are 1

2 log2 3, 1
2 log2 5, 1

2 log2 3, and
1
2 log2 5 b/dim.

In the rest of this sub-section we show that the choice

�c = Ic = HM and �k = HMk, k = 1, . . . , K ,

produces a uniform gain lattice index code with side infor-
mation gain ∼ 6 dB/b/dim. We show that the transmit
codebook C equals H/Ic (Lemma 4), the encoding map ρ
is injective (Lemma 5), and the minimum distance dS is
exponential in the side information rate RS (Lemma 6).

Lemma 4: The transmit codebook C equals H/Ic.
Proof: See Appendix I-B.

Lemma 5: The map ρ : HM1/Ic × · · · × HMK /Ic → C is
injective.

Proof: It is enough to show that |HM1/Ic × · · · ×
HMK /Ic| = |H/Ic|. From (18),

|HM1/Ic × · · · × HMK /Ic| =
(

L∏

k=1

p2
k

)2

= N(M)2 . (19)

Also,

|H/Ic| = Vol (HM)

Vol (H)
= N(M)2.

The minimum squared distance d2
S corresponding to S

satisfies d2
S = d2

min

(∑
k∈Sc HMk

)
. Denoting the generator of

the ideal
∑

k∈Sc HMk by DS , we have d2
S = N(DS ).

Lemma 6: For every choice of S, we have RS = log2 dS,
and hence the side information gain is uniform.

Proof: Consider the restriction ρ|Sc of the encoding
map ρ, in (5), to the subset of messages with indices in Sc,
i.e.,

ρ|Sc
(
xk, k ∈ Sc) =

∑

k∈Sc

xk mod Ic.

The image of ρ|Sc is
∑

k∈Sc HMk/Ic = HDS/Ic, where DS

is the generator of the ideal
∑

k∈Sc HMk . Since ρ is injective
(Lemma 5), so is its restriction ρ|Sc . Hence, the domain and
the image of ρ|Sc have the same cardinality, i.e.,

∏

k∈Sc

|HMk/Ic| = |HDS/Ic| = N(M)2

N(DS )2

Using (19) with the above equation, we get

N(DS)2 =
∏

k∈S

|HMk/Ic| =
∏

k∈S

24Rk = 24RS . (20)

Substituting N(DS ) = d2
S we obtain the desired result.

Using Lemma 6 and d0 = dmin(H) = 1 in (1) we see that
the side information gain of the proposed constellation equals
the upper bound ∼ 6 dB/b/dim, and it satisfies the uniform
gain condition (2).

C. Construction of Index Codes Using Quaternionic Lattices

We first recall the definition of quaternionic lattices, and
then show that the extension of the technique used in
Section V-B to those quaternionic lattices which are two-sided
H-modules produces uniform gain lattice index codes.
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Quaternionic Lattices: We denote the quaternion algebra by

Q = {a + bi + cj + dk|a, b, c, d ∈ R}.
A quaternionic lattice �̃ of dimension t over Q is a discrete
left-H sub-module of Qt [24], i.e., A�̃ ⊂ �̃ for every A ∈ H,
where

A�̃ = {
(AV1, . . . , AVt )

ᵀ ∣
∣ (V1, . . . , Vt )

ᵀ ∈ �̃
}
.

The real lattice � associated with �̃ is obtained by the
map � : Qt → R

4t , where � ((V1, . . . , Vt )
ᵀ) is the real

vector consisting of the {1, i, j, k}-coordinates of each of the
t quaternions V1, . . . , Vt . Hence, the real dimension of �̃ is
n = 4t . Note that �(�̃1) ⊂ �(�̃2) if and only if �̃1 ⊂ �̃2,
and �(�̃1 + �̃2) = �(�̃1) + �(�̃2).

Example 10: The Gosset lattice E8 is the real version of
a quaternionic lattice �̃ of dimension t = 2 over H [24].
Its generator matrix over H is

(
1 + i 1

0 1

)

.

The lattice �̃ ⊂ Q2 consists of all left H-linear combinations
of the two columns of this generator matrix, i.e.,

�̃ =
{(

A(1 + i) + B
B

) ∣
∣
∣A, B ∈ H

}

. (21)

Some of the well known high-density lattices, such as
D∗

4 , D4, E8, �max
12 and �24 can be viewed as quater-

nionic lattices [24]. The lattice index codes of Section V-B
were built using the one-dimensional quaternionic lattice D∗

4 .
A direct extension of this construction to arbitrary higher
dimensional quaternionic lattices, as conducted in Section IV
for complex lattices, does not appear to hold because of the
non-commutativity of H. The problem arises in determining
if one lattice is a subset of another. Given a H-lattice �̃, we
construct the component lattices of our index code by right-
multiplying �̃ with appropriate Hurwitz integers. Consider

�̃M = {
(V1 M, . . . , Vt M)ᵀ

∣
∣ (V1, . . . , Vt )

ᵀ ∈ �̃
}
,

where M ∈ H. Since M multiplies on the right, �̃M inherits
the property of being a left-H module from �̃, and hence, it is
a quaternionic lattice. In our construction, for any Mk , M ∈ H

with Mk | M , we require that �̃M ⊂ �̃Mk . If M = AMk ,
this condition translates to �̃AMk ⊂ �̃Mk , which can be
guaranteed if �̃A ⊂ �̃, i.e., if �̃ is a right-H module in
addition to being a left-H module. In the rest of this section
we assume that �̃ is a two-sided H module. As an example,
we now show that E8 is a two-sided H-module, and hence
can be used as the base lattice �̃ in our construction.

Lemma 7: The Gosset lattice E8 is a right-H module.
Proof: Let �̃, as defined in (21), be the quaternionic

version of E8. Consider

�̃right =
{(

(1 + i)C + D
D

) ∣
∣
∣C, D ∈ H

}

.

It is clear that �̃right is a right-H module. We will complete
the proof by showing that �̃ = �̃right. In order to prove

the equality of the two sets, we need to show that for every
A, B ∈ H there exist C, D ∈ H such that

(A(1 + i) + B, B)ᵀ = ((1 + i)C + D, D)ᵀ ,

and vice versa. This is valid if and only if B = D and
A(1 + i) = (1 + i)C . If A = a + bi + cj + dk, a direct
computation shows that C = a + bi + d j − ck satisfies
A(1 + i) = (1 + i)C . This completes the proof.

Right multiplying each component of
V = (V1, . . . , Vt ) ∈ �̃ by M is equivalent to left multiplying
the real vector �(V ) by the 4t × 4t matrix

⎛

⎜
⎜
⎜
⎝

[c]M(M)
M(M)

. . .

M(M)

⎞

⎟
⎟
⎟
⎠

, (22)

which consists of t copies of the matrix M(M), and where
the function M(·) is given in (16). The generator matrix of
�(�̃M) is the product of (22) and the generator matrix of
�(�̃). Since M(M) is orthogonal with determinant N(M)2,
the matrix (22) is orthogonal with determinant N(M)2t .
Hence, the volume and the squared minimum distance of the
lattice �(�̃M) are

Vol(�̃M) = Vol
(
�(�̃M)

) = N(M)2t Vol
(
�(�̃)

)
,

d2
min(�̃M) = d2

min

(
�(�̃M)

) = N(M)d2
min

(
�(�̃)

)
.

Construction on Two-Sided H-Modules: The following
lemma enables us to extend the construction of Section V-B
to all lattices �̃ that are two-sided H-modules.

Lemma 8: If A, B ∈ H are such that A | B, then
�̃A ⊃ �̃B.

Proof: Let B = D A and λ ∈ �̃B . Then λ = V B for
some V ∈ �̃, and hence, λ = V B = V D A. Since �̃ is a
right-H module, V D ∈ �̃, and hence λ ∈ �̃A.

Let M1, . . . , MK and M be as defined in Section V-B.
We set

�̃k = �̃Mk , k ∈ 1, . . . , K , and �̃c = �̃M.

We construct our quaternionic lattice index code by using

�c = �
(
�̃c

) = �
(
�̃M

)
and �k = �

(
�̃k

) = �
(
�̃Mk

)
.

Since Mk | M , using Lemma 8, we have �̃c ⊂ �̃k , and hence
�c ⊂ �k , for all k = 1, . . . , K . The cardinality |�k/�c| of
the kth message is

Vol(�c)

Vol(�k)
= Vol(�̃M)

Vol(�̃Mk)
= N(M)2t

N(Mk )2t
=

{
p2t

k , k ≤ L,

p2t
k−L , k > L,

and the rate is

Rk = 1

4t
log2 |�k/�c| =

{
1
2 log2 pk, k ≤ L,

1
2 log2 pk−L , k > L .

Note that the rates are identical to those achieved using the
construction on D∗

4 .
We now show that this lattice index code provides uniform

side information gain of � ≈ 6 dB/b/dim. The proof is similar
to the proofs of Lemmas 2 and 3 in Section IV.
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Fig. 9. A three receiver Gaussian broadcast channel with private message requests and side information at Rx2.

Lemma 9: With �1, . . . ,�K and �c defined as above,

(i) the transmit codebook C = �/�c, and the encoding
map ρ is injective; and

(ii) for every side information index set S, RS = log2

(
dS
d0

)
.

Proof: See Appendix I-C.
From Lemma 9, we conclude that the side information gain

of the quaternionic lattice index code �/�c is ∼ 6 dB/b/dim.

VI. CODING FOR GENERAL MESSAGE

DEMANDS: AN EXAMPLE

Lattice index codes with large side information gains are
suitable when all the messages are demanded by every
receiver. For these codes, the encoding operation is oblivious
to both the number of receivers and the side information
configuration at each receiver (see Definition 1). When the
message demands are more general (such as private message
requests), the number of receivers, and the SNR and the
side information available at each receiver may need to be
considered during code design [13], [14].

Capacity-achieving random coding schemes have been pro-
posed for a class of 3-receiver private message Gaussian broad-
cast channels in [13] and [14]. The coding schemes of [14]
make use of channel codes that are efficient in converting
receiver side information into additional coding gains, similar
to lattice index codes, as component subcodes in superposition
coding. In this section, we consider an instance of a broadcast
channel where each message is demanded at a unique receiver.
Inspired by the ideas in [14], we show that lattice index codes
with large side information gains can be useful in constructing
coding schemes that are matched to this broadcast channel.

We will now briefly review some lattice parameters
from [24] that are relevant to the analysis of error performance.
The kissing number τ (�) of a lattice � is the number of
shortest non-zero vectors in �, i.e., the number of lattice points
with Euclidean length equal to dmin(�). Every point in � has
exactly τ (�) nearest neighbours in the lattice. The covering

radius of a lattice � is given by

rcov (�) = sup
x∈V�

‖x‖, (23)

where V� is the fundamental Voronoi region of �, and equals
the radius of the smallest sphere centered around origin that
contains the fundamental Voronoi region as a subset.

A. Channel Model and Encoding

We consider a broadcast channel with three receivers Rx j ,
j = 1, 2, 3, each of which experiences additive noise with
the corresponding variance N j , see Fig. 9. We assume that
N1 ≤ N2 ≤ N3, i.e., the first receiver has the strongest
channel. Also assume that there are K = 3 messages at the
transmitter, wk ∈ Wk , k = 1, 2, 3. Let D j , Sj ⊂ {1, 2, 3}
denote the index sets of the messages demanded by, and the
side information available at Rx j . We consider the private
message broadcast scenario D1 = {1}, D2 = {2}, D3 = {3},
with side information index sets S1 = ∅, S2 = {1}, S3 = ∅.

The objective is to efficiently encode the messages such
that the three receivers Rx1, Rx2, Rx3 can tolerate increas-
ingly more noise, i.e., the messages w1, w2, w3 experience
increasing coding gains, in that order. Using a lattice index
code, we will exploit the side information S2 to enhance the
coding gain of Rx2 over that of Rx1. Since S3 = ∅, we will
combine this lattice index code with superposition coding to
enhance the coding gain at Rx3.

The transmitter uses nested lattices �1,�2 ⊃ �
(12)
c and

�3 ⊃ �
(3)
c , to individually map the information symbols

w1, w2, w3 to the points x1, x2, x3 in the n-dimensional lattice
constellations �1/�

(12)
c , �2/�

(12)
c and �3/�

(3)
c , respectively.

Finally, the transmit vector is generated as

x = (x1 + x2) mod �(12)
c + x3 = x12 + x3,

where x12 = (x1 + x2) mod �
(12)
c . We assume that the map

(x1, x2) → (x1 + x2) mod �
(12)
c generates a lattice index code
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C12 = �12/�
(12)
c , where �12 = �1 + �2 denotes the sum

lattice. Denoting �3/�
(3)
c by C3, we observe that the transmit

codebook C = C12 + C3 is a superposition code, where the
codewords of C12 form the ‘cloud particles’ and those of C3
are the ‘cloud centers’ [33].

B. Decoding and Error Performance

The weakest receiver Rx3 observes y3 = x12 + x3 + z3,
where z3 is a random Gaussian vector with variance N3 per
dimension. The optimal decoder chooses x̂3 ∈ �3/�

(3)
c that

maximizes the likelihood of observing y3. Since this receiver
is complex to analyze, we consider the sub-optimal decoder
that treats the ‘interference’ x12 as noise, and decodes y3 to
the nearest point in �3/�

(3)
c . We now derive an upper bound

on the pairwise error probability of this receiver considering
two competing codewords xA, xB ∈ �3/�

(3)
c . Assuming that

w3 was encoded as x A ∈ �3, the decoder at Rx3 chooses
xB ∈ �3 over x A if ‖y − x A‖ > ‖y − xB‖, i.e., if

‖x12 + x A + z3 − x A‖ > ‖x12 + x A + z3 − xB‖,
where x12 ∈ C12 is the vector that jointly encodes w1, w2.
Squaring both sides of the inequality and using usual simpli-
fications, we arrive at

2zᵀ
3 (xB − x A) > ‖x A − xB + x12‖2 − ‖x12‖2.

To upper bound the error probability, we obtain a lower bound
on the value of the right-hand-side term above. Utilizing the
Cauchy-Schwarz inequality, we obtain

|xA − xB + x12‖2 − ‖x12‖2

= ‖x A − xB‖2 + ‖x12‖2 + 2xᵀ
12(x A − xB) − ‖x12‖2

= ‖x A − xB‖2 + 2xᵀ
12(x A − xB)

≥ ‖xA − xB‖2 − 2
∣
∣xᵀ

12(x A − xB)
∣
∣

≥ ‖x A − xB‖2 − 2‖x12‖‖x A − xB‖
= ‖xA − xB‖ (‖x A − xB‖ − 2‖x12‖).

Observe that x12 ∈ �12/�
(12)
c , and hence, x12 ∈ V

�
(12)
c

.

From the definition of the covering radius (23), we have
‖x12‖ ≤ rcov(�

(12)
c ). Since x A, xB ∈ �3, we have ‖x A−xB‖ ≥

dmin(�3). This yields the following lower bound

‖x A − xB + x12‖2 − ‖x12‖2

≥ ‖x A − xB‖
(

dmin(�3) − 2rcov

(
�(12)

c

))
.

Hence, Rx3 favours xB only if z3 is such that

2zᵀ
3 (xB − x A) > ‖x A − xB‖

(
dmin(�3) − 2rcov

(
�(12)

c

))
.

Normalizing both sides by 2
√

N3‖x A − xB‖, we immediately
obtain the following upper bound on pairwise error probability,

PEP(xA → xB) ≤ Q

⎛

⎝
dmin(�3) − 2rcov

(
�

(12)
c

)

2
√

N3

⎞

⎠,

where Q(·) is the Gaussian tail function and N3 is the variance
of the vector z3 along each dimension.

An approximate bound on the average error probability can
be obtained by considering all the competing codewords which

are at the shortest Euclidean distance from the transmitted
codeword [24], i.e., all the nearest neighbours in the coding
lattice. Using union bound, we arrive at the following approx-
imate bound [24] for error rate at Rx3

Pe(Rx3) � τ (�3) PEP(x A → xB)

≤ τ (�3) Q

⎛

⎝
dmin(�3) − 2rcov

(
�

(12)
c

)

2
√

N3

⎞

⎠. (24)

To analyze the performance at Rx1 and Rx2, we again
consider sub-optimal decoders for which upper bounds on
error probabilities can be easily obtained. The decoders at
Rx1 and Rx2 experience a higher SNR than Rx3. Both these
receivers first decode w3 using the same procedure as Rx3,
and subtract its contribution in the received vector. Assuming
that the estimated codeword x̂3 is correct, the received vector
at Rx j , j = 1, 2, after cancelling the interference x3 is

y ′
j = x12 + z j = (x1 + x2) mod �(12)

c + z j ,

where z j is a Gaussian noise vector with variance N j

per dimension. Since Rx1 has no side information, it
jointly decodes w1 and w2, i.e., it chooses the codeword
x̂12 ∈ �12/�

(12)
c that is closest to y ′

1. Using conventional
union bounding arguments, the overall error probability at this
receiver, considering both the steps of the decoding procedure,
can be upper bounded as

Pe(Rx1) � τ (�12) Q

(
dmin(�12)

2
√

N1

)

+ τ (�3) Q

⎛

⎝
dmin(�3) − 2rcov

(
�

(12)
c

)

2
√

N1

⎞

⎠. (25)

On the other hand, Rx2 has prior knowledge of the exact
value a1 of x1 and its decoder can exploit the fact that
�12/�

(12)
c is a lattice index code. The effective codebook

seen by this receiver after cancelling the interference x3 and
expurgating all codewords corresponding to x1 �= a1 is a lattice
code carved from a translate of �2. Hence, the error rate at
this receiver satisfies

Pe(Rx2) � τ (�2) Q

(
dmin(�2)

2
√

N2

)

+ τ (�3) Q

⎛

⎝
dmin(�3) − 2rcov

(
�

(12)
c

)

2
√

N2

⎞

⎠. (26)

At high values of SNR, the arguments of the Q-function
in (24), (25) and (26) dictate the error performance at the
three receivers. Since Rx3 experiences the most noise, we

require dmin(�3) − 2rcov(�
(12)
c ) to be larger than dmin(�2)

and dmin(�12). In this case, the high SNR error rates at the
three receivers Rx1, Rx2, Rx3 are determined by dmin(�12),
dmin(�2) and dmin(�3)−2rcov(�

(12)
c ), respectively. Hence, we

arrive at the following guidelines for designing a good channel
code:

(i) �12/�
(12)
c must be a good lattice index code in order

to achieve a good error performance at Rx1 and Rx2.
A large value of �(�12/�

(12)
c ) will be efficient in
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converting the side information into additional coding
gains, which will be useful in combating the higher noise
power at Rx2.

(ii) The covering radius of �
(12)
c must be small, so as to

reduce the interference from x12 at Rx3.
(iii) And finally, dmin(�3) must be large in order to maximize

the coding gain at Rx3.
Example 11: We will consider a coding scheme for the

3-user private message broadcast channel that utilizes the
25-QAM constellation of Example 7 as the lattice index code
�12/�

(12)
c . This constellation has dimension n = 2 and

encodes two messages with 5-ary alphabets. From Example 7,
we have dmin(�12) = 1 and dmin(�2) = √

5. To encode

the third message, we will use �
(3)
c = 25Z

2, and the lattice
generated by (

10 −5
5 10

)

as �3. It is straightforward to show that rcov(�
(12)
c ) = 5√

2
,

dmin(�3) = 5
√

5, and that all three messages are encoded at
the same rate R1 = R2 = R3 = 1

2 log2 5 b/dim. At high SNR,
the error performance at Rx2 is better than Rx1 by

10 log10

(
d2

min(�2)

d2
min(�12)

)

= 6.9 dB,

and the performance at Rx3 is better than Rx1 by

10 log10

⎛

⎜
⎝

(
dmin(�3) − 2rcov(�

(12)
c )

)2

d2
min(�12)

⎞

⎟
⎠ = 12.2 dB.

Hence, this constellation allows Rx2 and Rx3 to tolerate
6.9 dB and 12.2 dB of additional noise compared to Rx1,
respectively. While the additional gain at Rx3 is due to
superposition coding, the performance improvement at Rx2
is due to the side information gain of the component lattice
index code.

VII. CONCLUSION AND DISCUSSION

We have proposed lattice index codes for the Gaussian
broadcast channel where every receiver demands all the mes-
sages from the transmitter. We have introduced the notion of
side information gain as a code design metric, and constructed
lattice index codes from lattices � over the PIDs Z, Z[i ], Z[ω]
and H. If � has the highest lattice density in its dimension,
the proposed codes achieve the maximum side information
gain among all lattice index codes constructed from �.
An interesting property of these lattice index codes is that
the side information gain is uniform.

The key ingredients that we used in the construction of
our lattice index codes are the Chinese remainder theorem,
the properties of principal ideals for the base PIDs, and the
mapping of ideals of the PID modules to lattice constellations.
In particular, the specific choices of the PIDs enable us to
associate the norms of principal ideals with the minimum
Euclidean distance of the corresponding component lattices,
while the Chinese remainder theorem guarantees the unique

decodability property for any amount of side information at
the receivers.

It is possible to construct lattice index codes using the
8-dimensional non-commutative non-associative PID of
Octavian integers O. Since O is geometrically equivalent to
the Gosset lattice E8, the resulting lattice index codes use
the octonion version of E8 as the base lattice �̃. However, the
only ideals in O are the trivial ones, viz. the ideals mO, where
m ∈ Z [31]. Hence the extension of our construction from the
Hurwitz integers H to the Octavian integers O coincides with
the codes constructed in Section IV with � = E8 and D = Z.

The lattice index codes constructed here can be used
as modulation schemes together with strong outer codes.
Consider K information streams, encoded independently using
K outer codes over the alphabets W1, . . . ,WK , respectively.
The coded information streams are multiplexed using the
lattice index code C and transmitted. If the minimum Ham-
ming distance of the outer codes is dH , then the minimum
squared Euclidean distance at a receiver corresponding to S
is at least dH × d2

S . While the outer code improves error
resilience, the inner lattice index code collects the gains from
side information. This approach converts the index coding
problem into coding for a multiple-access channel where the
K information streams are viewed as K independent transmit-
ters. Since coding for multiple-access channels is well studied
in the literature, this knowledge may be leveraged to construct
good noisy index codes of manageable encoding and decoding
complexity, such as by using iterative multiuser demodula-
tors/decoders. In [21] we have shown that this concatenated
architecture can perform close to the capacity of the Gaussian
broadcast channel with receiver side information.

APPENDIX I
PROOFS OF LEMMAS

A. Proof of Lemma 2

In order to prove Part (i), we need to show that ρ is injective
and �1 + · · · + �K = �.

From Lemma 1, gcd(Mk , k ∈ Sc) = ∏

∈S φ
 for every

choice of S. Hence, there exists a tuple (bk, k ∈ Sc) of
elements in D such that

∑
k∈Sc bk Mk = ∏


∈S φ
. It follows
that, for every λ ∈ �̃, we have

∏


∈S

φ
λ =
∑

k∈Sc

bk Mkλ,

hence
∏


∈S φ
�̃ ⊂ ∑
k∈Sc Mk�̃. Using this result along with

the additive property of � , we obtain

�

(
∏


∈S

φ
�̃

)

⊂ �

(
∑

k∈Sc

Mk�̃

)

=
∑

k∈Sc

�
(
Mk�̃

)

=
∑

k∈Sc

�k .

Considering cosets modulo �c, the above relation implies

�

(
∏


∈S

φ
�̃

)

/�c ⊂
∑

k∈Sc

�k/�c. (27)
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Let ρ|Sc be the restriction of the encoding map (5) to the
message symbols with indices in Sc, i.e.,

ρ|Sc
(
xk, k ∈ Sc) =

∑

k∈Sc

xk mod �c.

Note that
∑

k∈Sc �k/�c is the image of the map ρ|Sc .
From (27), we observe that �

(∏

∈S φ
�̃

)
/�c is a subset

of this image. The cardinality
∣
∣
∣
∣
∣
�

(
∏


∈S

φ
�̃

)

/�c

∣
∣
∣
∣
∣
= |M|nVol(�)

| ∏
∈S φ
|nVol(�)

=
∏

k∈Sc

|φk |n

of this subset of the image of ρ|Sc equals the cardinality
∏

k∈Sc

|�k/�c| =
∏

k∈Sc

|φk |n

of the domain of ρ|Sc . Hence, we conclude that ρ|Sc

is an injective map, and the subset �
(∏


∈S φ
�̃
)
/�c

equals the entire image
∑

k∈Sc �k/�c. This implies that
�

(∏

∈S φ
�̃

) = ∑
k∈Sc �k , proving Part (ii) of this lemma.

Choosing S = ∅, we observe that ρ|Sc = ρ is injective,
and

∑K
k=1 �k = �

(
�̃

) = �. Hence, the transmit codebook
is C = ∑K

k=1 �k/�c = �/�c. This proves Part (i).

B. Proof of Lemma 4

It is enough to show that � = H, i.e.,
∑K

k=1 HMk = H,
or equivalently,

gcd(M1, . . . , MK ) = 1.

Let D = gcd(M1, . . . , MK ) and Dk = gcd(Mk , Mk+L ) for
k = 1, . . . , L. Then,

D = gcd(M1, M1+L , M2, M2+L , . . . , ML , M2L )

= gcd (gcd(M1, M1+L ), . . . , gcd(ML , M2L ))

= gcd (D1, . . . , DL ) . (28)

We will complete the proof by deriving N(D1), . . . , N(DL ),
and then showing that D is a unit in H.

For each k = 1, . . . , L, we have

Dk = gcd(Mk , Mk+L ) = gcd(Mk , Mk + Mk+L )

= gcd

⎛

⎝Pk

∏


 �=k

p
, Pk

∏


 �=k

p
 + Pk

∏


 �=k

p


⎞

⎠

= gcd

⎛

⎝Pk

∏


 �=k

p
, 2m+1
∏


 �=k

p


⎞

⎠,

where the last equality follows from the assumption that
Re(Pk) = 2m for some m ≥ 0. Since

N(Dk ) | gcd(N(Mk ), N(Mk + Mk+L )),

we obtain N(Dk ) | gcd
(

pk
∏


 �=k p2

, 4m+1 ∏


 �=k p2



)
. Since

pk is an odd prime, we have

N(Dk ) |
∏


 �=k

p2

. (29)

On the other hand,
∏


 �=k p
 is a divisor of both Mk and Mk+L ,
and hence is a divisor of Dk . Hence,

N

⎛

⎝
∏


 �=k

p


⎞

⎠ | N(Dk), i.e.,
∏


 �=k

p2

 | N(Dk). (30)

From (29) and (30), N(Dk ) = ∏

 �=k p2


 .
From (28), N(D) | gcd(N(D1), . . . , N(DL )) in Z. Since

p1, . . . , pL are pairwise relatively prime in Z,

gcd(N(D1), . . . , N(DL )) = gcd

⎛

⎝
∏


 �=1

p2

, . . . ,

∏


 �=L

p2



⎞

⎠ = 1.

Hence N(D) = 1, and D is a unit in H. Up to unit
multiplication in H, we have

D = gcd(M1, . . . , MK ) = 1. (31)

C. Proof of Lemma 9

Part (i): It is enough to show that
∑K

k=1 �k = �, or
equivalently,

∑K
k=1 �̃k = �̃. Since �̃k ⊂ �̃, for all k, it is

clear that
K∑

k=1

�̃k ⊂ �̃.

From (31), we have gcd(M1, . . . , MK ) = 1. Hence, there exist
B1, . . . , BK ∈ H such that

∑K
k=1 Bk Mk = 1. If λ ∈ �̃, then

λ = λ

K∑

k=1

Bk Mk =
K∑

k=1

(λBk) Mk .

Since (λBk)Mk ∈ �̃k , we have λ ∈ ∑K
k=1 �̃k . Hence

�̃ ⊂
K∑

k=1

�̃k .

The injective nature of the map ρ follows from observ-
ing that its domain �1/�c × · · · × �K /�c and image
�/�c = �(�̃)/�(�̃M) have the same cardinality N(M)2t =
(∏L


=1 p2t



)2
.

Part (ii): Let DS = gcd(Mk , k ∈ Sc). We first show that∑
k∈Sc �k = �(�̃DS), or equivalently

∑
k∈Sc �̃k = �̃DS .

There exists a tuple (Bk, k ∈ Sc) of Hurwitz integers such
that

∑
k∈Sc Bk Mk = DS . Similar to the proof of Part (i) of

this lemma, by considering the term λ
∑

k∈Sc Bk Mk for each
λ ∈ �̃, we conclude that

∑

k∈Sc

�̃k ⊃ �̃DS .

The above relation implies that �(�̃DS)/�c is a subset of
the image of ρ|Sc , which is the restriction of the function ρ
to messages with indices in Sc. As in the proof of Lemma 2,
to prove

∑
k∈Sc �̃k = �̃DS , it is enough to show that

|�(�̃DS)/�c| =
∏

k∈Sc

|�k/�c|.
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Now,

N(M)2t = Vol(�̃M)

Vol(�̃)
= |�(�̃)/�(�̃M)|
= |�/�c| = |C | = 24t(R1+···+RK ).

Using N(DS)2 = 24RS (from (20)), and the above equation,
we have

|�(�̃DS)/�c| = Vol(�̃M)

Vol(�̃DS)
= N(M)2t

N(DS)2t
= 24t (R1+···+RK )

24t RS

= 24t
∑

k∈Sc Rk =
∏

k∈Sc

24t Rk =
∏

k∈Sc

|�k/�c|.

Hence, we conclude that
∑

k∈Sc �̃k = �̃DS .
Using N(DS ) = 22RS , we obtain the minimum squared

distance with S as follows,

d2
S = d2

min

(
∑

k∈Sc

�k

)

= d2
min

(
∑

k∈Sc

�̃k

)

= d2
min

(
�̃DS

) = N(DS )d2
min(�̃) = 22RS d2

0 .

This shows that RS = log2

(
dS
d0

)
.

APPENDIX II
EXISTENCE OF HURWITZ INTEGERS WITH ODD-PRIME

NORMS AND REAL PART A POWER OF TWO

We show that every odd rational prime p can be expressed
as the sum of the squares of four rational integers a1, . . . , a4,
where the first integer a1 ∈ {1, 2}. Then, P = a1 + a2i +
a3 j + a4k is a Hurwitz integer with norm p and real part a
power of 2. The proof follows from the following result from
number theory known as the three-square theorem.

Theorem 1 [32]: Every positive rational integer not of the
form 4c(8d + 7), c, d ∈ Z, is a sum of three rational integer
squares.

If p is a positive odd rational integer, we have
p mod 8 ∈ {1, 3, 5, 7}. For each of these four possible values
of p mod 8, we show that at least one of p −1 or p −4 is not
of the form 4c(8d + 7). It then follows that, either p − 1 or
p − 4 is a sum of three squares, and consequently, p equals
either the sum of 12 and three squares, or the sum of 22 and
three squares.

If p mod 8 = 1, then

(p − 4) mod 8 = (p mod 8 − 4) mod 8 = 5.

Assume p − 4 = 4c(8d + 7) for some c, d ∈ Z. Since
(p − 4) mod 8 = 5, (p − 4) is odd, which implies c = 0,
and hence, p −4 = 8d +7. This leads to a contradiction since
(p − 4) mod 8 = 5 and (8d + 7) mod 8 = 7. The proofs for
the cases p mod 8 = 5, 7 are similar.

If p mod 8 = 3, we have (p − 1) mod 8 = 2. Suppose
p − 1 = 4c(8d + 7) for some choice of c, d . Since
(p − 1) mod 8 /∈ {0, 4}, 4 is not a divisor of p − 1, and
hence, c = 0. Contradiction follows from observing that
(p − 1) mod 8 �= (8d + 7) mod 8.
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