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Abstract—The index coding problem involves a sender with
K messages to be transmitted across a broadcast channel, and a
set of receivers each of which demands a subset of the K messages
while having a prior knowledge of a different subset as side
information. We consider the specific case of noisy index
coding where the broadcast channel is Gaussian and every
receiver demands all the messages from the source. Instances
of this communication problem arise in wireless relay networks,
sensor networks, and retransmissions in broadcast channels.
We construct lattice index codes for this channel by encoding the
K messages individually using K modulo lattice constellations
and transmitting their sum modulo a coarse lattice. We introduce
a design metric called side information gain that measures the
advantage of a code in utilizing the side information at the
receivers, and hence, its goodness as an index code. Based on
the Chinese remainder theorem, we then construct lattice index
codes with large side information gains using lattices over the fol-
lowing principal ideal domains: 1) rational integers; 2) Gaussian
integers; 3) Eisenstein integers; and 4) Hurwitz quaternions.
Among all lattice index codes constructed using any densest
lattice of a given dimension, our codes achieve the maximum
side information gain. Finally, using an example, we illustrate
how the proposed lattice index codes can benefit Gaussian
broadcast channels with more general message demands.

Index Terms— Chinese remainder theorem, Gaussian
broadcast channel, index coding, lattice codes, principal ideal
domain, side information.

I. INTRODUCTION

HE CLASSICAL noiseless index coding problem

consists of a sender with K independent messages
wi,..., Wk, and a noiseless broadcast channel, where each
receiver demands a subset of the messages, while knowing the
values of a different subset of messages as side information.
The transmitter is required to broadcast a coded packet, with
the least possible length, to meet the demands of all the
receivers (see [1]-[6] and references therein). In the noisy
version of this problem, the messages are to be transmitted
across a broadcast channel with additive white Gaussian
noise (AWGN) at the receivers (see [7]-[15] and references
therein). The exact capacity region (the achievable rates of
the K messages) with general message demands and side
informations is known only for the two-receiver case [7], [8].
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We consider the special case of noisy index coding
where every receiver demands all the messages at the
source. Instances of this communication problem are encoun-
tered in wireless relay networks [8]-[10], retransmissions
in broadcast channels [1], and communications in sensor
networks [15]. Fig. 1 illustrates a wireless version of the
‘butterfly’ network where noisy index coding is useful. Two
data packets w; and w;, which are available at the base
stations BS; and BS,, respectively, are to be broadcast to all
three users Up, Up, U3 in the network through a decode-and-
forward helper node BS3. The nodes U; and BS3 are within
the range of BS;, U, and BSj3 are within the range of BS»,
and all three users are in the range of BS3. In the first phase
of the protocol, both BS; and BS; simultaneously broadcast
their corresponding data packets. While U; and U, decode
w1 and wy, respectively, the helper node BS3 experiences a
multiple-access channel and decodes both the messages. In the
second phase of the protocol, BS3 broadcasts w; and w;
to all three users. While U; and U, are aided by the data
packets received in the first phase of the protocol, no such
side information is available at U3z. The traditional approach
of broadcasting the bit-wise XOR of w; and w; in the second
phase is not useful, since it does not satisfy the demands
of Us. On the other hand, performing index coding at the
physical layer will allow us to convert the side informations at
U; and U into performance gains while meeting the demands
of all three receivers.

Noisy index coding for broadcasting common messages is
also useful in the retransmission phase of satellite broadcasting
services, which was the original motivation for considering
(noiseless) index codes [1]. Consider a satellite downlink, as
shown in Fig. 2, where a common message consisting of
K data packets is broadcast to multiple terrestrial receivers.
Due to varying channel conditions, each receiver successfully
decodes (possibly different) parts of the transmitted frame.
In the retransmission phase of the protocol, the satellite can use
a noisy index code to simultaneously broadcast the K packets
while exploiting the side informations at all the receivers.

A. Background

The capacity region of the common message Gaussian
broadcast channel with receiver side information follows from
the results in [15]. Denote a receiver by (SNR, S), where
SNR is the signal-to-noise ratio, and S C {1,..., K} is the
index set of the messages ws = (wg, k € S) whose values
are known at the receiver as side information. Note that this
terminology includes the case S = &, i.e., no side information.
Let Rj,..., Rk be the rates of the individual messages in
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Common message broadcast with receiver side information in the wireless ‘butterfly’” network: (a) BS; and BS; simultaneously broadcast

files w; and wy. At the end of Phase 1, Uj receives wy, Uy receives wp, and BS3 receives both. (b) In Phase 2, BS3 transmits w], wy using noisy
index coding to utilize side information at U; and U while being intelligible to U3.

wi,..., WK

(a)

Fig. 2.
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Common message broadcast with receiver side information in satellite communications: (a) The satellite broadcasts a common message containing

K data packets to multiple terrestrial receivers. Due to intermittent channel variations, each receiver successfully decodes only a subset of the K packets.
Here, the first receiver decodes w1y, wy, the second w3, and the third wy, wg. (b) In the retransmission phase the satellite performs noisy index coding to

exploit this side information at the receivers.

bits per dimension (b/dim), i.e., the number of bits to be
transmitted per each use of the broadcast channel. The source
entropy is R = R; + - - - + Rk, and the side information rate
at (SNR, S) is defined as Rs = >, ¢ Rk. The rate tuple
(R1, ..., Rk) is achievable if and only if [15]

1
EIng (1+SNR) > H(wiy, ..., wg|lws) = R — Ry,

for every receiver (SNR, S). Consequently, at high message
rates, the presence of the side information corresponding to
S at a receiver reduces the minimum required SNR from
approximately 228 to 22(R=Rs)  or equivalently, by a fac-
tor of Ry x 20log;2 dB ~ 6Rgs dB. Hence, a capacity-
achieving index code allows a receiver to transform each
bit per dimension of side information into an apparent SNR
gain of approximately 6 dB.

The notion of multiple interpretation was introduced
in [16] as a property of error correcting codes that allows
the receiver performance to improve with the availability of
side information. Binary multiple interpretation codes based
on nested convolutional and cyclic codes were constructed

in [17] and [18], respectively. These codes can be viewed as
index codes for the noisy binary broadcast channel. To the
best of our knowledge, there has been no prior work in
designing index codes for the AWGN broadcast channel.

B. Contributions

In this work, we propose lattice index codes € for the
AWGN broadcast channel, in which the K messages are
individually mapped to K modulo lattice constellations, and
the transmit symbol is generated as the sum of the individual
symbols modulo a coarse lattice.

Given the value of wg as side information, the optimal
decoder restricts its choice of symbols to a subset of ¥,
thereby increasing the minimum squared Euclidean distance
between the valid codewords. We use this squared distance
gain, normalized by the side information rate Rg, as the
design metric, and call it the side information gain of
the code %. We first motivate our results using a simple
one-dimensional lattice code over Z (Section II), and then
show that 20log;y2 =~ 6 dB/b/dim is an upper bound on



NATARAJAN et al.: LATTICE INDEX CODING

the side information gain of lattice index codes constructed
from densest lattices (Section III). Note that this upper bound
characterizes the maximum squared distance gain, and is
independent of the information theoretic result of [15] which
characterizes the SNR gain asymptotically in both the code
dimension and probability of error. Based on the Chinese
remainder theorem, we construct index codes for the AWGN
channel using lattices over the following principal ideal
domains (PIDs): rational integers Z, Gaussian integers Z[i],
Eisenstein integers Z[w], and the Hurwitz quaternion
integers H (Sections IV and V). All the proposed lattice index
codes provide a side information gain of 20log;, 2 dB/b/dim.
Among all lattice index codes constructed using the densest
lattices in any given dimension, our codes provide the optimal
side information gain. Finally, using the example of a three
receiver Gaussian broadcast channel with private message
requests, we illustrate how the proposed lattice index codes can
be utilized under more general message demands (Section VI).

C. Recent Results

Since the submission of the initial version of this paper,
further results on index codes for the common message
Gaussian broadcast channel have been reported. The lattice
index codes presented in this paper are designed using tuples
of distinct prime numbers, and hence, the resulting rates of the
K messages are not all equal to each other, and the alphabet
sizes of the messages are not powers of 2. New lattice index
codes are reported in [19] that generalize the Z[i] and Z[w]
based constructions of Section IV to arbitrary algebraic num-
ber fields. Further, [19] constructs sequences of lattice index
codes, that consist of one code for each value of K, for
encoding all the K messages at the same rate. Index codes
based on multidimensional pulse amplitude modulation (PAM)
constellations have been obtained in [20] that encode all
the messages at the same rate and allow alphabet sizes that
are powers of 2. In [21], the achievable rate region of a
concatenated coding scheme that uses an inner index code for
modulation and K independent outer channel codes for noise
resilience has been analyzed. This concatenated scheme has
been shown to convert the noisy index coding channel into
a multiple-access channel and perform close to the channel
capacity.

Notation: We use i = +/—1 and @ = exp (QT”) The
symbol S¢ denotes the complement of the set S, and & is
the empty set. For a complex number m, the symbols 7,
Re(m) and Im(m) denote the conjugate, the real part, and
the imaginary part of m, respectively. The operator (-)T is the
transpose of a matrix or a vector, and || - || is the Euclidean
norm of a vector.

II. MOTIVATING EXAMPLE

The lattice index codes proposed in Sections IV and V
achieve a large side information gain by providing a squared
distance gain that is exponential in the side information rate Rg
for § C {1,..., K}. In this section, we illustrate the key idea
behind our construction using a simple one-dimensional lattice
index code (Example 1).
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Let wy, ..., wg be K independent messages at the source
with alphabets W, ..., Wk, respectively. The transmitter
jointly encodes the information symbols wi, ..., wg, to a
codeword x € €, where ¥ C R”" is an n-dimensional constel-
lation. The rate of the k™ message is Ry = % log, [Wk| b/dim,
k=1,..., K. Given the channel output y = x 4z, where z is
the additive white Gaussian noise, and the side information
ws = as, i.e., wr = a; for k € S, the maximum-likelihood
decoder at the receiver (SNR, S) restricts its search to the
subcode ¢,; C € obtained by expurgating all the codewords
in ¥ that correspond to ws # as. Denote the minimum
distance between any two points in € by dy. Let dyg be the
minimum distance of the subcode %, and ds be the minimum
of d, over all possible values ag of side information ws. Then
the minimum squared distance gain corresponding to the side

. . . . d
information index set S is 10log, d—g dB.
0

The performance improvement at the receiver due to
S is observed as a shift in the probability of error curve
(versus SNR) to the left. The squared distance gain

2
101log;, (Z_é) dB is a first-order estimate of this apparent

SNR gain. Normalizing with respect to the side information
rate Rs = > ;g Rk, and minimizing over all subsets S, we
see that each bit per dimension of side information provides
a squared distance gain of at least

101og, 4
()
@)= mSln Ry . )
We call T'(%) the side information gain of the code %, and
its unit is dB/b/dim.

For a given code ¥, the gain available from S is at least
Rs x T'(¥) dB with respect to the baseline performance of
% in the classical point-to-point AWGN channel, i.e., with
no side information. For € to be a good index code for the
AWGN broadcast channel, we require that 1) 4 be a good
point-to-point AWGN code, in order to minimize the SNR
requirement at the receiver with no side information; and
2) I'(¥) be large, so as to maximize the minimum gain from
the availability of side information at the other receivers.

An additional desirable property is that the normalized

2
gain 10log; (;’—g) /Rs provided by the lattice index code be
0

constant for every S, i.e.,

s
1010g10 %
L) = —— =

We say that a lattice index code provides uniform gain if it
satisfies (2). A necessary and sufficient condition for a lattice
index code to be a uniform gain code is that dg is exponential
in Rg. All the index codes constructed in Sections IV and V
are uniform gain lattice index codes with I'(%¢") ~ 6 dB/b/dim.

Example 1: Consider K = 3 independent messages w1, w2
and w3 assuming values from W; = {0, 1}, W» = {0, 1, 2}
and Wi = {0, 1, 2, 3, 4}, respectively. The three messages are
encoded to a code ¥ C Z using the function

for every S C {1,...,K}. (2)

x = 15w + 10w, + 6w3 mod 30,
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Fig. 3. Performance of the code of Example 1 for three different receivers.

where the operation ¢ mod 30 gives the unique remainder in
€ = {—15,—14,...,13,14} when the integer a is divided
by 30. Using Chinese remainder theorem [22], it is easy to
verify that % is the set of all possible values that the transmit
symbol x can assume. Since the dimension of % is n = 1, the
rate of the kth message is Ry = log, |[Wj| b/dim, i.e.,

Ry =1, R =1log,3, and R3 =log, 5 b/dim.

With no side information, a receiver decodes the channel
output to the nearest point in %, with the corresponding
minimum inter-codeword distance dyp = 1. With § = {1},
the receiver knows the value of the first message w = aj.
The decoder of this receiver restricts the choice of transmit
symbols to the subcode

Ga, = {15a1 + 10wy + 6w3 mod 30wy € Wh, w3 € Wis}.

Any two points in this subcode differ by 10Aw; + 6 Aws,
where Aw, and Aws are integers, not both equal to zero.
Since the greatest common divisor (gcd) of 10 and 6 is
gcd(10, 6) = 2, the minimum non-zero magnitude of 10A wy+
6Aws3 is 2 [22]. Hence, the minimum distance corresponding
to the side information index set S = {1} is ds = 2. The side
information rate is Rs = R; = 1 b/dim, which equals log, ds.
When § = {1, 2}, the set of possible transmit symbols is

Clar,az) = {15a1 + 10az + 6w3 mod 30[w; € Wi},

where w| = a; and wy, = ap are known. The minimum
distance of this subcode is ds = 6, and the side information
rate is Rs = Ry + Ry = log, 6 = log, ds b/dim.

Similarly, for every choice of S C {I,2,3}, we have
Rs = log,ds, i.e., the minimum distance ds is exponen-
tial in the side information rate Rg. As will be shown
in Sections IV and V, this property is satisfied by all the
proposed lattice index codes. Using Rs = log,ds in (1),

we see that the side information gain is uniform, and
I' = 20log;y2 ~ 6 dB/b/dim. In Section III-C we show that
this is the maximum side information gain achievable by any
index code ¥ C Z in which the messages are linearly encoded.
Fig. 3 shows the performance of the code with S = &, § = {1}
and S = {1, 2}. At the probability of error of 1074, the side
informations corresponding to S = {1} and S = {1, 2} provide
SNR gains of 6 dB and 15.6 dB over S = &. This is close to
the corresponding squared distance gains of 10log; (22) dB
and 10log;, (62) dB, respectively. [ ]
We now give an example of a non-uniform gain index
code with I' > 20log;;2 dB/b/dim based on a non-lattice
constellation. This example also highlights the notion that,
given a constellation %, the task of designing a good index
code is equivalent to designing a good labelling scheme.
Example 2 (A 2-Message Index Code Using 16-PSK): We
encode K = 2 messages with alphabets W, = W, =
{0, 1,2, 3} to the 16-PSK constellation 4. The encoder p :
Wi x W — % is represented as a labelling scheme in Fig. 4a
where each of the 16 constellation points x is labelled with
the corresponding message tuple (w, w2) = p~'(x). The
dimension of the code is n = 2, and the message rates are

1
Ri =R, = 3 log, 4 = 1 b/dim.

A receiver with no side information, i.e., with § = @,
decodes the received channel vector to the nearest 16-PSK
constellation point. The error performance at this receiver
is equal to that of the 16-PSK signal set. Assuming that
the constellation points have unit energy, the corresponding
minimum Euclidean distance at this receiver is dp = 2 sin ({%).

If § = {1}, the receiver has the knowledge of the value of the
first message wi. For example, if w; = 0, this receiver knows
that the transmitted vector is one of the four points in the set
{p(0, w2)|wy € Wh}; see Fig. 4b. The minimum Euclidean
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Fig. 4. The 16-PSK index code of Example 2 that encodes two 4-ary messages and provides I' = 9.1 dB/b/dim. (a) The 16-PSK index code represented as a
labelling scheme. (b) The filled circles denote the codewords corresponding to w1 = 0. (c) The filled circles denote the codewords corresponding to wp = 0.

distance of this subcode is 2sin (%) = +/2. The minimum
Euclidean distance corresponding to the other three values of
w1 is also /2. Hence, for S = {1}, we have ds = /2 and

2
the normalized squared distance gain is 10log;, ;’—g /Rs =
0

11.2 dB/b/dim.

A receiver with S = {2} decodes its channel output to one
of the four subcodes of % determined by the value of w»
obtained as side information. The subcode for w, = 0 is
shown in Fig. 4c. All four subcodes have minimum Euclidean
distance ds = 2sin (31—2) The squared distance gain for
S = {2} normalized by Rg is 9.1 dB/b/dim. To conclude,
this 16-PSK index code does not have uniform gain, and has
I' =min{11.2,9.1} = 9.1 dB/b/dim. ]

Example 3 (A Bad Index Code): Labelling a given constel-
lation € by set partitioning [23] is apparently a related
problem, but it does not necessarily provide good index codes.
In set partitioning with binary ‘labels’ wq, ..., wg, the con-
stellation % is recursively partitioned into two smaller signal
sets with larger minimum distance. For any S = {1, 2, ..., k},
k < K, the set of points with a given label wg = as forms
one of the 2% k™-level partitions of %. The minimum distance
of the partition improves with increasing k. Fig. 5 shows one

such labelling of 16-QAM, with K = 4, where the knowledge
of the values of the first k bits wy, ..., w increases the

minimum distance from dp = 1 to dgs = ~/2%. However,
this does not guarantee squared distance gain for every side
information index set § C {l,...,K}. For instance, the

side information (w»>, w3, w4) = (0,0, 0), corresponding to
S = {2, 3, 4}, does not provide any improvement in minimum
distance. The performance of the code of Fig. 5 for § = &,
S = {1,2} and S = {2, 3,4} is shown in Fig. 6. When the
error rate is P, = 107%, the knowledge of the first two bits
provides an SNR gain of 6.2 dB. However, the SNR gain
with § = {2,3,4} isonly 1 dB at P, = 10~* and is smaller

for diminishing P,. [ ]
Set partition labelling is designed to provide squared dis-
tance gain when S is of the form {1,2,...,k} for k < K.

When restricted to such side information index sets, set
partitioning provides side information gain ~ 6 dB/b/dim. The
codes in Examples 1 and 2 allow us to achieve side information
gains when § is any subset of {1,..., K}.

III. LATTICE INDEX CODES

We first review the necessary background on lattices and
lattice codes, based on [24]-[26] (Section III-A), introduce



6510

0001 1011 0011 1001
10 X X X X
1111 0101 1101 0111
0 X X X X
0010 1000 0000 1010
-1 X ® X
1100 0110 1110 0100
—2r X X >< X
-2 —1 0 1
Fig. 5. A set partition labelling of 16-QAM. The two points marked with

circles form the subcode for the side information (w3, w3, w4) = (0, 0, 0).

lattice index codes (Section III-B), and then derive an upper
bound on the side information gain of such codes constructed
from the densest lattices (Section III-C).

A. Lattices and Lattice Codes

An n-dimensional lattice in R” is a discrete additive sub-
group A = {Gz|z € Z"}, where the full-ranked matrix
G € R™" is called the generator matrix of A. Since the
difference between any two lattice points is also a lattice point,
the minimum distance dmin (A) between any two points in A
is the Euclidean length of the shortest non-zero vector of A.
The closest lattice point quantizer Qa : R" — A is

Oa(x) = A if [lx — Al < lx — A'|| for every A € A,

where x € R", 1 € A, and ties (if any) between compet-
ing lattice points are broken systematically. The fundamental
Voronoi region V) is the set of all points in R” that are
mapped to 0 under Q4. The volume of the fundamental region
Vol(A) = fV/\ dx 1is related to the generator matrix G as
Vol(A) = |detG|. The packing radius rpsex(A) = i)
is the radius of the largest n-dimensional sphere contained in
the Voronoi region V. The center density of A is

dmin(A) "
(rpack(A))n _ ( 2 )
Vol(A) — Vol(A)
The center density of a lattice is invariant to scaling,
i.e., d(A) = d(aA) for any non-zero a € R. If A is scaled
2 1 .
by a = RN ONE then rpack (@A) = 1 and 6 = VolaA) 18
the average number of points in oA per unit volume in R",
i.e., 0 is the density of the lattice points in R” when scaled
to unit packing radius. For the same average transmit power
constraint and minimum distance, a constellation carved from

3)
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a lattice with a higher value of J has a larger size, and
hence, a higher coding gain. The densest lattices are known
for dimensions n = 1,2,...,8 and n = 24 [24], [27]. For
n = 1,...,8, the densest lattices are Z, Ay, D3, Dy,
Ds, Eg, E7 and Eg, respectively, while the Leech lattice As4
is densest in 24 dimensions. The lattice D4 is equivalent to its
dual lattice D} up to scaling and orthogonal transformation.
Hence, D} too has the highest density in 4 dimensions.

The modulo-A operation x mod A = x — Qp(x) € Va, is
the difference between a vector and its closest lattice point,
and it satisfies the relation

(x1 +x2) mod A = (x; mod A 4+ x2) mod A 4)

for all x;,x» € R". Let Ac C A be a sub-lattice of A,
and A/A. be the quotient group of the cosets of A; in A.
Each coset of A/A. can be identified by its representative
contained in V.. We will identify the group A/A. with the
group of coset leaders A N Vx, = A mod A, where addition
is performed modulo A.. Further,

Vol(A¢)
Vol(A)
The constellation A/A. is called a (nested) lattice code, and
A is called the coarse lattice or the shaping lattice [25], [26].

[A/Acl =|A mod Ac| =

B. Lattice Index Codes

Consider K lattices Ay, ..., Ak, with a common sub-lattice
Ac C Ar, k=1,..., K. We will use the lattice constellations
A1/Ac, ..., Ax/Ac as the alphabets Wy, ..., Wk of the
K messages at the source.

Definition 1: A lattice index code for K messages consists
of K lattice constellations A1/Ac, ..., Ax/Ac, and the injec-
tive linear encoder map p : Aj/Ac X -+ X Ag/Ae > €
given by

p(xl""a-xk):(-xl+"'+xK) mOdAC’ (5)

where x; € Ag/Ac and € is the set of all possible values of
the transmit symbol x = p(x1, ..., xg). |
We require that p be injective so that no two message tuples
are mapped to the same transmit symbol. We now relate some
properties of a lattice index code to those of its component
lattice constellations A1/Ag, ..., Ax/Ac.
o The transmit codebook €: Let A = A; + - - + Ag
be the lattice generated by the union of the lattices
Ay, ..., Ag. It follows from (5) that x; +...+xg € A,
and hence x € A/Ac. On the other hand, every point
in A is the sum of K lattice points, one each from
A1,...,Ag. It follows from (4) that every point in
the lattice constellation A/A. is the mod A; sum of
K points, from A1/Ac, ..., Ax/Ac, respectively. Hence,
the transmit codebook is € = A/A.
o Message rates: If A is an n-dimensional lattice, the rate
of the k™ message is

1 1
R, = ;logz Wr| = ;logz [ Ax/Ac|

Lo olAo)
— 10 ep— m
7 82 Nol(Ay)
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Fig. 6. Performance of set partition labelling of Example 3.

o Minimum distance: Since € = A/A. is carved from the
lattice A, the minimum inter-codeword distance with no
side information is

dO = dmin (A) (6)

Now suppose that a receiver has side information of the
messages with indices in S, say xs = ag (i.e., xy = ax,
k € §). The subcode €, decoded by the receiver is

[Zak + ZXk’xk € Ax/Ac, k € SC] mod A¢

keS keS¢

- (Z a+ Ak/AC) mod Ac

keS keS¢

= (Zak +> Ak) mod A,

keS keS¢

where we have used (4). Thus, %, is a lattice code carved
from a translate of the lattice Zke s¢ Ak, and hence its
minimum distance is

ds = dmin (Z Ak). @

keS¢

Example 4: The code in Example 1 is a lattice index code
with K =3, A1 = 15Z, Ay = 10Z, Az = 6Z, A = 30Z and
A=15Z+10Z + 6Z = 7. [ |

The transmit codebook 4 = A/A. of a lattice index
code is a commutative group under addition modulo A,
and A1/A, ..., Ax /A, are subgroups of % . It follows from
Definition 1 that the encoding map p is a group isomorphism
between % and the direct product Aj/A¢ X -+ X Ag/A¢ of
the subgroups Ai/Ac,..., Ax/Ac, i.e., € is a direct sum
of these K subgroups. Thus, the problem of designing a
good lattice index code is to construct a pair A C A of

nested lattices, and to find a decomposition of A/A. into
K subgroups, such that ds = dpin (Zkesc Ak) is large for
every choice of § C {1, ..., K}. While constructions of pairs
A¢ C A of lattices [25], [26] and chains A C A’ C A" C ---
of nested lattices [26] are well known in the literature, we
require a lattice code A/A. and a set of its generating
subcodes Aj/Ac, ..., Ax/Ac such that all non-trivial direct
sums D pogc Ak/Ac, S C{l,..., K}, of the K subcodes have
large minimum Euclidean distances.

In Sections IV and V, we construct index codes using
lattices that possess the multiplicative structure of a principal
ideal domain (PID) or that of a module over a PID, besides
the additive structure of a commutative group. The structure
of a PID (or a module over a PID) enables us to control the
minimum Euclidean distance dg, and hence the side informa-
tion gain I', of the resulting codes. When the underlying PID
is commutative (Section IV), we use the Chinese remainder
theorem to construct pairs A¢ C A of nested lattices and
decompose the resulting code A/A. into a direct sum of K
lattice subcodes. We then construct lattice index codes using
the Hurwitz integral quaternions as the base PID (Section V).
The Chinese remainder theorem does not apply to quaternions
due to the technical reason that they are non-commutative
and their ideals are not two-sided. Nevertheless, we design
a family of quaternionic lattice index codes by identifying the
essential constituents of the techniques used in Section IV and
extending them to the non-commutative case.

C. An Upper Bound on the Side Information Gain

Consider the side information index set S = {1, ..., K —1}.
The minimum distance is

ds = din (Z Ak) = dmin (Ak),

keS¢
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and the side information rate is

1
Rs = Ri+---+ Rkx—1 =;10g2|<5|—R1<

1 1
10y [A/Ac] = —logy [Ak /Ac]

_ 1 Vel 1 Vol(Ao)
T2 BN OB Vol(Ag)
1 Vol(Ag)

n 82 Nol(A)

Representing the volume of the fundamental region in terms of
the minimum distance dpj, and the center density J (see (3)),

1 dmin(AK))n 1 5(1\)
Rs = 1o (7 T
n 2 ) ) T 0 "2 5
ds 1 o(A)
=1 — 4+ -1 , 8
o 5+ log Tos ®)
If A is the densest lattice in »n dimensions, then

0(A) > 0(Ak), and hence Rs > log, (Z—g). Thus the side
information gain of 4" can be upper bounded as follows

2010g,, (j,—g) 2010g;, (j—g)
<
Ry - Ry

20logy (Z—g)

log, (Z—g)

This upper bound on the side information gain holds only
for the family of lattice index codes in which the underlying
lattice A has the highest density in its dimension, such as
when A is Z, Ay or Dj. This upper bound is independent of
the information-theoretic result of [15] which guarantees the
existence of codes that provide an SNR gain of ~ 6 dB for
each b/dim of side information at the receiver. The SNR gain
of ~ 6 dB/b/dim of [15] holds for capacity-approaching noisy
index codes at finite values of SNR in the asymptotic regime
where the code dimension goes to infinity and the probability
of error is arbitrarily small. On the other hand, I' measures
the squared distance gain at a finite code dimension, and
approximates the SNR gain due to receiver side information
in the high SNR regime.

When A is not the densest lattice in R”, for example when
A = 72, it is possible to have d(Ag) > J(A). In such cases,
from (8), Rs < log, (Z—g), and I' may exceed ~ 6 dB/b/dim.

&) = m;n

=201log;(2 ~ 6 dB/b/dim.

Note that I' is a relative gain measured with respect to the
performance of ¥ = A/A. with no side information. Any
amount of side information gain available over and above
~ 6 dB/b/dim is due to the lower packing efficiency of A
when compared to Ak, and hence due to the inefficiency of
% as a code in the point-to-point AWGN channel. We now give
an example of such a lattice index code with side information
gain more than ~ 6 dB/b/dim.

Example 5: Consider K =
generator matrices

G| = (g g) and G, = (2 ;), )

2 lattices Ay and A, with
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respectively, and the coarse lattice A. = 12Z2. The above
lattices have been carefully chosen so that the densities
of Ay and A, are greater than that of their sum lattice
A = A1 + A3. In order to prove that this choice of Aj, Aj
and A. indeed defines a valid lattice index code, we first show
that A; is a sub-lattice of A; and A, we then identify the
transmit lattice A and the codebook ¥, and then show that the
encoding map p is injective. Finally, we compute the minimum
distances of A1, Az and A, and the side information gain I'.
The following identities show that the basis vectors (12, O)T
and (0, 12)T of Ac = 1272 can be expressed as integer linear
combinations of the columns of G, and hence, A C Ay:

(5)=20) o () = 2(0) ++ ()

Similarly, the proof for A C A2 follows from the observation

(5) =2 ) 4 w0 () =2 )

In order to identify the lattice A = A1 + Ay, we first
note that A1, Ar» C 72, and hence, A C Z2. The following
expressions show that the basis vectors (1,0)7 and (0,1)7
of Z? are integer linear combinations of the columns of
G| and Ga:

1_22_0_3 0_23_4_2
0] “\3 4 2) 1) “\2 0 3)
We conclude that A D Zz, and therefore, A = 72. The
transmit codebook € = A/A. is Z?/12Z2. Thus, the encoding
map p has domain Aj/A. x Az/A. and range ¥. The
cardinality of the domain is
Vol(A¢) Vol(Ac) _ 144 144

. = 144,
Vol(A1) Vol(Ay) 12 12

and that of the range is

|A1/Acl-|A2/Acl =

_ Vol(Ao) 144

~ Vol(A) 1
Since the domain and range are of the same cardinality, p is
injective, and consequently, ¢ is a lattice index code. The
dimension of this code is n = 2, and the message rates are
R| = Ry = Llog, 12 b/dim.

To calculate the side information gain of this code we
require the values of dy and ds, S = {1}, {2}. From (6),
do = dmin(A) = dmin(Z*) = 1. From (7), ds = dmin(A2) for
S = {1}, and ds = dpin(A1) for S = {2}. We now show that
dmin(A1) = +/13. The proof for dmin(A2) = +/13 is similar.

From (9), we observe that every non-zero vector x| € Aj is
of the form (4a + 2b, 3b)T for some a, b € Z, both not equal
to zero. The squared Euclidean length of x; is

|6 = A/ Ac| = 144.

Ix1]1? = (4a + 2b)* + 9b°.

We now lower bound the value of ||x1||> based on the value
of b. If b = 0, || x1]|> = (4a)? > 16. If b is non-zero and even,
we have ||x1||?> = (4a+2b)>+9b* > 9b*> > 9.22 = 36. When
b is non-zero and odd, we have |2a + b| > 1, and hence,

e ? = (da+2b)°+9b” = 4Q2a+b)> +9b% = 4+9b% = 13.
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We conclude that ||x1||> > 13 for every non-zero x| € Aj.
On the other hand, the choice of @ = 0, b = 1 yields a vector
x1 with ||x1]|2 = 13. It follows that dimin(A1) = v/13.

The non-trivial subsets of {1,..., K} = {1,2} are S = {1}
and S = {2}. For both these choices of S, we have

d2

101og,, (%
Ologio (d&) _ 10log;p 131
Rg - 2

=20 loglo 2 x

log, 12

log 13
9810 ° 6.2 dB/b/dim.

logy 12

Since the normalized squared distance gain is the same for all
choices of S C {1, ..., K}, we conclude that % is a uniform
gain lattice index code with I" & 6.2 dB/b/dim. The reason for
I' to be more than ~ 6 dB/b/dim is that the lattices A; and
A> have a larger center density than A. For both k =1, 2,

dmin (Ak) " 1312
2 5 13
Vol(Ax) 12
while d(A) = 5(Z?) = 1. [ |

IV. CONSTRUCTION OF LATTICE INDEX CODES
USING COMMUTATIVE PIDs

In this section, we construct uniform gain index codes
using lattices over commutative PIDs Z, Z[i] and Z[w] with
I' ~ 6 dB/b/dim. This includes the lattice Z2, and the
hexagonal lattice A, with generator matrix

13
0o B)

which can be identified with Z[i] and Z[w], respectively.
In Section V we consider lattices over the Hurwitz integers
which form a non-commutative PID.

A. Review of Commutative PIDs and Complex Lattices

We assume that the reader is familiar with the notions of
ideals and principal ideal domains. We now briefly recall some
basic definitions and properties related to commutative PIDs
and complex lattices. We refer the reader to [24] and [28] for
further details.

Commutative PIDs: Let D be a commutative ring
with 1 # 0. An ideal I in D is an additive subgroup of D
with the property that ab € I for every a € I and b € D.
The ideal generated by an element a is the smallest ideal
containing a, and is given by aD = {ab|b € D}. An ideal /
is principal if it is generated by a single element of D, i.e.,
I = aD for some a € D. If the product of any two non-zero
elements of D is non-zero, D is said to be an integral domain.
If every ideal of an integral domain DD is principal, then D is
a principal ideal domain (PID). In the rest of this section we
will assume that D is a commutative PID.

For a,b € D we say that a is a divisor of b, i.e., a|b if
b = da for some d € D. The units of D are the divisors of 1,
i.e., they are the elements with a multiplicative inverse. Two
elements a, b € D are associates if a = ub (or equivalently,
b = u"la) for some unit u.
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The gcd of a and b is the generator of the smallest ideal
containing a and b, i.e., aD + bD = gcd(a, b)D. The ged
is unique up to multiplication by a unit. If d|a and d|b,
then d | ged(a, b). Two elements a and b are relatively prime
if ged(a, b) is a unit. A non-unit ¢ € D is prime if ¢ |ab
implies that either ¢ |a or ¢ | b. A prime can not be expressed
as a product of two non-units. Any two non-associate primes
are relatively prime. Every PID is a unique factorization
domain, i.e., every non-zero element of D can be factored
as a product of primes, uniquely up to multiplication by units.

Ifa= fl ‘.- qﬁ;’( is the factorization of @ as a product of non-

. . e e
associate primes ¢1, ..., ¢k, and d |a, thend = ugp,' --- ¢,
where u is aunitande,’( <e¢ fork=1,... K.

Complex Lattices: Let D be either Z[i] or Z[w]. A D-lattice
A is a discrete subgroup of a complex Euclidean space that is
closed under multiplication by elements m € D). Since every
D-lattice is isomorphic to a real lattice of twice its dimension,
we will denote its complex dimension by 7, where the even
integer n is the real dimension. Let

A= {5z|z € D%}

be a D-lattice with the full-rank generator matrix G e Ci*3,
Let ¥ : C2 — RR” be the isomorphism that maps the complex
vector (v1, ..., v%)T to the real vector

T
(Re(vl), e, Re(v%), Im(vy), ..., Im(v%))
The real lattice associated with A is
A=%(A) ={¥0)lv e A} CR".

The lattice A is called Gaussian if ID = Z[i], and Eisenstein
if D = Z[w]. The hexagonal lattice Aj, the root lattice Eg,
and the Coxeter-Todd lattice K> can be viewed as Eisenstein
lattices, while the checkerboard lattice Dy, the Gosset lat-
tice Eg, the laminated lattices AJ5™, A1¢, and the Leech lattice
A4 can be viewed as both Gaussian and Eisenstein lattices.
If D = ZJ[i], the real generator matrix G of A is related to the

complex generator matrix G as

(m@>—m@9
G = ~ ~ 1. (10)
Im(G) Re(G)
and if D = Z[w],

Re(G) %(Re(é)—l—«/glm(é))

G =

m@) } (m(@) - v3Re(D))

Since ¥ preserves addition, for any two complex

lattices Kl, A>, we have
P(A1+ Ag) = P(A) + (A

Also, A C Ay if and only if ¥ (A1) C W(A2).

We will use the symbols Vol(A) and din (/~\) to denote the
volume and the length of the shortest vector of the associated
real lattice A, i.e.,

Vol (A) £ Vol (¥(A)) and dmin (A) £ dmin (P (A)).
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For both Gaussian and Eisenstein lattices, scaling A by a
complex number m € C is equivalent to left-multiplying the
real generator matrix G by

Re(m)I
Mm) = (Im(m)]l

where T is the identity matrix of dimension 5 x 7. Observing
that M(m) is an orthogonal matrix with determinant |m|",
we have

Vol(mA) = |det M(m)| - | det G| = |m|"Vol(A), and (11)
dmin(MA) = |m|dmin(A). (12)

—Im(m)I
Re(m)I )’

B. Construction of Index Codes Using Commutative PIDs

Let D < C be a commutative PID. Consider K
non-associate primes ¢p,...,¢x € D, and their product
M = Hle ¢k. The Chinese remainder theorem [22, p. 159]
states that the direct product D/p1D x --- x D/pgD is
isomorphic to the quotient ring D/MD. The one-to-one cor-
respondence between them is obtained using the map

L wg) = wiM 4+ waMp + - - + wxg Mg mod MD,

where wr € D/¢D and M, = ¢—A’z Since wi My is
an element of M;ID/MD, we observe that encoding the
K source messages individually using the constellations
M|D/MD, ..., MgD/MD, and generating the transmit sym-
bol as their modulo-MD sum gives an injective encoding map.
Further, given the side information wg = ag, corresponding
to the index set S C {1,..., K}, the minimum distance dg
between the valid codewords can be readily obtained as the
magnitude of gcd(My, k € S°) (cf. Example 1). The codebook
D/MD can be thought of as a lattice index code built over the
one-dimensional D-lattice A = I. In this section, we apply
this encoding technique to arbitrary ID-lattices and show that
the resulting lattice index codes provide large side information
gains.

We first describe our construction with complex lattices,
i.e., D =Z[i] and Z[w], and prove that it provides a uniform
side information gain I' =~ 6 dB/b/dim. We then briefly
describe the case D = Z, the proof of which follows from
simple modifications of the proofs of Lemmas 2 and 3 below.

(w19~°

Construction of Index Codes Using Complex Lattices

Let D be Z[i] or Z[w], and ¢71, ..
non-associate primes in D. Let

., ¢k be any K distinct

K
M
M=[]¢ and Mi=—=[]¢ fork=1,..K.

k=1 P £k
Let A be any D-lattice of real dimension n, and A = ‘P(K) be
its real version. We construct our lattice index code by setting
Ac =Y (MA), and Ap =Y (MA), k=1,....,K. (13)

Since My | M, we have M AcC My 1~\, and hence, the coarse lat-
tice A¢ is a sub-lattice of each Ag, k =1,..., K. Using (11),
the message size of the k™ symbol is

_ Vol(MA) _ [M|"Vol(A)
T Vol(MxA)  |Mg|"Vol(A)

[Ak/Acl |k l”,
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TABLE I
ALL NON-ASSOCIATE GAUSSIAN PRIMES OF NORM UP TO 53

Norm Prime Rate
612 6 log; ||
2 1+14 0.5
5 1+24,1—2¢ 1.16
9 3 1.59
13 24 3,2 — 3¢ 1.85
17 1+44,1— 44 2.04
29 2+ 50,2 — 54 2.43
37 1+6¢,1—6¢ 2.60
41 4+ 5i,4 — 51 2.68
49 7 2.81
53 247,271 2.86

TABLE 11
ALL NON-ASSOCIATE EISENSTEIN PRIMES OF NORM UP TO 61

Norm Prime Rate
12 6 log; ||
3 l—w 0.79
4 2 1
7 1+ 3w,1+ 3w 1.40
13 14 4w,1+ 4w 1.85
19 2+ 5w, 2 4 5w 2.12
25 5 2.32
31 1+ 6w, 1+ 6w 2.48
37 34+ Tw,3+ 7w 2.60
43 147w,14 7w 2.71
61 44+ 9w, 4 + 9w 2.97

and its rate is

1 . .
Ry = - log, (I¢x|") = log, |¢p| b/dim.

Tables I and II list the first few non-associate Gaussian and
Eisenstein primes, respectively. These are unique up to unit
multiplication. In Table II, @ = —1 — w is the complex con-
jugate of @ = exp (Z%). The tables also show the norm |¢|>
of the prime ¢, and the corresponding message rate log, |¢|
in b/dim.

Example 6: The lattice A = D4 is a Gaussian lattice with

the complex generator matrix

~ (1 0
G:(1 l—i—i)'

Using (10), we obtain the 4 x 4 real generator matrix

1 00 0
1 1 0 —1
G=1o0 0 1 o
01 1 1

Let K =2, ¢1 = 1+4+i and ¢p = 1 + 2i. Then M =
-1+ 3i, M; =~1 + 2i and M> = 1 4+ i. The real generator
matrix of W(mA) is M(m) x G. The generator matrices
of Ai = Y(MiA), Ay = Y(MaA) and A = ¥(MA),
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thus obtained, are

1 0 -2 0 1 0 -1 0

1 -1 -2 3 1 0 -1 2
=12 o 1 o) “2T|1 0 1 o™

2 3 1 1 1 2 1 0

-1 0 3 0

-1 -4 3 2
=13 o 1 of

3 2 1 4
respectively. The message sizes are |[Aj/Ac¢] = 4,
|A2/Ac| = 25, and the rates are Ry =log, |1 +i| = % b/dim

and Ry =log, |1 +2i| = %logz 5 b/dim. ]
The following lemma will be useful in deriving the side
information gain of the proposed lattice index codes.
Lemma 1: For every index set S, we
ged(My, k € S€) = []yes ¢
Proof: Let d = gcd(Mg,k € S°. Since each
My is a product of a subset of the primes ¢i,..., ¢k,
d = ged(My,k € S° is of the form ¢]'---¢¥ with
er € {0,1}. If k € S°, we have d | My, and since ¢ is not a
factor of My, we obtain ¢ = 0. It follows that d | [],.¢ ¢e.
On the other hand, it is easy to verify that [[,.q ¢ | My
for every k € S° implying that [[,.q¢e|d. Hence,
d= HZES b n
We now show, in Lemma 2, that the lattice index code &
is A/A. and the encoding map p is injective. Part (ii) of
Lemma 2 will later allow us to show that the minimum
distance ds with side information index set S is exponential
in Rg.
Lemma 2: With the lattices A\q, ..
as (13),
(i) the encoding map p in Definition 1 generates a lattice
index code with transmit codebook € = A/ A, and
(i) for any S, we have Y ycg0 Ak =¥ ([Tres Pe ).
Proof: See Appendix I-A. ]
Lemma 3: For every choice of S, Rs = log, (Z—(S)), and
hence the side information gain is uniform.
Proof: Using (7), (12) and Part (ii) of Lemma 2, we have

ds = d (,{EZSC Ak) = dmin (‘P (gqﬁﬁx))

= [ 1¢¢! do.

leS

have

., Ax and A; defined

(14)

The side information rate corresponding to S is
Rs=)"Ri =Y log,|$| = log, (H |¢k|). (15)
keS keS keS
From (14) and (15), we see that Rg = log, (2’1—5) for every
2
choice of §, and 10log;, (%) /Rs is independent of S. W
0

Using the relation Rs = log, (Z_(S)) with (1), we obtain
I'(¥) ~ 6 dB/b/dim. Thus, when A is the densest lattice in its
dimension, the proposed construction achieves the optimal side
information gain over all lattice index codes constructed based
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on A. Note that this optimality with respect to I" holds only
among the family of lattice index codes of Definition 1, and
when A is densest in its dimension. While Example 5 gives
a lattice index code with I' > 6 dB/b/dim using a lattice A
that does not have highest density, Example 2 shows an index
code with I' > 6 dB/b/dim using a non-lattice constellation.

Example 7 (A 2-Message Constellation Using 25-QAM):
Consider the non-associate primes ¢1 = 1+2i and ¢pp = 1 -2
in D = Z[i]. Setting

A = ZIi],

we obtain a constellation ¢ carved from A = ¥ (Z[i]) = Z2.
We have M = ¢p1¢pp =5, M1 =1 —2i and M> = 1+ 2i. The
coarse lattice W(5Z[i]) = 572, and the lattice index code

€ =Y (ZIi) /¥ (5Zli]) = 7% )57

is the 25-QAM constellation. The generator matrices of the
lattices A; = ¥Y(MZ[i]) and Ay = ¥ (M,Z[i]) are

12 1 -2
()= 7)

respectively. The constellations Aj/A. and Az/A. consist
of 5 points each (see Fig. 7),

AI/AC = {O, (15 _2)T5 (25 1)T’ (_2’ _1)T5 (_1’ Z)T}’
As/Ac = {0,(1,2)T, 2, )T, (=2, )T, (=1, -2)T}.

The minimum squared distance of A is 1, while that of
A1 and Ap is 5. When the side information index set is
S = {1} or {2}, the squared distance gain is 10log;y,5 dB,
and the side information rate Rg = 4 log, 5 b/dim, yielding
a side information gain of I' ~ 6 dB/b/dim. Fig. 8 shows
the performance of the three different receivers with § = @
(no side information), S = {1}, and § = {2}, respectively.
The performance for S = {1} and S = {2} were obtained by
simulations, while that for § = & was obtained through the
closed form expression for the error rate of 25-QAM [29].
From the simulation result, we observe that at the error rate
of 1073, the knowledge of either of the two transmitted mes-
sages provides an SNR gain of 6.95 dB. When normalized by
the side information rate % log, 5 b/dim, we have a normalized
SNR gain of 5.98 dB/b/dim, which is a good match with
I' ~ 6 dB/b/dim. [ |

Construction With D = Z

Let pi1,...,pxk € 7Z be distinct rational primes,
M = p;--- px be their product and M; = %,k: 1,..., K.
Let A C R" be any n-dimensional lattice. We let

Ac = MA and A = M A.

The rate of the k™ message is

O A CICZ A W D
=—logy|l——=)=-1o =lo .
=82 \Nol Mgy ) T on B2 Pk T OB P

Similar to Lemmas 2 and 3, we can show that 4 = A/A.,
p is injective, Rs = log, (j—g), and hence, I' ~ 6 dB/b/dim.
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Fig. 7. The constellation of Example 7. The dots constitute the code € = 25-QAM, the squares and circles correspond to A1/Ac and Ay /A, respectively.

of -
I
de

P
10°

Probability of error

10 No side inf.
] —=x— S= {1}
-5 ]
10_6 1 1 1

14 16 18

SNR in dB

Fig. 8. Performance of the code of Example 7 for three different receivers.
Example 8: The code of Example 1 can be obtained by
using D = Z, A = Z, and the tuple of prime numbers
(¢1,¢29 ¢3) = (293’ 5) u
A construction of lattice codes using tuples of prime integers
in Z[i] and Z[w] is reported in [30] for low complexity

multilevel encoding and multistage decoding in compute-and-
forward applications.

When A is a Gaussian or Eisenstein lattice, the
message rates available from the proposed lattice index
codes are log,|¢| b/dim, where ¢ € D is prime
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(see Tables I and II). When D = Z, the codes allow one
message of rate log, p b/dim for every rational prime p € Z.
In Section V we construct a family of lattice index codes from
a class of quaternionic lattices, which includes DZ‘ and Eg, that
allow encoding two messages, of rate % log, p b/dim each, for
every odd rational prime p € Z. The codes of Section V thus
provide further choices in terms of message rates at the source
and side information rates at the receivers.

V. CONSTRUCTION OF LATTICE INDEX
CODES USING HURWITZ INTEGERS

We construct lattice index codes using quaternionic lattices
by exploiting the fact that the Hurwitz integral quaternions H
form a non-commutative PID. Since the ideals in H are not
two-sided in general, the Chinese remainder theorem does
not apply to H. However, we identify a set of ideals that
lead to uniform gain lattice index codes with side information
gain ~ 6 dB/b/dim.

We first consider the one dimensional H-lattice Dj in
Section V-B, and then extend the results to a class of higher
dimensional H-lattices in Section V-C. We now briefly review
some properties of the Hurwitz integers H. We refer the reader
to [31] for more details.

A. Review of Hurwitz Integers

The set of Hurwitz integers H is the subring of quaternions
consisting of those elements whose coordinates are either all
in Z or all in Z + % ie.,

H = {a+bi+cj+dk|a,b,cdecl}

1
U{a+bi+cj+dk | a,b,c,deZ—f-E].

Addition in H is component-wise, and multiplication is defined
by the relations i> = j2 = —1 and ij = —ji = k. This
makes H non-commutative. For A = a + bi + ¢j + dk € H,
the conjugate of A is A = a — bi — ¢j — dk, and the norm is

NA)=AA=AA=da*+ b’ +* +d* e L.

The real part of A is Re(A) = a, and the trace is A+ A = 2a.
The four-square theorem of Lagrange states that every positive
integer is a sum of four integer-squares, i.e., every positive
integer is the norm of some Hurwitz integer. The units of H
are the elements with norm 1. There are precisely 24 units
in H, eight of them =£1, £i, £, &k have integer coordinates,
and the remaining 16 units :l:% + % + % + % have half-integer
coordinates.

The ring H is a Euclidean domain, and hence it is a non-
commutative PID. Every left ideal / of H is generated by a
single element, and is of the form / = HA for some A € H.
Similarly every right ideal is of the form / = AH. In the
rest of this section we will use only the left ideals in H to
construct our constellations. Similar results can be obtained
from right ideals. The generator of a (left) ideal is unique up
to left multiplication by a unit of H.
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When viewed as a 4-dimensional lattice, in the basis
{1,i, j, k}, H yields D}, and its generator matrix is

1
100 0
1
11 0 0
2
=11 01 o
2
7 00 1

For A = a + bi + ¢j + dk, let vec(A) = (a, b, c,d)T be the
vector of the coordinates of A in the basis {1, i, j, k}. For any
B € H, we have vec(BA) = M(A)vec(B), where

a —-b —c —d
b d -

M(4) = c —ad a bc (16)
d c b a

Note that M(A) is an orthogonal matrix, and its determinant
is (a> 4+ b? +c? +d?)* = N(A)%. The ideal HA generated by
A is a sub-lattice of D}, and its generator matrix is M(A)G,
where G is the generator matrix of D}, and M (A) corresponds
to left multiplication of a quaternion by A. Thus, the volume
of the fundamental region of the lattice HA is

2
Vol (HA) = |det M(A)| |det G| = N(?) .

A7)

The norm operation is multiplicative on H, i.e., N(AB) =
N(A)N(B) for every A,B € H. The units of H are the
elements with the shortest norm, and N(A) > 1 for A € H.
Let I = HD be the ideal generated by the element D, and
B € I. Then, B = AD for some A € H, and its norm satisfies

N(B) = N(AD) = N(A)N(D) > N(D).

Hence, the generator of I is a shortest vector in the lattice 7,
and the minimum squared distance between any two points in
I = HD equals the norm N(D) of the generator.

For A,B € H, we say that A|B if B € HA,
i.e., if B belongs to the ideal generated by A. If A|B, we
have B = DA for some D € H and hence N(A)|N(B).
The gcd of two elements A and B is the generator of the
ideal generated by A and B, i.e., HA + HB = H gcd(A, B).
If D = gcd(A, B), we have N(D)| N(A) and N(D)| N(B)
in Z, hence N(D)| gcd(N(A), N(B)) in Z.

B. Construction of Lattice Index Codes Based on D}

Consider L distinct odd rational primes pi,..., pr € Z.
From the four-square theorem [31], there exist Pi,...,
P1, € H such that p; = N(P;). In order to prove the injectivity
of p, we further require that the real parts of the P;’s be
powers of 2 (this technical assumption is used in the proof of
Lemma 4). Using Legendre’s three-square theorem [32], we
prove in Appendix II that for every odd rational prime p there
exists a Hurwitz integer P such that p = N(P) and Re(P) is
a power of 2. In particular, the proof only requires that p be
a positive odd rational integer (not necessarily a prime), and
shows that P can be chosen such that Re(P) € {1, 2}.

Define K = 2L elements My, ..., Mg, as

My = P H pe, and Miyr = My = Py H pe
(#k (#k
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TABLE III

EXAMPLES OF HURWITZ INTEGERS WITH ODD-PRIME
NORM AND REAL PART A POWER OF 2

Norm Hurwitz integer Rate
N(P)=p P Llogy p
3 14147 0.79
5 1+2¢ 1.16
7 144i435+2k 1.40
11 1447435 1.73
13 2+ 3 1.85
17 1+4d 2.04
19 1431435 2.12
23 1+2i+35+ 3k 2.26
29 2451 2.43
31 1414+ 25+ 5k 2.48

fork=1,...,L. Let M = pj--- pr be the generator of the
ideal I. = HIM. Note that for each k = 1, ..., L, we have
My | M and My | M since

M =pi---pL :PkHPZZFkPkHPZZPkaHP&
C#k £k Ok
ie., M = ?kMk = PiMyyr.

Hence, I. = HM is a sub-ideal of HM;, k = 1,...,K.
We use A¢ = I, and Ay = HMy, k = 1,...,K, in
Definition 1 to construct our lattice index code. Using (17),

Vol (HM N(M)? 2 k<L,
[HM, /HM| = ( ) _ )2: P]E
Vol (HMy) ~— N(My) p} ., k>L.
(18)

Since H is a 4-dimensional lattice, the rate of the k%
message is

<, loga [HMy /HM| Tlogy pr, k<L,
k= =
4 %logz Pk—L, k> L.
The side information rate for S C {1,..., K} is
1
Ry = Z Ry = 3 log, (H |H My /HM|) b/dim.
keS keS

Table III provides one instance (among many possible) of
Hurwitz integer P with N(P) = p and Re(P) = 2™ for
each of the first ten odd primes p. Table III also lists the
message rate % log, p b/dim available from using each Hurwitz
integer P.

Example 9: Consider L = 2 and the odd primes p; = 3
and pp =5. With Py =1+4i+ j and P, = 1 4 2i, we have
pr = N(Py) and Re(Py) = 1 = 2°. We have K = 2L = 4
information symbols with constellations HM; /HM, where
M = p1pr =15,

My = Pip=5(14+i+)),
M3y =M =5(1—i-})),

My = Pypy = 3(1 + 2i)
and My = M, = 3(1 — 2i).
The cardinalities of the four constellations are 9, 25, 9 and 25,

respectively, and their rates are % log, 3, % log, 5, % log, 3, and
1log, 5 b/dim. n
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In the rest of this sub-section we show that the choice

Ac=I1.=HM and A, =HM, k=1,...,K,

produces a uniform gain lattice index code with side infor-

mation gain ~ 6 dB/b/dim. We show that the transmit

codebook ¥ equals H/I. (Lemma 4), the encoding map p

is injective (Lemma 5), and the minimum distance dg is

exponential in the side information rate Rg (Lemma 6).
Lemma 4: The transmit codebook € equals H/ I..

Proof: See Appendix I-B. [ ]
Lemma 5: The map p : HM /1. x --- x HMg /I, — € is
injective.
Proof: It is enough to show that |HM;/I. x --- X
HMk /1| = |H/I;|. From (18),
L 2
[HM; /I % --- x HMg /1| = (H p,f) =NWM):. (19
k=1
Also,
Vol (HM)
H/Ie| = <= = N(M).

Vol (H)

|
The minimum squared distance d§ corresponding to S
satisfies d§ = drznin (Zke 5¢ ]HIMk). Denoting the generator of
the ideal > ;e HM) by Dg, we have d? = N(Dyg).
Lemma 6: For every choice of S, we have Rs = log, ds,
and hence the side information gain is uniform.
Proof: Consider the restriction p|gc of the encoding
map p, in (5), to the subset of messages with indices in S,
ie.,

plse (xk, k € $°) = Z xx mod .
keS¢

The image of plse is D cgc HMy/I. = HDg/I., where Dg
is the generator of the ideal >, _¢c HMj. Since p is injective
(Lemma 5), so is its restriction p|gc. Hence, the domain and
the image of p|sc have the same cardinality, i.e.,

N(M)?
N(Ds)?

[] 1HMy /1| = HDs/ 1| =
keS¢

Using (19) with the above equation, we get

N(Ds)* = [[ M/ 1| = [[2*R = 2%, (20)
keS keS
Substituting N(Dg) = d§ we obtain the desired result. [ ]

Using Lemma 6 and dy = dpin(H) = 1 in (1) we see that
the side information gain of the proposed constellation equals
the upper bound ~ 6 dB/b/dim, and it satisfies the uniform
gain condition (2).

C. Construction of Index Codes Using Quaternionic Lattices

We first recall the definition of quaternionic lattices, and
then show that the extension of the technique used in
Section V-B to those quaternionic lattices which are two-sided
H-modules produces uniform gain lattice index codes.



NATARAJAN et al.: LATTICE INDEX CODING

Quaternionic Lattices: We denote the quaternion algebra by
Q={a+bi+cj+dkla,b,c,d € R}.

A quaternionic lattice A of dimension ¢ over Q is a discrete
left-H sub-module of Q' [24],i.e., AA C A for every A € H,
where

AR ={(AVi,...,AV)T|(V1,..., V)T € A}.

The real lattice A associated with A is obtained by the
map ¥ : Q@ — R¥ where ¥ ((Vq,...,V,)T) is the real
vector consisting of the {1, i, j, k}-coordinates of each of the
¢t quaternions Vi, .. , Vi. Hence, the real dimension of A is
n = 4t. Note that T(Al) C kI’(Az) if and only if A C As,
and ‘I"(Al + Az) = ‘I"(Al) + ‘P(Az).

Example 10: The Gosset lattice Eg is the real version of
a quaternionic lattice A of dimension ¢ = 2 over H [24].
Its generator matrix over H is

1+i 1
0 1)

The lattice A C 02 consists of all left H-linear combinations
of the two columns of this generator matrix, i.e.,

A= {(A(l +Bl)+B)‘A,BeH]. @1
|
Some of the well known high-density lattices, such as

D}, D4, Eg, A and Apq can be viewed as quater-
nionic lattices [24]. The lattice index codes of Section V-B
were built using the one-dimensional quaternionic lattice Dj.
A direct extension of this construction to arbitrary higher
dimensional quaternionic lattices, as conducted in Section IV
for complex lattices, does not appear to hold because of the
non-commutativity of H. The problem arises in determining
if one lattice is a subset of another. Given a H-lattice A, we
construct the component lattices of our index code by right-
multiplying A with appropriate Hurwitz integers. Consider

AM ={(\i\M,....,ViM)T|(V1,..., V)T € A},

where M € H. Since M multiplies on the right, AM inherits
the property of being a left-H module from A, and hence, it is
a quaternionic lattice. In our construction, for any My, M € H
with My | M, we require that AM C /~\Mk. If M = AM;,
this condition translates to KAMk C KMk, which can be
guaranteed if AA C K ie., if A is a right-H module in
addition to being a left-H module. In the rest of this section
we assume that A is a two-sided H module. As an example,
we now show that Eg is a two-sided H-module, and hence
can be used as the base lattice A in our construction.
Lemma 7: The Gosset lattice Eg is a right-H module.

Proof: Let K, as defined in (21), be the quaternionic

version of Eg. Consider

Avight = {((1 +i)DC + D) ’C, De H].

It is clear that Ar,gm is a right-H module. We will complete
the proof by showing that A = Ar,gm In order to prove
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the equality of the two sets, we need to show that for every
A, B € H there exist C, D € H such that

(Al+i)+B,B)T=((1+i)C+ D,D)T,

and vice versa. This is valid if and only if B = D and
A(l+i) = 1 +i)C. If A = a+ bi + cj + dk, a direct
computation shows that C = a + bi + dj — ck satisfies

A(l1+1i)=(1+41i)C. This completes the proof. ]
Right multiplying each component of
V=(1,...,V;) € A by M is equivalent to left multiplying

the real vector (V) by the 47 x 4t matrix

[c]IM(M)
M(M)
, (22)

M(M)

which consists of 7 copies of the matrix M(M), and where
the function M(-) is given in (16). The generator matrix of
W(AM) is the product of (22) and the generator matrix of
W(A). Since M (M) is orthogonal with determinant N (M)?2,
the matrix (22) is orthogonal with determinant N(M)>.
Hence, the volume and the squared minimum distance of the
lattice ¥ (AM) are

Vol(AM) = Vol (¥(AM)) = N(M)z’Vol (¥(A)),
A2 (AM) = d2, (P(AM)) = N(M)d2,, (P ().

Construction on Two-Sided H-Modules: The following
lemma enablei us to extend the construction of Section V-B
to all lattices A that are two-sided H-modules.

Lemma 8: If A,B € H are such that A|B, then
AA D AB. B
Proof: Let B = DA and A € AB. Then 4 = VB for

some V € A, and hence, . = VB = VDA. Since A is a
right-Hl module, VD € A, and hence 1 € AA. [

Let M{,...,Mg and M be as defined in Section V-B.
We set

Ak =AMy, kel,....K, and Ac = AM.

We construct our quaternionic lattice index code by using

Ac="Y (Ac) =¥ (AM) and A = ¥ (Ax) =¥ (AMy).

Since My | M, using Lemma 8, we have KC C Kk, and hence
Ac C Ag, forall k = 1,..., K. The cardinality |Ax/Ac| of
the k™M message is

Vol(Ao)  Vol(AM) N |p¥, k<L,
Vol(Ar) ~ Vol(AMy) ~ NM)* | p2,, k>L,
and the rate is
1
1 5 log, pk, k<L,
Re = -logy [A/Acl = 1 ]
t Elogzpk,L, k> L.

Note that the rates are identical to those achieved using the
construction on Dj.

We now show that this lattice index code provides uniform
side information gain of I' ~ 6 dB/b/dim. The proof is similar
to the proofs of Lemmas 2 and 3 in Section IV.
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Fig. 9. A three receiver Gaussian broadcast channel with private message requests and side information at RXj.

Lemma 9: With A1, ..., Ak and A. defined as above,
(i) the transmit codebook € = A/A., and the encoding
map p is injective; and
(ii) for every side information index set S, Rs = log, (Z—(S)).
Proof: See Appendix I-C. [ ]
From Lemma 9, we conclude that the side information gain
of the quaternionic lattice index code A/A. is ~ 6 dB/b/dim.

VI. CODING FOR GENERAL MESSAGE
DEMANDS: AN EXAMPLE

Lattice index codes with large side information gains are
suitable when all the messages are demanded by every
receiver. For these codes, the encoding operation is oblivious
to both the number of receivers and the side information
configuration at each receiver (see Definition 1). When the
message demands are more general (such as private message
requests), the number of receivers, and the SNR and the
side information available at each receiver may need to be
considered during code design [13], [14].

Capacity-achieving random coding schemes have been pro-
posed for a class of 3-receiver private message Gaussian broad-
cast channels in [13] and [14]. The coding schemes of [14]
make use of channel codes that are efficient in converting
receiver side information into additional coding gains, similar
to lattice index codes, as component subcodes in superposition
coding. In this section, we consider an instance of a broadcast
channel where each message is demanded at a unique receiver.
Inspired by the ideas in [14], we show that lattice index codes
with large side information gains can be useful in constructing
coding schemes that are matched to this broadcast channel.

We will now briefly review some lattice parameters
from [24] that are relevant to the analysis of error performance.
The kissing number 7(A) of a lattice A is the number of
shortest non-zero vectors in A, i.e., the number of lattice points
with Euclidean length equal to dpyin(A). Every point in A has
exactly 7(A) nearest neighbours in the lattice. The covering

radius of a lattice A is given by

Teov (A) = sup |lx|], (23)

xeVa
where V, is the fundamental Voronoi region of A, and equals
the radius of the smallest sphere centered around origin that
contains the fundamental Voronoi region as a subset.

A. Channel Model and Encoding

We consider a broadcast channel with three receivers Rx;,
Jj = 1,2,3, each of which experiences additive noise with
the corresponding variance N, see Fig. 9. We assume that
N1 < Ny < Ns, ie., the first receiver has the strongest
channel. Also assume that there are K = 3 messages at the
transmitter, wy € Wi, k = 1,2,3. Let D;,§; C {1,2,3}
denote the index sets of the messages demanded by, and the
side information available at Rx;. We consider the private
message broadcast scenario Dy = {1}, D, = {2}, D3 = {3},
with side information index sets S| = @, S, = {1}, S3 = @.

The objective is to efficiently encode the messages such
that the three receivers Rxj, RX;, RX3 can tolerate increas-
ingly more noise, i.e., the messages wi, w>, w3 experience
increasing coding gains, in that order. Using a lattice index
code, we will exploit the side information S> to enhance the
coding gain of Rx, over that of Rx;. Since S3 = @, we will
combine this lattice index code with superposition coding to
enhance the coding gain at Rx3.

The transmitter uses nested lattices A, Ay D Agz) and
A3 D A((;3), to individually map the information symbols
w1, w2, w3 to the points x1, x2, x3 in the n-dimensional lattice
constellations A1/ A((;lz) , Ny/ A((;lz) and A3 /A£3), respectively.
Finally, the transmit vector is generated as

x = (x1 + x2) mod Aglz) + x3 = x12 + x3,

where x12 = (x1 4+ x2) mod Aglz). We assume that the map
(x1,x2) = (x1 +x2) mod Aclz) generates a lattice index code
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61n = A12/A§12), where Ajp = A1 + Aj denotes the sum
lattice. Denoting A3/ A?) by %3, we observe that the transmit
codebook ¢ = %12 + 63 is a superposition code, where the
codewords of %], form the ‘cloud particles’ and those of %3
are the ‘cloud centers’ [33].

B. Decoding and Error Performance

The weakest receiver RX3 observes y3 = x12 + x3 + 23,
where z3 is a random Gaussian vector with variance N3 per
dimension. The optimal decoder chooses X3 € A3/ A£3) that
maximizes the likelihood of observing y3. Since this receiver
is complex to analyze, we consider the sub-optimal decoder
that treats the ‘interference’ xi2 as noise, and decodes y3 to
the nearest point in A3/ A?) . We now derive an upper bound
on the pairwise error probability of this receiver considering
two competing codewords x4, xp € A3/ A((;S). Assuming that
w3 was encoded as x4 € Aj, the decoder at Rx3 chooses
xp € Az over x4 if ||y — xall > ||y — xg|, ie., if

lx12 + x4 +23 — xall > llx12 +x4 +23 — x|,

where x1p € %2 is the vector that jointly encodes wq, w;.
Squaring both sides of the inequality and using usual simpli-
fications, we arrive at

221 (xp — xa) > lxa — x5 + x12l* = [lx12]1*.

To upper bound the error probability, we obtain a lower bound
on the value of the right-hand-side term above. Utilizing the
Cauchy-Schwarz inequality, we obtain
xa —xp + x> = xi2ll?

= llxa = x5 7 + llxi2ll® + 2x 5 (x4 — x5) — 121

= |lxa — xpl* + 2x], (x4 — xp)

> flxa — xgll* —2|x(xa — x5)|

= llxa = xpl® = 2lxi2lllxa — x5l

= llxa —xgll (lxa — xgll — 2[lx12])-
Observe that xj» € A12/A£12), and hence, x| € VAQZ)'

From the definition of the covering radius (23), we have
Ixi2]l < reov(A8?). Since x4, xp € Az, we have |lxa—xp] >
dmin (A3). This yields the following lower bound

lxa — xp + x1201> = lx12ll?
> fxa = x| (dnin(A3) = 2rcov (A{?)).
Hence, Rxs favours xp only if z3 is such that

2:T(xp — x4) > |lxa — x5] (dmin(Aa) — reov (A£‘2>)).

Normalizing both sides by 24/N3|lx4 — xp||, we immediately
obtain the following upper bound on pairwise error probability,

dmin (A3) — 2rcoy (Aélz))
2J/N; ’

where Q(-) is the Gaussian tail function and N3 is the variance
of the vector z3 along each dimension.

An approximate bound on the average error probability can
be obtained by considering all the competing codewords which

PEP()CA — xg) <Q
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are at the shortest Euclidean distance from the transmitted
codeword [24], i.e., all the nearest neighbours in the coding
lattice. Using union bound, we arrive at the following approx-
imate bound [24] for error rate at Rxs

Pe(Rx3) < 7 (A3) PEP(x4 — xp)
dmin (A3) — 2reov (Ac(:lz))
24/ N3

To analyze the performance at Rx; and RxX;, we again
consider sub-optimal decoders for which upper bounds on
error probabilities can be easily obtained. The decoders at
Rx; and Rx; experience a higher SNR than Rx3. Both these
receivers first decode w3 using the same procedure as RX3,
and subtract its contribution in the received vector. Assuming
that the estimated codeword x3 is correct, the received vector
at Rx;, j = 1,2, after cancelling the interference x3 is

IA

7 (A3) Q (24)

Vi =xi242j = (1 +x2) mod Al 2,

where z; is a Gaussian noise vector with variance N;
per dimension. Since Rx; has no side information, it
jointly decodes w; and w», i.e., it chooses the codeword
X12 € A]z/l\glz) that is closest to y{. Using conventional
union bounding arguments, the overall error probability at this
receiver, considering both the steps of the decoding procedure,
can be upper bounded as

dmin (/\12))
2/ Ny
dmin (A3) — 2rcov (A£12))

24/ Nj

On the other hand, Rx; has prior knowledge of the exact
value a; of x; and its decoder can exploit the fact that
A12/A£12) is a lattice index code. The effective codebook
seen by this receiver after cancelling the interference x3 and
expurgating all codewords corresponding to x; # a is a lattice
code carved from a translate of A,. Hence, the error rate at
this receiver satisfies

P.(Rx2) < 7(A2) Q (

P.(Rx1) < 7 (A12) Q(

+17(A3) 0

(25)

dmin (AZ))
24/ N>
dmin (A3) — 2rcov (A£12))

24/ No

At high values of SNR, the arguments of the Q-function
in (24), (25) and (26) dictate the error performance at the
three receivers. Since RX3 experiences the most noise, we
require dmin(A3) — 2rCOV(A((;12)) to be larger than dpyin(A2)
and dmin(A12). In this case, the high SNR error rates at the
three receivers Rxp, RXa, RX3 are determined by dpmin(A12),
dmin(A2) and dpin (A3) —2rcov (A((;lz)), respectively. Hence, we
arrive at the following guidelines for designing a good channel
code:

+7(A3) Q0 (26)

(i) A12/A£12) must be a good lattice index code in order
to achieve a good error performance at Rx; and Rx;.
A large value of F(Alz/Aﬁlz)) will be efficient in
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converting the side information into additional coding
gains, which will be useful in combating the higher noise
power at Rxj.

(ii) The covering radius of Aém must be small, so as to

reduce the interference from xq, at RXs.
(iii) And finally, dmin (A3) must be large in order to maximize
the coding gain at Rx3.

Example 11: We will consider a coding scheme for the
3-user private message broadcast channel that utilizes the
25-QAM constellation of Example 7 as the lattice index code
A12/A£12). This constellation has dimension n = 2 and
encodes two messages with 5-ary alphabets. From Example 7,
we have dmin(A12) = 1 and dmin(A2) = /5. To encode

the third message, we will use A£3) = 2572, and the lattice

generated by
10 -5
5 10

as Asz. It is straightforward to show that rCOV(Aﬁm) =3

ﬁ»
dmin(A3) = 5«/3, and that all three messages are encoded at
the same rate R = Ry = R3 = 4 log, 5 b/dim. At high SNR,

the error performance at Rx; is better than Rx; by

101log in(A2) =6.9 dB
O\ 22, (A1) ’

and the performance at Rx3 is better than RX; by
2
(dmin (A3) — 2rcov (A£12)))
d2in(A12)

101og;, =12.2 dB.

Hence, this constellation allows Rx, and Rx3 to tolerate
6.9 dB and 12.2 dB of additional noise compared to RX,
respectively. While the additional gain at Rx3 is due to
superposition coding, the performance improvement at RX;
is due to the side information gain of the component lattice
index code. ]

VII. CONCLUSION AND DISCUSSION

We have proposed lattice index codes for the Gaussian
broadcast channel where every receiver demands all the mes-
sages from the transmitter. We have introduced the notion of
side information gain as a code design metric, and constructed
lattice index codes from lattices A over the PIDs Z, Z[i], Z[w]
and H. If A has the highest lattice density in its dimension,
the proposed codes achieve the maximum side information
gain among all lattice index codes constructed from A.
An interesting property of these lattice index codes is that
the side information gain is uniform.

The key ingredients that we used in the construction of
our lattice index codes are the Chinese remainder theorem,
the properties of principal ideals for the base PIDs, and the
mapping of ideals of the PID modules to lattice constellations.
In particular, the specific choices of the PIDs enable us to
associate the norms of principal ideals with the minimum
Euclidean distance of the corresponding component lattices,
while the Chinese remainder theorem guarantees the unique
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decodability property for any amount of side information at
the receivers.

It is possible to construct lattice index codes using the
8-dimensional non-commutative non-associative PID of
Octavian integers Q. Since O is geometrically equivalent to
the Gosset lattice Eg, the resulting lattice index codes use
the octonion version of Eg as the base lattice A. However, the
only ideals in O are the trivial ones, viz. the ideals mQ, where
m € Z [31]. Hence the extension of our construction from the
Hurwitz integers H to the Octavian integers O coincides with
the codes constructed in Section IV with A = Eg and D = Z.

The lattice index codes constructed here can be used
as modulation schemes together with strong outer codes.
Consider K information streams, encoded independently using
K outer codes over the alphabets W, ..., Wk, respectively.
The coded information streams are multiplexed using the
lattice index code % and transmitted. If the minimum Ham-
ming distance of the outer codes is dy, then the minimum
squared Euclidean distance at a receiver corresponding to S
is at least dy X dé. While the outer code improves error
resilience, the inner lattice index code collects the gains from
side information. This approach converts the index coding
problem into coding for a multiple-access channel where the
K information streams are viewed as K independent transmit-
ters. Since coding for multiple-access channels is well studied
in the literature, this knowledge may be leveraged to construct
good noisy index codes of manageable encoding and decoding
complexity, such as by using iterative multiuser demodula-
tors/decoders. In [21] we have shown that this concatenated
architecture can perform close to the capacity of the Gaussian
broadcast channel with receiver side information.

APPENDIX I
PROOFS OF LEMMAS

A. Proof of Lemma 2

In order to prove Part (i), we need to show that p is injective
and A1+ -+ Ag = A.

From Lemma 1, ged(Mi,k € S°) = [,cs e for every
choice of S. Hence, there exists a tuple (by,k € S¢) of
elements in I such that > kese biMi = [],cs ¢e. 1t follows
that, for every 1 € A, we have

H¢M = Z b My,

tesS keS¢

hence [[,c¢ ¢5K C D kese MiA. Using this result along with
the additive property of ¥, we obtain

\P(H@T\) C T(Z Mkfx) = > ¥ (MA)

leS keS¢ keS¢

= > Ak

keS¢

Considering cosets modulo A, the above relation implies

\P(H@J\)/AC C > Ar/Ac.

feS keS¢

27)
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Let p|sc be the restriction of the encoding map (5) to the
message symbols with indices in S°, i.e.,

Z xr mod Ac.

keS¢

plse (xk, k € 8%) =

Note that >, ¢c Ax/Ac is the image of the map p|ge.
From (27), we observe that ¥ (ers gb[/\) /A is a subset
of this image. The cardinality

‘I’(H@K)/Ac _IM["Vol(A)
(eSS

[ Tses pel"Vol(A)

[T g

keS¢

of this subset of the image of p|sc equals the cardinality

[T 1ac/Acl = [T 1l

keS¢ keS¢
of the domain of pl|se. Hence, we conclude that p|ge
is an injective map, and the subset ¥ ([J,cg@eA)/Ac
equals the entire image >, gc Ax/Ac. This implies that

¥ ([res gb[/\) > kese Ak, proving Part (ii) of this lemma.
Choosing S = &, we observe that p|sc = p is injective,

and Zle A=Y (K) = A. Hence, the transmit codebook
is € = 35| Ak/Ac = A/Ac. This proves Part (i). [

B. Proof of Lemma 4
It is enough to show that A = H, i.e., Zle HM, = H,
or equivalently,

ged(My, ..., Mg) =1.

Let D = ged(My, ...,
k=1,...,L. Then,

Mg) and Dy = ged(My, Myyp) for

D = ged(My, My, My, My p, ..., ML, Mar)

= ged (ged(My, Mi4L), - .., ged(ML, M)
=gced(Dy,...,Dp). (28)
We will complete the proof by deriving N(Dy), ..., N(Dpr),

and then showing that D is a unit in H.
For each k =1,..., L, we have

Dy = ged(Mg, My+1) = ged(My, My + ML)

=ged ( P[] pe- P[] pe+ Pi [ ] pe

U#k Uk U#k
=ged | P[] pe. 2" [ pe |
Lk UEk

where the last equality follows from the assumption that
Re(Py) = 2™ for some m > 0. Since

N(Dy) | ged(N(My), N(My + Miy1)),

we obtain N(Dy)| ged (pk [Tk p2, 4t P p?). Since

Pk 1s an odd prime, we have

NDY | [] Pi-
Lk

(29)
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On the other hand, H#k pe is a divisor of both My and My,
and hence is a divisor of Dy. Hence,

[1re| INDo, ie. ] rFINWDO.
0k 0k

From (29) and (30), N(Dx) = [T, p7-
From (28), N(D)| gcd(N(Dy),...,N(Dr)) in Z. Since

(30)

p1, - .., pL are pairwise relatively prime in Z,
ged(N(D1), ..., N(DL) =ged | [T p7..... [] pE | =1
(#1 (#£L
Hence N(D) = 1, and D is a unit in H. Up to unit
multiplication in H, we have
D = ged(My, ..., Mg) =1. (31
|
C. Proof of Lemma 9
Part (i): It is enough to show that Zk 1Ak = A, or

equivalently, Zk 1Ak = A. Since Ay C A, for all k, it is
clear that

K
:E:?ik CI?;
k=1

From (31), we have gcd(M1, ..., Mg) = 1. Hence, there exist

Bi, ..., Bx € H such that Zle BiM; = 1. If /. € A, then
K K
A=) BiMi =) (ABy)M;.
k=1 k=1
Since (ABx)Mj € Ak, we have 1 € Z,{;l Ax. Hence
K
2§ C :E: };k-
k=1

The injective nature of the map p follows from observ-
ing that its domain Aj/Ac X --- X Ag/A. and image
AJA = l}'(27\) /¥ (AM) have the same cardinality N(M)* =
(M)

Part (ii): Let Dg = ged(My, k € S°). We first show that
D kese Ak = ¥(ADys), or equivalently >, o Ax = ADs.
There exists a tuple (By, k € S°) of Hurwitz integers such
that D, gc BxMy = Dg. Similar to the proof of Part (i) of
this lemma, by considering the term 1 > ¢c BxMy for each
4 € A, we conclude that

:E: Ag :);il)s.

keS¢
The above relation implies that W(ADs)/A. is a subset of
the image of p|sc, which is the restriction of the function p
to messages with indices in S€. As in the proof of Lemma 2,
to prove ZkeSC Kk = KDS, it is enough to show that

W (ADs)/Acl = ] IA/Acl.
keS¢
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Now,

Vol(AM)

2t __
N = Vol(A)

= [¥(A)/ P (AM)|
= [A/Ac] = [8] = 24 R i),

Using N(Ds)? = 2*Rs (from (20)), and the above equation,
we have

Vol(AM) N(M)¥ 24 Rit+Rg)
Vol(ADs)  N(Dg)* 74tRs

= 2% 2Zuese Re = TT 2%Re = TT 1Ak/Acl.
keS¢ keS¢

|¥(ADs)/Ac| =

Hence, we conclude that 3, _¢c Ay = ADs.
Using N(Ds) = 22Rs, we obtain the minimum squared
distance with S as follows,

>a

keS¢
= dpin (ADs) = N(Ds)d,

d3 = dj,

min

) ~
= dmin Z A

keS¢
X 2Rs 12
(A) = 2*Rsqg.

in

This shows that Rs = log, (Z—(S)). ]

APPENDIX II
EXISTENCE OF HURWITZ INTEGERS WITH ODD-PRIME
NORMS AND REAL PART A POWER OF TWO

We show that every odd rational prime p can be expressed
as the sum of the squares of four rational integers ay, .. ., a4,
where the first integer a; € {1,2}. Then, P = aj + azi +
azj + ask is a Hurwitz integer with norm p and real part a
power of 2. The proof follows from the following result from
number theory known as the three-square theorem.

Theorem 1 [32]: Every positive rational integer not of the
form 4°(8d + 7), ¢,d € 7Z, is a sum of three rational integer
squares.

If p is a positive odd rational integer, we have
p mod 8 € {1, 3,5, 7}. For each of these four possible values
of p mod 8, we show that at least one of p —1 or p —4 is not
of the form 4¢(8d + 7). It then follows that, either p — 1 or
p — 4 is a sum of three squares, and consequently, p equals
either the sum of 12 and three squares, or the sum of 2% and
three squares.

If p mod 8 =1, then

(p—4) mod 8= (p mod 8 —4) mod 8 =5.

Assume p — 4 = 4°(8d + 7) for some c¢,d € Z. Since
(p —4) mod 8 =5, (p —4) is odd, which implies ¢ = 0,
and hence, p —4 = 84 + 7. This leads to a contradiction since
(p —4) mod 8 =5 and (84 4+ 7) mod 8 = 7. The proofs for
the cases p mod 8 = 5,7 are similar.

If p mod 8 = 3, we have (p — 1) mod 8 = 2. Suppose
p—1 = 4°@8d + 7) for some choice of c¢,d. Since
(p — 1) mod 8 ¢ {0,4}, 4 is not a divisor of p — 1, and
hence, ¢ = 0. Contradiction follows from observing that
(p —1) mod 8 # (84 + 7) mod 8.
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