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Abstract—We consider a wireless sensor network, sampling a
bandlimited field, described by a limited number of harmonics.
Sensor nodes are irregularly deployed over the area of interest
or subject to random displacement; in addition sensors measure-
ments are affected by noise. Our goal is to obtain a high quality
reconstruction of the field, with the mean square error (MSE) of
the estimate as performance metric. In particular, we analytically
derive the performance of several reconstruction/estimation tech-
niques based on linear filtering. For each technique, we obtain the
MSE, as well as its asymptotic expression in the case where the
number of field-harmonics and the number of sensors grow to in-
finity, while their ratio is kept constant. Through numerical sim-
ulations, we show the validity of the asymptotic analysis, even for
a small number of sensors. We provide some novel guidelines for
the design of sensor networks when many parameters, such as field
bandwidth, number of sensors, reconstruction quality, and sensor
displacement characteristics, to be traded off.

Index Terms—Irregular sampling, linear filtering, sensor net-
works.

I. INTRODUCTION

W IRELESS sensor networks are often used for appli-
cations like environmental and traffic control, habitat

monitoring, or weather forecasts [1], which require to sample a
physical phenomenon over an area of interest (the sensor field).
In this paper, we consider a set of sensors communicating with a
sink node, through either single- or multihop communications.
Each sensor locally samples the physical field, while the sink
collecting all samples is in charge of reconstructing the signal
of interest.

We assume that initially sensors are either located at prede-
fined positions, or, if randomly deployed over the network area,
their location can be estimated at the sink node [2]. We do not
deal with spatiotemporal correlation, but consider a fixed time
instant and focus on the spatial sampling and reconstruction of
the sensor field. We note that, in general, sensors provide an
irregular sampling of the observed phenomenon. This may be
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due to various reasons: random deployment of the nodes, envi-
ronment characteristics that bias the network deployment, sen-
sors entering a sleep mode, inaccuracy in sensor positioning, or
nodes movement [3]. In all these cases, the sink has to recon-
struct the field from a collection of samples that are irregularly
spaced, different from the classical equally (or regularly) spaced
sampling.

The problem of signal reconstruction from irregular samples
has been widely addressed in signal processing, where several
efficient and fast algorithms have been proposed to numerically
reconstruct or approximate a signal [4]–[6]. The problem we
address in this paper, however, is different; the questions we
pose are as follows:

(i) How do noisy measures and inaccurate knowledge of the
sensor positions affect the reconstruction quality?

(ii) How can we trade off system parameters like measure-
ment noise, field bandwidth, signal reconstruction quality,
and number of sensors?

We answer these questions by using a probabilistic approach.
Specifically, we analyze two different models of the monitoring
system that account for the quality of the measurements per-
formed by the sensors and differ in the accuracy with which
the sensor positions are known at the sink node. The model de-
noted as Model A refers to the case where sensors are fixed,
the sink has perfect knowledge of the sensor positions, but the
sensor measurements are affected by error. In the second model,
named Model B, besides noisy measurements, we consider that
the sensor positions vary around an average value, and only the
average location of the nodes is known at the sink. Examples
where this model applies are observation systems using sur-
face buoys [7], underwater robots located at different depths
[8], dropsondes, or low-cost unmanned platforms [9]. Clearly,
Model B reduces to Model A when there is no uncertainty about
the sensor positions.

For each of these models, we use as field reconstruction tech-
niques some linear filters that are commonly employed in signal
detection and estimation, and we evaluate the mean square error
(MSE) of the resulting estimate. Interestingly, so far the link be-
tween linear filters theory and reconstruction of irregularly sam-
pled fields has not been deeply investigated in the literature.

We find that a key parameter for the network performance
is the ratio of the number of field-harmonics to the number
of sampling sensors. In particular, there exists a value of this
ratio, beyond which the performance of all considered recon-
struction strategies degrade significantly, even for low values of
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noise level and limited uncertainty on the sensor positions. To
obtain an acceptable reconstruction quality when is large (i.e.,
the number of available sensors is limited compared to the field
bandwidth), reconstruction techniques that exploit some knowl-
edge of the measurement noise and of the jitter in the sensors
position must be employed.

We also carry out an asymptotic analysis of the system as the
number of field-harmonics and the number of sensors grow to
infinity, while their ratio is kept constant, and we show that this
is an effective tool to study the system performance [10], even
when the number of sensors is small. Finally, we find a lower
bound to the MSE that can be achieved by any of the considered
techniques, both under Model A and Model B.

In summary, the novelty of this paper is based on the proba-
bilistic approach to the performance analysis of linear recon-
struction algorithms. This analysis can be carried on analyti-
cally thanks to the linearity of the considered reconstruction
techniques.

The remainder of the paper is organized as follows. In
Section II we present our assumptions and the system models
under study. Section III discusses some related work. Section IV
introduces the performance metrics and provides some math-
ematical tools necessary for our study. Model A and B
are analyzed in Sections V and VI, respectively. Finally,
Sections VII and VIII summarize our main results and draw
some conclusions.

II. ASSUMPTIONS AND SYSTEM MODELS

Let us consider a one-dimensional field. A physical field is
approximately bandlimited and, when observed over a finite
interval, it admits an infinite Fourier series expansion. How-
ever, one can think of the largest index of the non-negli-
gible Fourier coefficients of the expansion as the approximate
one-sided bandwidth of the field. We therefore represent the
one-dimensional field, , by using harmonics as

(1)

The field is observed within one period interval [0,1) and
sampled by sensors placed at positions1 ,

, , which are in general not equally
spaced. The signal samples are denoted by the column vector

. The field discrete spectrum is given
by the complex vector .
The complex numbers represent amplitudes and phases of
the harmonics in .

We assume that the entries of are i.i.d. uniformly distributed
random variables in [0,1). The extension to a multidimensional
field can be easily obtained, as discussed later in this section.

We define as the ratio of the number of harmonics which
describe the field to the number of sensors, i.e.,

. This is an important parameter in our analysis. Note that
the number of sensors also corresponds to the sampling rate;

1Column vectors and matrices are denoted by bold lowercase and bold upper
case letters, respectively. ��� is the ��� �� entry of the matrix�, � is the��
� identity matrix, and � is the generic identity matrix. The conjugate transpose
operator is denoted by ��� .

thus, the number is the ratio of twice the field bandwidth to
the sampling rate (frequency). In particular, in regular sampling
theory, exact reconstruction is achieved for and, if
a Nyquist regular sampling interval were used, we would have:

.
In the next sections, we derive asymptotic results in the case

where the number of field-harmonics and the number
of sensors both grow to infinity, while their ratio is kept

constant.
Notice that this implicitly requires making some assump-

tions about the existence of the asymptotic limit of the signal in
(1). A study of sufficient conditions which ensure asymptotic
model consistency though important and interesting is outside
the scope of the present work. In this context, the readers are
referred to the literature on nonparametric regression with
random (Monte Carlo) sampling [11], [12], which is closely
related to the present problem.

We consider to be known, and the random vector to have
zero mean and covariance matrix , where

corresponds to the field average power spectral density. The
value of the field at positions depends on the spectrum
through the expression

(2)

where is the generalized Fourier matrix de-
fined as

(3)
The dependence of the matrix on the position vector is
clearly indicated by its subscript. When the samples are equally
spaced in the interval [0,1), the matrix is a unitary matrix
(i.e., ). The above system model refers to a
unidimensional field where sensor positions are determined by a
scalar variable. However, the extension to the multidimensional
case can still be easily obtained since the relation between field
spectrum and samples in a band-limited multidimensional field
can be expressed in a matrix form similar to (2), where only the
structure of the matrix differs.

Finally, we assume that sensor field measures are sent to a
processing unit, the so-called sink node, whose task is to pro-
vide an estimate of the sensed field. Since we focus on the re-
construction of the physical field, we consider that sensor trans-
missions always reach successfully the sink node. By relying on
the assumptions discussed above, we study the following two
systems.

Model A: Fixed sensors, perfect knowledge of the sensor
positions, noisy measures: In this model, sensors have a fixed
position, given by the vector and known at the sink node, but
each sensor provides a measure of the field affected by additive
noise with zero mean and variance [13]. The additive noise
approximates the errors affecting the measurement procedure
[14]. The measures can, therefore, be written as

(4)

where is the sampled field and the zero mean noise vector is
denoted by , with covariance matrix .
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Model B: Sensors with jittered positions and noisy mea-
sures: In this case, each sensor displaced around an average po-
sition , i.e., the sensor positions are given by:

, where and is the displacement of the
sensors with respect to their average location . Notice that this
problem is related to the problem of jittered sampling which has
been investigated in many works dealing with both regular and
irregular sampling [15].

The displacements , , are modeled as inde-
pendent zero mean Gaussian random variables with variance
and . For convenience and neglecting the edge
effects, we consider so that falls in the observa-
tion interval [0,1). The vector of measures is still given by (4).
Also, noise, displacement, and field spectrum are assumed to be
uncorrelated, hence, , and the
sink has perfect knowledge of .

III. RELATED WORK

The problem of sampling a physical field through a wire-
less sensor network has been widely addressed in the literature.
In particular, several papers deal with energy efficiency issues,
aiming at prolonging the network lifetime as much as possible.
The work in [16] considers that sensors can enter a low-power
operational state (i.e., a sleep mode) and presents an algorithm
to determine which sensor subsets should be selected to acquire
data from an area of interest and which nodes should remain
inactive to save energy. Note that in our paper we consider an
irregular topology, which may be caused by nodes moving into
a sleep state; however, we do not directly address energy effi-
ciency or scheduling of the node sleep/activity periods.

In [17], the authors consider a uni-dimensional field, uni-
formly oversampled at a multiple of the Nyquist frequency by
low-precision sensors. The impact on the field reconstruction
accuracy of quantization errors and node density is evaluated.
The effect of random error sources affecting the ADC, besides
quantization, is investigated in [14]. In our work we consider an
additive noise that models errors due to the measurement proce-
dure as well as errors due to the ADC, but we do not specifically
focus on the latter issue.

The impact of medium access control protocols on the field
reconstruction field is investigated in [18], [19]. In particular, the
paper in [19] considers a dense sensor network and analyzes the
impact of deterministic and random data collection strategies
on the quality of field reconstruction. As a performance metric,
the maximum of the reconstruction square error over the sensed
field is adopted, as opposed to our work where the MSE is con-
sidered. Also, in [19] the field is a Gaussian random process,
the exact sensor locations are known and the central controller
always receives a sufficiently large number of samples.

The field reconstruction at the sink node, with spatial
and temporal correlation among sensor measures, is studied
in [13], [20]–[22]. In [22], the observed field is a discrete
vector of target positions and they assume correlated sensor
observations. By modeling the sensor network as a channel
encoder and exploiting some concepts from coding theory,
the network capacity, defined as the maximum ratio of target
positions to number of sensors, is studied as a function of
noise, sensing function and sensor connections. The problem

of reconstructing a band-limited signal from an irregular set
of samples at unknown locations is addressed in [23]. There,
the signal is oversampled by irregularly spaced sensors; sensor
positions are unknown but always equal to an integer multiple
of the sampling interval. Differently from [23], we assume that
the sink can either acquire or estimate the sensor locations and
that sensors are randomly deployed over a finite interval.

Related to our work is the literature on spectral analysis (see,
e.g., [24] and references therein). In this field, an excellent guide
to irregular sampling is [6], which covers a large number of
reconstruction techniques, considering a wide range of appli-
cations. Reconstruction techniques for irregularly or randomly
sampled signals include, among others, linear [4] and nonlinear
[25] methods, iterative algorithms [26], and interpolation. In
particular, Feichtinger and Gröchenig in [26] provide an error
analysis of an iterative reconstruction algorithm taking into ac-
count round-off errors, jitters, truncation errors, and aliasing.
Other theoretical works on irregular sampling can be found in
[4], [5], [25]–[29], and references therein. The main differences
between our work and the results that are available in the spec-
tral analysis literature are the following:

(i) the analysis of the asymptotic MSE, where and go to
infinity keeping their ratio fixed;

(ii) the application of results from the theory of random ma-
trices to the field reconstruction problem;

(iii) the focus on a Bayesian model for the (random) sensor lo-
cations, as opposed to the frequentist model of determin-
istic unknown locations that one encounters more com-
monly in the spectral analysis literature.

Finally, in our previous work [30] some conditions on the
irregular topology of the sensor network are identified, which
allow for a successful signal reconstruction, both under deter-
ministic and random node deployment. In particular, in [30] the
spectrum estimate , computed by the sink, is obtained by ap-
plying to the Moore-Penrose pseudoinverse of the matrix ,
i.e., . The system model adopted in [30]
is ideal in the sense that the reconstruction algorithm has per-
fect knowledge of the vector and neglects noisy measures: the
failure in reconstruction (i.e., ) is only due to the bad con-
ditioning of the matrix in relation to the finite machine
precision. In this paper, instead, we apply linear filters to the
field reconstruction and consider the following causes of quality
degradation: (i) noisy measures and (ii) uncertainty at the sink
on the sensors position.

IV. PRELIMINARIES

Here we describe the techniques we use for field reconstruc-
tion, and define the performance metrics employed for assessing
the effectiveness of these techniques on the quality of the re-
constructed field. Finally, we provide some mathematical tools
necessary for the analysis of the models under study.

A. Reconstruction Techniques

Several reconstruction techniques have been proposed in the
literature, which amount to the solution of a linear system (see
[4], [5], and references therein). A widely used technique con-
sists in processing the measures by means of a linear filter ,
which is an matrix and is a function of the system
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parameters known at the sink. In this case, the estimate of the
field spectrum is given by

(5)

The system model in (4) is similar to the one employed in mul-
tiuser communications [31] or multiple antennas communica-
tions [32], [33]. In those cases is the received signal, the ma-
trix plays the role of spreading matrix or channel matrix,
is the transmitted signal and is the channel noise. By relying
on the results obtained in those fields, for each system model
we propose and compare some reconstruction techniques char-
acterized by different matrices : the matched filter (MF), the
zero forcing (ZF) filter, and some linear filters minimizing the
MSE (LMMSE) [31]. In the field of multiuser detection, the MF
simply correlates the received signal with the desired user’s time
reversed spreading waveform, thus, it does not take into account
any other users in the system or channel dynamics. The ZF filter
counteracts multiuser interference but it ignores the presence
of channel noise. The LMMSE solution minimizes the squared
error between the received and transmitted signals, thus, ac-
counting also for the channel noise; it becomes the zero-forcing
solution when no noise is present. Note that the advantage of
the MF with respect to the ZF and LMMSE filters is that no ma-
trix inversion is needed; while between the ZF and the LMMSE
filter, clearly the best performance in terms of minimum square
error is given by the LMMSE, however, the advantage of the ZF
filter is that it does not require any knowledge of the noise com-
ponent (see [31] for further details).

B. Performance Metrics

Given the spectrum estimate (5), the field can be recon-
structed as .
As a measure of the reconstruction quality, we consider
the MSE of the estimate of , which is given by

. We observe that com-
puting MSE as above is equivalent to computing .
Indeed, by substituting (1) and the expression of , we have

Thus, in the following, for a given vector of sensor positions ,
we consider the MSE defined as

(6)

where

(7)

is a matrix, the operator averages
with respect to all random variables of the model, and is
the trace operator. Also, in (6) we exploited the fact that, for any
vector , we have: .

Next, we consider the vector to be random. In this case a
more appropriate performance metric is the average MSE, nor-
malized to , i.e., where is as

in (6) and averages over the realizations of .

When the parameters and grow to infinity while the ratio
is kept constant, we define the asymptotic

average MSE as

(8)

The results presented later in the paper show that gives
a very good approximation of , already for small values
of . This is a common feature of asymptotic analysis based
on random matrices [32].

C. Some Mathematical Tools

1) The Functional : Let us first consider an
Hermitian random matrix and the functional

. Using (7) and (8), the asymptotic
MSE can be written as

(9)

In our analysis we use the following results on the functional
. First, we notice that . Second, we can prove (see

Appendix I) that, if is an analytic function defined in ,
then2

(10)

where is a random variable with the asymptotic eigenvalue
distribution of .

2) A Simple Expression for : As will be clear in
Section VI, in the analysis of Model B many parameters are
functions of the matrix , where . It is, thus, useful
to derive an expression of as a function of , in order to
separate the random part of from the constant part . A
useful expression of in terms of is given here.

Lemma IV.1: For any vector of size , let the entry
of the matrix be
for , and . Let the size column
vectors , , and be such that , then

(11)

where is an diagonal matrix, and is a
diagonal matrix with .

The proof is given in Appendix II.

V. ANALYSIS OF MODEL A

Here we consider the case where sensor positions are fixed
and known at the sink but the field estimates are degraded by
noisy measures. We analyze three different linear filters: the
matched filter, the zero forcing filter and the minimum MSE

2Note the small abuse of notation when using ���� for both scalar and matrix
argument.
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filter [31]. In all cases, for any fixed , the filter matrix is
deterministic. Using (4), (5), and (7), we have

(12)

where is the signal-to-noise ratio
(SNR) on the measure. The MSE expression specialized to the
different filters is given below.

A. Matched Filter

As a first solution, we choose as the filter matched to
. The MF is optimal when the collected samples are equally

spaced, that is when the rows of are orthonormal vectors
and is a unitary matrix (i.e., ). Thus,
we choose

(13)

Recall that depends on the position vector that, under
Model A, coincides with the actual sensor positions. Indeed, in
the absence of noise and for equally spaced sensors, the spec-
trum estimates perfectly match , i.e.,

. By replacing (13) in (12), we obtain

(14)

where . From the definition in (9), the asymptotic
MSE, averaged over the random vector , is given by

Notice that the second term on the right-hand side (RHS) re-
duces to 1 since . Applying (10), first with
and then with , we obtain

(15)

where is the random variable with probability density
function (pdf) , distributed as the asymptotic eigen-
values of . In [30] it is shown that, for any positive integer

, is a polynomial in of degree . In particular,
and . We, therefore, obtain

(16)

B. ZF Filter

The expression of the ZF filter for the system in (4) is

(17)

Notice that, by its definition, the ZF filter does not exploit any
information on the noise contribution (such as ). However,
this reconstruction technique takes into account the fact that the
collected samples are not equally spaced and, hence, that
is not a unitary matrix.

By using (17) in (12), the matrix becomes

(18)

Using (9) and applying (10) with , the asymptotic
MSE, averaged over the random vector , can be written as

(19)

We make the following observations:
1) Since is a convex function, then . In

[30] it is shown that , thus, .
2) We can empirically show that

only for , with . Indeed,
. Through Monte Carlo

simulation it has been observed that
for , where the exponent is a decreasing
function of for , and for .
Given that, for any positive constant , we have

where the integral on the RHS [and, therefore, (19)] does
not diverge if and only if , that is . This
observation gives us an empirical limit to the minimum
number of sensors required to perform reliable reconstruc-
tion with the ZF filter.

C. LMMSE Linear Filter

A more efficient solution is to employ the filter that pro-
vides the minimum MSE (LMMSE). By assuming that the SNR

is known to the sink and exploiting this information for
the filter design, the expression of the LMMSE filter [31] for
Model A in (4) is given by

(20)

We highlight that this reconstruction technique accounts for
both the fact that the collected samples are non-uniformly
spaced and the presence of the measurement noise.

Substituting (20) in (12), we obtain

(21)

Using (10) with , the asymptotic MSE is

(22)

Note that

(23)

Also, note that , since . Given that the
LMMSE filter provides the minimum MSE, from (23) it turns
out that, for a given , is a lower bound for the
performance of all linear reconstruction techniques.
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Fig. 1. MSE obtained through the MF, ZF, and the LMMSE filters, plotted
versus �, for � � ��, ��� � � �	 (i.e., � � 
��).

D. Results

Fig. 1 compares the average MSE obtained using the MF, ZF,
and LMMSE filters, when varies and . The points la-
beled by “ ,” “ ,” and “ ”
have been obtained generating 100 realizations of the measures
(4) with , computing the estimates as in (5) and av-
eraging the square error . These points are superim-
posed over the solid curves labeled by “ ,” representing
the asymptotic MSE and obtained evaluating (15), (19), and
(22), respectively. Notice that computing closed form expres-
sions for in (19) and in (22) is still an
open problem since a closed form expression of the distribution
of is unknown. Thus, for a given , the value of these asymp-
totic expressions have been obtained pseudoanalytically, aver-
aging over the eigenvalues obtained by several realizations of
the matrix , with which yields a very good ap-
proximation of the asymptotic case [30].

We observe an excellent agreement between the asymptotic
analysis and the numerical results; this shows the validity of the
asymptotic analysis even for small values of . We also note
that, for both filters, higher values of MSE are obtained as
increases. Finally, the LMMSE filter provides the best perfor-
mance, while the MSE of the ZF filter shows a vertical asymp-
tote for , in agreement with the closed form analysis.

Fig. 2 shows the MSE versus , for . The be-
havior of the asymptotic MSE is represented by the curves la-
beled by “ ” while the average MSE obtained through nu-
merical analysis is denoted by the label “ .” The curves
have been obtained using the same procedure as for the results
in Fig. 1, using for the computation of both
and . Again, note the tight match between analytical and
numerical results. For all techniques, the MSE decreases as the

increases. The MF however provides very poor perfor-
mance, even for high . In particular, as tends to
infinity, it shows a horizontal asymptote with .

Besides linear filtering, another technique for estimating the
spectrum is based on interpolation. The idea is to interpo-

Fig. 2. MSE obtained with the MF, the ZF, and the LMMSE filters, plotted
versus ��� , for � � ��� and � � 
�.

Fig. 3. MSE obtained through the LMMSE filter, plotted versus ��� , for
� � 0.1, 0.2, 0.4, 0.6, 0.8, and � � 
�.

late the measures to a regular sampling grid defined by the
vector where , . The interpo-
lated vector is then multiplied by the matrix . Notice
that in this case is unitary, i.e., , since
represents an equally spaced sampling. In the plot, the dashed
line labeled “Linear interp.” shows the performance obtained
using linear interpolation. The MSE has a horizontal asymp-
tote for high . While it outperforms the MF, it clearly
shows poor performance for high , compared to ZF and
LMMSE techniques.

Fig. 3 presents the performance of the LMMSE filter obtained
evaluating (22) for different values of , as the varies. In
agreement with the results presented in Fig. 1, the performance
of the LMMSE filter degrades as increases, while, as expected,
it improves as the increases.

Example 1: We need to estimate the number of sensors re-
quired to sample a field with harmonics. Each sensor
provides samples with .
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We choose to employ the LMMSE filter, which provides the
best performance. Looking at Fig. 3, if we allow an of

, then we need , i.e.,
sensors. By doubling the number of sensors ,

drops to .

VI. ANALYSIS OF MODEL B

Here we consider the case of sensors with jittered positions
and average position, , known at the sink node. The true sensor
location is: , where is a random vector, as defined in
Section II. The reconstruction algorithm employs the matrix ,
which is a function of the known average positions . For any
given and , similarly to (6), the MSE becomes

(24)

where

(25)

with representing the real part of the argument.
To proceed further we need to compute the averages over

the displacements , i.e., we need the expressions of

and as functions of , whose derivation is given

in Appendix III. We have

(26)

and

(27)

where is a diagonal matrix with
, , where is

the characteristic function of the displacements. Under the
assumption that has a zero mean Gaussian distribution, we
have , .

Using (26) and (27) in (25), we obtain

(28)

where .
In the following, in the case of the LMMSE filter3 we first

consider that the variance of the sensor displacement is un-
known at the sink and, hence, while running the reconstruction
algorithm, the sink assumes the sensors to be fixed (i.e., ).
Then, we consider that is known and the reconstruction algo-
rithm employs a filter that exploits such an information to min-
imize the MSE (this case is referred to as “LMMSE for known

.”)

3Recall that the MF and ZF techniques, by their definition, do not require any
information on � and � .

Finally, we remark that, while in Model A the filters used
for signal reconstruction are functions of the matrix with

known to the sink, in Model B only the mean value of the
sensor positions is known and, thus, the filters are computed
using instead of .

A. Matched Filter

If the sink node employs the MF in (13) as function of (i.e.,
), then, using (28), we obtain

(29)

This result holds for strictly positive . Note that, for
(no sensor displacement), we have and ; thus, (29)
reduces to (14).

Equation (29) refers to the MSE obtained with a given vector
; we are now interested in deriving the asymptotic expression

for the MSE. Note that (29) is a function of both and , and
contains terms of the form with and

0,1,2; also the matrix depends on and , while the
matrix depends on and . The definition of the asymp-
totic MSE in (8) refers to the case where the number of har-
monics and the number of sensors grow to infinity with
constant ratio ; if this is directly applied to (29), information
losses may arise. Indeed, we have

(30)

and, thus, all terms depending on the matrix would vanish
regardless of the value of . On the contrary, in a realistic situ-
ation we expect to obtain high reconstruction quality when the
standard deviation of the displacement is smaller than or
comparable to the average sensor separation , and a signif-
icant degradation of the reconstruction quality when is much
larger than the average sensor separation. To distinguish such
different conditions, we define the SNR on the displacement as

where . We then redefine the asymptotic MSE as the
limit of the average MSE for , with constant

and constant . In this case

(31)
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where . Notice that and
. Also, we have

(32)

Using the new definition and (29), the asymptotic expression
of the MSE becomes

(33)

Here we used the following facts:
• since is Hermitian and is

real and diagonal;
• for any square matrix and

;
• for any positive integer and .

This assumption holds only if and are asymptotically
free [32]. Since asymptotical freeness is in general very
hard to prove, we will simply verify the validity of such
assumption through numerical results.

• and (see [30]);
Equation (33) reduces to (16) for , while it reduces to

for .

B. ZF Filter

In this case the sink node employs the ZF filter in (17) but,
knowing only the average value of the sensor positions, the filter
results to be a function of , and the matrix

can be written as

(34)

We observe that, when (no sensor displacement, we
have and , thus, (34) reduces to (18).

Using (31) and (32), the asymptotic MSE is

(35)

Equation (35) reduces to (19) for , while it reduces to
for .

C. LMMSE Filter Neglecting

If the sink employs the filter in (20) computed using (i.e.,
, where ), then the matrix in

(28) becomes:

(36)

For (i.e., and ), (36) reduces to (21).
Using the properties described in Section VI-A the asymp-

totic MSE is:

(37)

Equation (37) reduces to (22) for , while it becomes:
for .

D. LMMSE Filter for Known

We now consider the linear LMMSE filter optimized for the
case where is known at the sink. We find the optimal min-
imizing ; that is, we null the derivative of (24) with re-
spect to . We employ the following properties that hold for
any square matrix [34]:

Then, we have

Solving for , we obtain the expression of the LMMSE filter

(38)

Substituting (38) into (28), we have

(39)

In this case an explicit expression of is hard to obtain.
However, we were able to find the following lower bound that
turns out to be very tight, as shown by the results presented in
the following section:

(40)

where, to derive the last expression, we exploited (31), (32),
(10), and the fact that .
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Fig. 4. Performance of the ZF filter for � � ��� and � � ��, when � is
neglected.

Fig. 5. Performance of the LMMSE filter (20) with � replaced by �� versus
��� , for � � ��� and � � ��, when � is neglected.

E. Results

We now show the performance of the filters analyzed under
Model B. Regarding the ZF filter (17), Fig. 4 compares the
asymptotic MSE evaluated through (35) (represented by solid
lines and labeled by “ ”) against the average MSE (rep-
resented by points and labeled by “ ”). The is ob-
tained by generating 100 realizations of the measures as in (4),
with , computing the estimates as in (5) and averaging
the square error . The MSE is shown in the log scale
plotted versus , for .

Similarly, Fig. 5 presents the performance of the LMMSE
filter (20) with replaced by . Here the curves labeled by
“ ”, generated by evaluating (37), and the points in the
plot, labeled by “ ”, have been obtained as for Fig. 4.

In both the plots the solid line labeled by “ ”
refers to the case where , i.e., , and corresponds to
the performance of Model A under the same conditions.

Fig. 6. Performance of the LMMSE filter (38) with perfect knowledge of �
versus ��� , for � � ��� and � � ��.

The excellent match between the asymptotic results and the
numerical simulation confirms the validity of the asymptotic
analysis as an effective tool to characterize the performance of
the reconstruction techniques.

Also, comparing Figs. 4 and 5, we observe that the per-
formances of the ZF and the LMMSE filters are similar for

, for any value of . While, for lower
, the LMMSE filter outperforms the ZF filter.

Fig. 6 compares the performance of the LMMSE filter (38),
which has knowledge of , with its lower bound (40) (dashed
lines), as varies. We consider and different
values of . Notice that the lower bound is very tight, espe-
cially for high values of . The points in the plot, labeled
by “ ”, have been obtained as for Fig. 4, using .
Here, as in Fig. 5, the plot shows the case (solid
line), which corresponds to the performance of the LMMSE
filter for signal model A. Indeed, for (i.e.,
and ), we have and , and (39) simplifies
to (21).

Fig. 7 compares the performance of the LMMSE filter (20)
(with replaced by ), labeled by “LMMSE” (solid lines), and
of the LMMSE filter (38), labeled by “LMMSE ” (dashed
lines), for the same parameter setting as in Fig. 6. For the con-
sidered value of , the filter in (38) outperforms the
simpler filter (20) for any value of and , but the
performance gain is always negligible.

Similarly to Fig. 5, Fig. 8 presents the results obtained
through the LMMSE filter (20) (with replaced by ), which
neglects . Its performance has been obtained by evaluating
(37) for (dashed lines) and
(solid lines), and for , 0.2, 0.4. While the of
the LMMSE filter (20) always tends to 1 for small values of

(i.e., large values of ), for high (i.e., low ) its
behavior depends on . Indeed the term on
the RHS of (37) reduces to for . As explained in
Section V-B, diverges for and so the
MSE (see the lines with markers in the plot). This behavior,
due to the model mismatch, is more evident as increases and
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Fig. 7. Performance comparison of the LMMSE filter neglecting � (20) (with
� replaced by ��) against the LMMSE filter with perfect knowledge of � , as
��� varies and for � � ��� and � � ��.

Fig. 8. Performance of the LMMSE filter when � is neglected as ���
varies, for ��� �10, 20 dB, and � � 0.1, 0.2, 0.4, and � � ��.

the MSE is large, for any . These results, however, are
of no interest from the application point of view since a system
characterized by such poor performance is not working.

Finally, Fig. 9 compares the performance of the LMMSE
filter in (38) labeled by “LMMSE ” (dashed lines) and the
performance of the LMMSE filter (20), labeled by “LMMSE”
(solid lines), for . In general, the filter in (38)
performs always better than filter (20). In particular, for

the two filters show very similar performance, while, when
, the filter in (38) does not follow the performance of

filter (20) for high . This is shown in Fig. 9, where, for
and high values of , the advantage of exploiting

the knowledge of becomes evident.
Example 2: Consider water buoys equipped with

sensors, providing measures with . Buoys are
moving but the variance is unknown. We need to
estimate the maximum number of harmonics of the field that

Fig. 9. Comparison of the LMMSE filter neglecting � against the LMMSE
filter with perfect knowledge of � , for ��� � �� 	
, and � � ��.

the network can sample and reconstruct with an average MSE
lower than .

Since is known to the reconstruction algorithm while
is not, we employ the LMMSE filter in Section VI-C. We

have: . Looking at Fig. 9, we notice
that, for , values of lower than
can be obtained only for . The maximum number of
harmonics is then .

Example 3: Consider a network of sensors with jittered po-
sitions characterized by and , and
assume that these values are known to the reconstruction al-
gorithm. We want to determine which type of sensor devices
should be used in order to minimize the . In other words,
we ask ourselves how accurate the sensor measurements need to
be (clearly, more expensive devices provide a higher ).

Since is known to the reconstruction algo-
rithm, we can employ the LMMSE filter given in (38). Looking
at Fig. 9, we notice that the performance of the filter for
shows a horizontal asymptote corresponding to an average MSE
of . Thus, an is enough to achieve the
best performance.

VII. SUMMARY OF RESULTS

Our main results for the system models A and B are as
follows.

Model A (fixed sensors and noisy measures):
• for a given , the MSE provided by any of the recon-

struction techniques is lower bounded by
and worsen with increasing (i.e., the ratio of the
number of harmonics to the number of sampling sen-
sors). The MF in (13) is the only filter which does
not require matrix inversion, however it provides poor
performance in all of the considered cases;

• the ZF filter provides high quality performance only for
high (namely, ) and ;

• the LMMSE filter, instead, gives good performances for
moderate values of and .
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Model B (sensors with jittered positions and noisy
measures):
• for a given , the MSE provided by any of the recon-

struction techniques is lower bounded by (40);
• the performance of all reconstruction techniques worsen

with increasing and decreasing ;
• the advantage of exploiting the knowledge of in

the filter design is negligible for low and low ,
while it is of fundamental importance to obtain a high
quality reconstruction for and large values of

.

VIII. CONCLUSIONS

We addressed the problem of reconstructing band-limited
fields from measurements taken by irregularly deployed sen-
sors, and we studied the effects of noisy measures and jittered
sensors positions on the reconstruction quality. We analytically
derived the performance of several linear filters in terms of the
MSE of the field estimates. We also studied the asymptotic
MSE, obtained as the number of harmonics and the number of
sensors grow to infinity, while their ratio is kept constant.
We found that the asymptotic analysis is an effective tool to
characterize the performance of the reconstruction techniques,
even for a small number of sensors, and we investigated the
impact of the parameter on the system performance. In [30]
we observed that random sampling without any type of noise
would require more than twice the sampling rate of minimum
regular sampling to get a reliable reconstruction
(without ill conditioning problems) with high probability. The
number of sensors further increases compared to
regular sampling when measurement noise (Model A) and
sensors position jitter (Model B) are present.

The main novelty of this work is the probabilistic approach
to the performance analysis of linear reconstruction algorithms.
A theoretical analysis was possible thanks to the linearity of the
reconstruction methods that we adopted.

APPENDIX I
PROOF OF (10)

Let us consider an analytic function in . Let
be a positive definite Hermitian matrix, where

is the eigenvectors matrix of and is a diagonal matrix
containing the eigenvalues of . Then, by using the result for
symmetric matrices in [35, Ch. 6] combined with the result in
[36, p. 481], we have

(41)

The last equality holds since, asymptotically, the eigenvalues of
are identically distributed.

APPENDIX II
PROOF OF LEMMA IV.1

Using (11), the th entry of is

which matches its definition.

APPENDIX III
COMPUTATION OF AND

We derive here the expressions of and as
functions of .

a) Computation of : Using Lemma IV.1, we have

The average of is given by
, where is the identity matrix and is the th

moment of . Hence

where4

4Let � � ������ � � � � � � � be a diagonal � � � matrix. The exponen-
tial of �, denoted by 	
����, is the diagonal matrix whose elements are
�	
��� �� � � � � 	
��� �.
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is a diagonal matrix and

is the characteristic function of the random variable ,
, sampled in . In particular when is a

zero mean Gaussian random variable with variance , we
have: and ,

.
b) Computation of :

where . Now,

if
if

therefore

and

(42)

The first term of (42) yields

The th element of is given by

which does not depend on . Thus,
, and

Finally

where

Therefore

Concluding, if is real,
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