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Reconstruction of Multidimensional Signals From
Irregular Noisy Samples
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Emanuele Viterbo, Senior Member, IEEE

Abstract—We focus on a multidimensional field with uncorre-
lated spectrum and study the quality of the reconstructed signal
when the field samples are irregularly spaced and affected by in-
dependent and identically distributed noise. More specifically, we
apply linear reconstruction techniques and take the mean-square
error (MSE) of the field estimate as a metric to evaluate the signal
reconstruction quality. We find that the MSE analysis could be car-
ried out by using the closed-form expression of the eigenvalue dis-
tribution of the matrix representing the sampling system. Unfor-
tunately, such distribution is still unknown. Thus, we first derive
a closed-form expression of the distribution moments, and we find
that the eigenvalue distribution tends to the Marčenko–Pastur dis-
tribution as the field dimension goes to infinity. Finally, by using
our approach, we derive a tight approximation to the MSE of the
reconstructed field.

Index Terms—Field reconstruction, irregular sampling, random
matrix theory, wireless sensor networks.

I. INTRODUCTION

W E address the important issue of reconstructing a mul-
tidimensional signal from a collection of samples that

are noisy and not uniformly spaced. As a case study, we con-
sider a wireless sensor network for environmental monitoring,
where the nodes sensing the physical phenomenon (hereinafter
also called field) are randomly deployed over the area under ob-
servation. The sensors sample a -dimensional spatially finite
physical field, where may take into account spatial dimensions
as well as the temporal dimension. Examples of such fields are
pressure or temperature, on a four-dimension domain, i.e., three
spatial coordinates plus the time dimension. A spatially finite
physical field is not band-limited; however, it admits an infinite
Fourier series expansion. Here, we consider a finite approxima-
tion of the physical field obtained by truncating such series, as-
suming that the contribution of the truncated terms is negligible.

In our case study, we assume that the measured samples are
transferred from the sensors to a common data-collecting unit,
the so-called sink node, which is in charge of reconstructing
the field. Distributed systems, where in-network processing, is
performed are out of the scope of this work. We do not deal

Manuscript received August 22, 2007; revised April 9, 2008. First published
May 23, 2008; last published August 13, 2008 (projected). The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Qing Zhao. This work was supported by MIUR through the MEADOW
project.

A. Nordio and C.-F. Chiasserini are with the Department of Elec-
tronic Engineering, Politecnico di Torino, 10129 Turin, Italy (e-mail:
alessandro.nordio@polito.it; carla.chiasserini@polito.it).

E. Viterbo is with the DEIS, Università della Calabria, 87036 Rende (CS),
Italy (e-mail: viterbo@deis.unical.it).

Digital Object Identifier 10.1109/TSP.2008.925953

with issues related to information transport and, thus, we as-
sume that all samples are correctly received at the sink node.
The field samples, however, are corrupted by additive indepen-
dent and identically distributed (i.i.d.) noise, due to quantiza-
tion, round-off errors, or quality of the sensing device. Further-
more, the sampling points are known at the sink node, because
i) either sensors are located at predefined positions or their po-
sition can be estimated through a localization technique [1], and
ii) the sampling time is either periodic or included in the infor-
mation sent to the sink.

Several efficient and fast algorithms have been proposed to
numerically reconstruct or approximate a signal in such setting,
which amount to the solution of a linear system (see [2] and
[3] and references therein). A widely used technique consists
in processing the sensors’ measures by means of a linear filter,
which is a function of the system parameters known at the sink.
We observe that the following two major factors affect the linear
reconstruction:

i) the given machine precision, which may prevent the
reconstruction algorithm from performing correctly and
may lead to a non-negligible probability of reconstruction
failure [3];

ii) the noise level affecting the sensors’ measurements.
In the latter case, a measure of reconstruction accuracy is given
by the mean-square error (MSE) of the field estimate. In [4] and
[5], we have found that these issues could be studied by using
the eigenvalue distribution of the reconstruction matrix; how-
ever, obtaining such a distribution is still an open problem. In
this work, we first extend the system model and the problem
formulation presented in [5] to the case of multidimensional
fields (Section III). Then, we derive a closed-form expression
of the moments of the eigenvalue distribution, through asymp-
totic analysis (Section V). By using the moments expressions,
we prove that the eigenvalue distribution of the matrix repre-
senting the sampling system tends to the Marčenko–Pastur dis-
tribution [6] as the field dimension (Section VI).

We apply our results to the study of the MSE of the field esti-
mate, when the sensors measurements are noisy and the recon-
struction at the sink is performed through linear filtering.

We generalize the MSE expressions to the multidimen-
sional case (with finite ), and we show that, by using the
Marčenko–Pastur distribution instead of the actual eigenvalue
distribution, we obtain an approximation to the MSE of the
reconstructed field which is very tight for (Section VII).

Before providing a detailed description of our analysis, in the
next section we discuss some related studies and highlight our
main contributions with respect to previous work.
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II. RELATED WORK AND MAIN CONTRIBUTIONS

Relevant to our work is the literature on spectral analysis,
where, however, several studies deal with regularly sampled sig-
nals (e.g., [7] and references therein). An excellent guide to ir-
regular sampling is [8], which presents a large number of tech-
niques, algorithms, and applications. Reconstruction techniques
for irregularly or randomly sampled signals can be found in [3],
[9], and [10], just to name few. In particular, Feichtinger and
Gröchenig in [10] provide an error analysis of an iterative re-
construction algorithm taking into account round-off errors, jit-
ters, truncation errors and aliasing. From the theoretical point
of view, irregular sampling has been studied in [3], [9]–[14] and
references therein.

In the context of sensor networks, efficient techniques for spa-
tial sampling are proposed in [15] and [16]. In particular, in [16],
an adaptive sampling is described, which allows the central data
collector to vary the number of active sensors, i.e., samples, ac-
cording to the desired resolution level. Data acquisition is also
studied in [17], where the authors consider a unidimensional
field, uniformly sampled at the Nyquist frequency by low pre-
cision sensors. The authors show that the number of samples
can be traded off with the precision of sensors. The problem of
the reconstruction of a bandlimited signal from an irregular set
of samples at unknown locations is addressed in [18]. There,
different solution methods are proposed, and the conditions for
which there exist multiple solutions or a unique solution are dis-
cussed. Differently from [18], we assume that the sink can either
acquire or estimate the sensor locations and that sensors are ran-
domly deployed.

The field reconstruction at the sink node with spatial and
temporal correlation among sensor measures is studied, for in-
stance, in [19]–[23]. Other interesting studies can be found in
[24] and [25], which address the perturbations of regular sam-
pling in shift-invariant spaces [24] and the reconstruction of
irregularly sampled images in presence of measurement noise
[25].

We point out that our main contribution with respect to pre-
vious work on signal sampling and reconstruction is the proba-
bilistic approach we adopt to analyze the quality level of a signal
reconstructed from a set of irregular, noisy samples. Our anal-
ysis, however, applies to sampling systems where the field re-
construction is performed in a centralized manner. Finally, we
highlight that our previous work [5] assumes that sensors are
uniformly distributed over the spatial observation interval and
may be displaced around a known average location. The ef-
fects of noisy measures and jittered positions are analyzed when
linear reconstruction techniques are employed. However, only
the unidimensional case is studied, and semianalytical deriva-
tions of the MSE of the reconstructed field are obtained. In [26],
instead, sensors are assumed to be fixed, and the objective is to
evaluate the performance of a linear reconstruction technique in
the presence of quasi-equally spaced sensor layouts.

A. Main Results

The goal of this work is to provide an analytical study on
the reconstruction quality of a multidimensional physical field,
with uncorrelated spectrum. The field samples are i) irregularly
spaced, since they are gathered by a randomly deployed sensor

network and ii) affected by i.i.d. noise. The sink node receives
the field samples and runs the reconstruction algorithm in a cen-
tralized manner. Our major contributions with respect to pre-
vious work are as follows.

1) Given a -dimensional problem formulation, we obtain an-
alytical expressions for the moments of the eigenvalue dis-
tribution of the reconstruction matrix. Using the expres-
sions of the moments, we show that the eigenvalue distri-
bution tends to the Marčenko–Pastur distribution [6] as the
field dimension .

2) We apply our results to the study of the quality of a recon-
structed field and derive a tight approximation to the MSE
of the estimated field.

III. PRELIMINARIES

We first present the multidimensional formulation of our
reconstruction problem. Then, we give some background on
linear reconstruction techniques and generalize to the mul-
tidimensional case some results previously obtained in the
unidimensional case [5]. Finally, we highlight the main steps
followed in our study.

Notation: Lower case bold letters denote column vectors,
while upper case bold letters denote matrices. We denote the

th entry of the matrix by , the transpose of by
, and the conjugate transpose of by . The identity matrix

is denoted by . Finally, is the average of and subscripts to
the average operator specify the variable with respect to which
the average is taken.

A. Irregular Sampling of Multidimensional Signals

Let us consider a -dimensional, spatially-finite physical field
, where sensors are located in the hypercube

and measure the value of the field. We assume
that the sensor sampling points are known. At first, we consider
that they are deterministic, then we will assume that they are
i.i.d. random variables uniformly distributed in the hypercube

.
When observed over a finite region, a -dimensional phys-

ical field with finite energy admits an infinite -dimen-
sional Fourier series expansion with coefficients , such that

where is a vector
of integers and , represents the index of the
expansion along the th dimension. We truncate the expan-
sion to terms per dimension where is such that

Therefore,
one can think of as the approximate one-sided bandwidth
(per dimension) of the field, which can be approximated over
the finite region as

(1)

where the term is a normalization factor and
represents a -dimensional sum over the vector , with

. Also, and the function
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maps the vector onto a scalar index. Note that, while has
a vectorial index, has a scalar index and it has been in-
troduced to simplify the notation. As an example, for
and , we have and

.
Let with ,

, be the set of sampling points, and
, , the values of the corresponding field

samples. Following [3], we write the vector of field values as
a function of the spectrum:

(2)

where is a vector of size , whose th entry is
given by , and is the matrix

(3)

In general, the entries of can be correlated with covariance
matrix , and . In the
following, we restrict our analysis to the class of fields char-
acterized by . If the sensor measurements,

, are noisy, then the relation between sensors’ sam-
ples and field spectrum can be written as

(4)

where the noise is represented by the -size, zero-mean random
vector , with covariance matrix . We define
the signal-to-noise ratio on the measure as

.

B. Sampling Rate

Following [5], we introduce the parameter defined as

(5)

This parameter represents the ratio between the number of har-
monics used for the field reconstruction and the number of sen-
sors sampling the field. In the following, we consider .
Notice that for fixed and , the number of samples expo-
nentially increases with .

C. Previous Results on Reconstruction Quality

Given an estimate of the field spectrum , the reconstructed
signal is

(6)

As reconstruction performance metric, we consider the MSE of
the field estimate, which, for any given set of sampling points

, is defined as

(7)

where the average is taken with respect to the subscripted
random vectors. Note that (7) still assumes that the sampling
points are deterministic; this assumption will be removed later
in the paper.

For linear models such as (4), several estimation techniques
based on linear filtering are available in the literature [27]. We
employ a filter such that the estimate of the field spectrum is
given by the linear operation

(8)

where is an matrix. In particular, we consider
the linear filter providing the best performance in terms of MSE,
i.e., the linear minimum MSE (LMMSE) filter1 [27]

(9)

where .
From now on, we carry out our analysis under the assumption

that the elements of the set are independent random vectors,
with i.i.d. entries, uniformly distributed in the hypercube .

In [5], we have shown that a simple and effective tool to eval-
uate the performance of large finite systems is asymptotic anal-
ysis. We computed the MSE by letting the field number of har-
monics and the number of samples grow to infinity, while their
ratio is kept constant. We observed the va-
lidity of asymptotic analysis results, even for small values of
and . Similarly, here we consider as performance metric the
asymptotic average MSE, normalized to :

(10)

where below the limit denotes the ratio which is kept constant.
In (10), the average is over all possible realizations of the set

. Using (7)–(9), and the above definitions, in Appendix E we
show that, in the case of the LMMSE

(11)

where is a random variable with probability density func-
tion (pdf) , distributed as the asymptotic eigenvalues of

. The subscripts and of indi-
cate that the distribution of the asymptotic eigenvalues of
depends on both the field dimension and the parameter .

The matrix plays an important role in our analysis; in the
following, we introduce some of its properties. In the unidimen-
sional case , is a Hermitian
Toeplitz matrix given by

. . .

1Notice that when the covariance matrix of � is known, the LMMSE filter
generalizes to �� � � � ��� � � .
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where ,
. For , can be defined recursively

as a Hermitian block Toeplitz matrix
with non-Hermitian Toeplitz blocks

...
...

...

where

(12)

and . That is, the matrix is composed
of blocks of size ,
each including blocks of size

, and so on. The smallest blocks have size
; they have the same structure as matrix in the

unidimensional case; however, only those on the main diagonal
have a Hermitian structure. Proof of this is given in [28] for

; the extension to the -dimensional case is straightforward.

IV. ESTIMATION ERROR CALCULATION METHOD

The analysis detailed in the next sections consists of the fol-
lowing main steps.

i) As a practical case, we consider the asymptotic expression
of the LMMSE in (11) and notice that an analytical eval-
uation of the asymptotic LMMSE could be obtained by
exploiting the closed-form expression of the eigenvalue
distribution, , of the reconstruction matrix. How-
ever, such expression is still unknown. Hence, as a first
step, we derive a closed-form expression of the moments
of , for any and , and provide an algorithm to com-
pute them.

ii) We show that the value of the moments of the eigenvalue
distribution decreases as the field dimension increases.

iii) We prove that, as , the expression of the eigen-
value distribution tends to the Marčenko–Pastur distribu-
tion.

iv) By using the Marčenko–Pastur distribution, we are able
to obtain a tight approximation for the LMMSE of the
reconstructed field, which holds for any finite value of .

V. CLOSED-FORM EXPRESSION OF THE MOMENTS OF THE

ASYMPTOTIC EIGENVALUE PDF

Ideally, we would like to obtain the analytical expression of
the distribution of the asymptotic eigenvalue of , for
a given . Unfortunately, such a calculation seems to be pro-
hibitive and is still an open problem. Therefore, as a first step,
we compute the closed-form expression of the moments
of , for any positive integer .

In the limit for and growing to infinity with constant ,
the expression of can be easily obtained from the powers
of as in [29] and [30]

(13)

In Section V-A, we show that is a polynomial in ,
of degree [see (24)]; the remaining subsections describe
how to compute this polynomial.

A. Partitions

Using (12), the term in (13) can be written as

(14)

where ,
, , and

In (14), the average is performed over the random set of posi-
tions , with independent and uniformly dis-
tributed elements. To obtain a closed-form expression of the dis-
tribution moments, we rewrite (14) by using set partitioning.

Let be the set of integers from 1 to . We
observe that any given vector partitions, the set into

disjoint nonempty subsets ,
where , , is the set of indexes of the entries
of taking the same value . That is,

(15)

and is the number of distinct values taken by the entries
of vector . Subsets have the following properties:

for . Also, we point out that, since is the number of
values that the entries can take, there exist
vectors generating a given partition of made of
subsets. In order to clarify the above concepts, we provide an
example below.

Example 1:: Let , then . Also, let
. Since the distinct values in are 3,
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Fig. 1. Partitions tree of depth � � �. The path ��� � ��� �� �� �� employed in
Example 2 is highlighted by using dashed lines.

4, 5, 9, we have . It follows that is partitioned into
the following subsets:

Hence, the partition of induced by is
{{1,5},{2},{3,4},{6}}.

Next, we introduce an effective method to represent partitions
of a set , by building a tree of depth , as in Fig. 1. Such
a representation will allow to simplify the notation in the fol-
lowing analysis. To build the tree of depth , we proceed as fol-
lows. Each node of the tree is assigned with a label from the set

, starting from the root which is labeled by 1.
Each node generates leaves, labeled in increasing order
from 1 to , where is the largest label on the path from the
root to such node. Note that, at level , any value in
is used to label the leaves at least once.

Then, given a tree of depth , we define as
a path of length from the tree’s root to a leaf. We observe that
a vector can be represented as a path in the tree of depth .
This is done by assigning a label in increasing
order to every distinct value of ; the vector collecting the la-
bels is the path corresponding to the given . We have that the
path , corresponding to a given , defines in the tree of depth

the same partition of the set as the one induced by . In-
deed, given a partition of , the subset defined in (15) can
be rewritten as

(16)

i.e., as the set of integers corresponding to the depths of the
th label in the path. As a last remark, consider the number

of distinct values in (i.e., the number of distinct labels in )
to be equal to , and recall that the number of all possible
values taken by the elements of is equal to . It follows that

different ’s yield the same vector . This is in
agreement with the fact that, given , there are
different ’s generating the same partition consisting of
subsets. Again, for the sake of clarity, we give an example.

Example 2: Let us consider and . The
vector can be represented in the tree of depth 4 as the path

(i.e., the path highlighted with dashed lines in
Fig. 1). In there are two distinct values (namely, 4 and 9), or,
equivalently, in the path there are two labels (namely, 1 and 2);
then . Label 1 appears in at depths 1, 3, and
4 , while label 2 appears at depth 2 .
The partition of induced by or, equivalently,
by is therefore: {{1,3,4},{2}}.

From the discussion above, it should be clear that considering
a partition of is equivalent to considering a path in a tree
of depth . Hence, in the following analysis, we will refer to a
partition through its corresponding path .

We now exploit set partitioning to rewrite (14). Since the
random vectors are independent, given , the average op-
erator in (14) factorizes into terms, i.e.,

(17)

Each term depends on a single random vector . Moreover,
since the entries of are independent random variables uni-
formly distributed in [0,1), we have

(18)

where and are the th entries of and , re-
spectively, where the function is the Kronecker’s delta, and
where . By substituting (17)
and (18) in (14) and by expanding the summation , we
obtain

(19)

where . For any given , the
expression

(20)

is a polynomial in , since it represents the number of
points with integer coordinates contained in the hypercube

and satisfying the constraints

(21)
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for . In Appendix A, we show that one of these
constraints is always redundant and that the number of linearly
independent constraints is exactly equal to . As a conse-
quence, the polynomial has degree , and, for
large values of , we have .

Now, using (19) and (20), the limit in (13) is given by

(22)

Equation (22) can be further simplified by considering that there
exist vectors generating a given partition
of made of subsets, or, equivalently, a path of length

with distinct labels.
Let be the set of vectors , each corresponding to a distinct

partition of . Also, let us write and as functions
of the partition induced by , i.e., as functions of . Then, we
obtain

(23)

where the following holds:
• the notation represents the sum over all vectors

generating a given path ;
• the equality holds because the number of vectors

generating a given is .
Note that, for large , .
Also, since is a polynomial in of degree

, for large values of we have
, where

is the coefficient of degree of . Therefore,
taking the limit, we obtain

(24)
where is the subset of containing paths with
distinct labels, and

(25)

Note that the coefficient represents the volume of the
convex polytope described by the constraints in (21), when the
variables are considered as real and limited to a -dimen-
sional hypercube of volume 1. As a consequence, we have

.
Equation (24) provides a closed-form expression of the mo-

ment , as a polynomial in of degree . Again, for
the sake of clarity, we give an example below.

Example 3: Let and . We have
, and the partition of is {{1,5},{2},{3,4},{6}}.

Then, the set of constraints (as in (21)) are given by

The last equation is redundant since can be obtained from
the first three constraints. Simplifying, we obtain ,
and . Since each variable ranges from

to , the number of integer solutions satisfying
the constraints is exactly , and then

.
Next, in order to compute , we need to following:
• to enumerate the partitions, i.e., the vectors , for

each (see Section V-B);
• to compute the coefficients , for any and

(see Section V-C).

B. Partitions Enumeration

We notice that represents the set of partitions of a -ele-
ment set, thus it has cardinality , where is the

th Bell number or exponential number [31]. Furthermore, the
subset has cardinality , which is a Stirling
number of the second kind [32] given by

with .

C. Computation of the Coefficients

The last step required for the computation of is the
evaluation of the coefficients , for every . We have
the following lemma.

Lemma 5.1: For any (or, equivalently, any partition
of ) and any arbitrary integer , with , the
coefficient in (25) is given by

(26)

where:
• ;
• .

Proof: The proof can be found in Appendix B.

D. A Practical Method for the Moments Computation

Equation (26) in Section V-C shows that the computation
of requires the evaluation of integrals. However,

is very large even for small , e.g., and
.

The computational complexity can be reduced by recursively
applying the simplification rules defined in the following
lemma.

Lemma 5.2: Let
• be the path in a tree of depth , corre-

sponding to the partition of into subsets;
• be the subsets of defined as in

(16);
• :
• be the path obtained from by removing .

We have the following rules:
1) if has cardinality 1 (i.e., is a singleton) or
2) if contains adjacencies (in the circular sense), i.e., both

and ,
then .
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TABLE I
EXAMPLE OF COMPLEXITY REDUCTION USING THE RULES

DESCRIBED IN LEMMA 5.2

Proof: The proof is a direct consequence of Lemma 5.1
and can be found in Appendix C.

Table I shows two examples of how the rules described in
Lemma 5.1 can be applied. Example 1 in the Table assumes

and . At step 1, we note that the
third element of is a singleton, then, by applying rule
1, we can remove it from the path. At step 2, we find that in
there are some adjacencies, hence we apply twice rule 2 (steps
2 and 3). At step 4, the second element of is a singleton, and
we remove it by applying rule 1. Eventually, at step 7, the path

is empty (i.e., has size ) and, thus, the corresponding
coefficient is .

Example 2 in the table assumes and
. After removing a singleton (step 1) and an

adjacency (step 2), the remaining path cannot be further re-
duced. Then, to compute the coefficient , we need to apply
directly Lemma 5.1 on the path . We obtain

In the following example, Lemmas 5.1 and 5.2 are exploited
to explicitly compute .{

Example 4: Let us consider . The total number of parti-
tions of is equal to . Considering the
tree of depth , we apply to each path the rules of Lemma 5.2,
and we find that 14 paths (partitions) out of 15 reduce to the
empty path, thus contributing with . The only path
that cannot be further reduced is . Thus, applying
Lemma 5.1 with , we obtain . From (24) and
considering all contributions, we obtain

VI. CONVERGENCE TO THE MARČENKO-PASTUR

DISTRIBUTION

In Section V, we have shown that the moments of the asymp-
totic eigenvalues of are polynomials in , given by (24).
In particular, the th moment has degree and is

Fig. 2. Marčenko–Pastur distribution.

given by the sum of positive contributions of the form
. Since and , for any ,

the following inequality holds:

i.e., for any given and , the moments of the asymptotic
eigenvalues decrease as the field dimension increases. The
series , as a function of , is positive and monotonically
decreasing, thus it converges to:

(27)

Lemma 6.1: The moments are the Narayana poly-
nomials, given by

(28)

where are the Narayana

numbers [34], [35]. Moreover, the random variable fol-
lows the Marčenko–Pastur distribution [6] with pdf (see Fig. 2):

(29)

where , , .
Proof: The proof is given in Appendix D.

In the following, we apply our findings to the study of the
LMMSE of a reconstructed multidimensional field; in partic-
ular, we exploit the Marčenko–Pastur distribution to compute
the expectation in (11).

VII. STUDY OF THE RECONSTRUCTION QUALITY THROUGH

THE MARČENKO–PASTUR DISTRIBUTION

Recall that the MSE provided by the LMMSE filter is [5]
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Fig. 3. MSE of the reconstructed field for � � � and varying values of �.
Comparison between the MSE asymptotic value (11) and the fully analytical
expression derived using the Marčenko–Pastur distribution (30).

where is distributed as the asymptotic eigenvalues of ,
with pdf .

By using the Marčenko–Pastur distribution instead of
, we have

(30)

where .
Equation (30) provides an approximation to the ,

which, as shown in the following plots, can be exploited to
derive the quality of the reconstructed field, given a finite .

We first consider and compare in Fig. 3 the expression
of the as in (11) (solid lines) with the one obtained by
using the Marčenko–Pastur distribution (dashed lines). The re-
sults are presented as functions of the and for different
values of . We computed (11) by averaging over the eigen-
values of 200 realizations of the matrix , with . The
plot shows that, for small values of , the Marčenko–Pastur dis-
tribution (30) yields an excellent approximation to the ,
already for . Instead, for values of greater than 0.2, the
expression in (30) fails to provide a valid approximation.

However, it is interesting to notice that, for , it is pos-
sible to obtain an accurate approximation of the using
the Marčenko–Pastur distribution, even for large values of .
This is shown by Figs. 4 and 5, which plot the results obtained
through (11) and (30) for equal to 0.4 and 0.8, respectively.
The results are presented as the varies and for different
values of the field dimension .

Looking at Fig. 4, we note that our approximation is tight for
, while Fig. 5 shows that, when , we still get a fairly

good approximation for as large as 0.8.

VIII. CONCLUSION

We considered a large-scale wireless sensor network sam-
pling a multidimensional field, and we investigated the mean-

Fig. 4. MSE of the reconstructed field, for � � ��� and � � 1, 2, 3. Compar-
ison between the MSE asymptotic value (11) and the fully analytical expression
derived using the Marčenko–Pastur distribution (30).

Fig. 5. MSE of the reconstructed field, for � � ��� and � � 1, 2, 3. Compar-
ison between the MSE asymptotic value (11) and the fully analytical expression
derived using the Marčenko–Pastur distribution (30).

square error (MSE) of the signal reconstructed at the sink node.
We noticed that an analytical study of the quality of the recon-
structed field could be carried out by using the eigenvalue dis-
tribution of the matrix representing the sampling system. Since
such a distribution is unknown, we first derived a closed-form
expression of the distribution moments. By using this expres-
sion, we were able to show that the eigenvalue distribution of the
reconstruction matrix tends to the Marčenko–Pastur distribution
as the field dimension tends to infinity. We applied our results
to the study of the MSE of the reconstructed field, when linear
filtering is used at the sink node. We found that, by using the
Marčenko–Pastur distribution instead of the actual eigenvalue
distribution, we obtain a close approximation to the MSE of the
reconstructed signal, which holds for field dimensions .

We believe that our work is the basis for an analytical study
of various aspects concerning the reconstruction quality of mul-
tidimensional sensor fields, and, more generally, of irregularly
sampled signals.
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APPENDIX A
THE CONSTRAINTS

Let us consider a vector of integers of size partitioning
the set in subsets , , and the set
of constraints (21). We first show that one of these constraints
is always redundant.

A. Redundant Constraint

Choose an integer , . Summing up all constraints
except for the th, we get

which gives the th constraint since .
Thus, one of the constraints in (21) is always redundant. Next,
we show that the remaining constraints are linearly inde-
pendent.

B. Linear Independence

The constraints in (21) can be arranged in the form:
with and being a matrix defined as

(31)

where

otherwise

and is obtained from by circularly shifting the rows to
the right by one position. Since one of the constraints (21) is
redundant, the rank of is . Now we prove that
the rank of is equal to .

Since the subsets have empty intersection, the rows of
are linearly independent; hence, has rank . Also, is ob-
tained from by circularly shifting the rows by one position
to the right, thus can be written as where is
the right-shift matrix [36], i.e., the entries of the th row
of are zeros except for an entry equal to 1 at position .
As a consequence, where the
rows of the matrix are obtained by circularly shifting the
vector and thus has rank .
Hence, using the properties of the rank of matrix products re-
ported in [36], we have

We recall that the system of linear equations has a finite
number of integer solutions bounded in . The
number of solutions decreases as increases.

APPENDIX B
PROOF OF LEMMA 5.1

Proof: Using (20) and (25), we obtain

We first notice that where the
matrix is defined in Appendix A and is a multidimen-
sional Kronecker delta [33]. Since the rank of is

(see Appendix A), then defines a subspace
of with dimensions. Therefore, considering
that is a vector of integers with entries ranging in the interval

and taking the limit for , we obtain
where and the func-

tion represents the Dirac delta. We have that can be
factorized as

(32)

where is the th row of . As already shown in Appendix A,
one of the constraints (21) is redundant and, hence, one of the
factors in the right-hand side of (32), say the th, must not be in-
cluded in the product. Now, moving to the Fourier transform do-
main, we can write . There-
fore

where . Integrating first
with respect to , we get

where is the th column of , taken after removing its th
row. By definition, the th rows of and of contain both

“0” and “+1”. Since , we have
and . No-

tice that, by definition of (see (31)),
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if and . Moreover, by the definition in (16),
we have when . Thus

APPENDIX C
PROOF OF LEMMA 5.2 (SIMPLIFICATION RULES)

Let be a singleton with and . We first notice
that, since is a singleton, . By applying
Lemma 5.1 with an arbitrary , we have

We now integrate with respect to , with and we
obtain

where and have been obtained from and by re-
moving their th and th element, respectively. Obviously,
has size and has size . Let be such that

, i.e., . Then

where has been obtained from by removing its th element.
APPENDIX D

PROOF OF LEMMA 6.1

In order to prove Lemma 6.1, we first note that may
contain both crossing and noncrossing partitions [37].

a) Noncrossing partitions: Every noncrossing partition
contains at least a singleton or a subset with adjacencies, and
therefore can be reduced by using the rules in Lemma 5.2.
After reduction, the resulting partition is still noncrossing, thus
it can be further reduced till the empty set is reached. It follows
that the noncrossing partition contributes to the
expression of with a coefficient .

b) Crossing partitions: Recall that, in general, the coeffi-
cient defined in (26) can be obtained by counting the solu-
tions of the system of equations: where the
matrix contains the coefficients of the constraints in
(21).

If is a crossing partition, then:
• (by definition, a partition with is

always noncrossing);
• it contains at least two subsets and , with ,

which are crossing.
Some crossing partitions can be reduced by applying the rules
in Lemma 5.2 but, even after reduction, they remain crossing.

Let us now focus on the crossing subset of a partition
which has been reduced by applying the rules in Lemma

5.2. Without loss of generality, we assume that , i.e.,
the partition contains elements with since
is not a singleton. Then, by definition of the matrix (see
Appendix A) its th row, , contains entries with value 1,

entries with value 1 and zeros. We then build the
matrix as . Notice that has rank

1 and the system of equations contains the constraints
induced by a partition with entries. Since
the system of equations contains a reduced set of con-
straints with respect to and, thus, a larger number of
solutions, it follows that .

It is straightforward to show that for a partition such as ,
with , the coefficient is given by Lemma 5.1 as

. This is a decreasing function of and
since we have

Therefore, we conclude that .
c) Crossing and noncrossing partitions: Let
be, respectively, the set of crossing and noncrossing parti-

tions of , with and .
Then
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where the equality is due to the fact that for noncrossing par-
titions , while for crossing partitions and,
hence, . In [38], it can be found that the
number of noncrossing partitions of size in a -element set is
given by the Narayana numbers and therefore

are the Narayana polynomials.
In [6], it is shown that the Narayana polynomials are the mo-
ments of the Marčenko–Pastur distribution.

APPENDIX E
PROOF OF (11)

We show that when the LMMSE filter is used, the expression
of the asymptotic MSE is given by (11). Indeed, by using (10),
(7), (8), and (9) we have

where and . Substituting (4) in the
above expression and assuming and

, we get

where . Let us consider an analytic function
in . Let be a random positive definite Her-
mitian matrix, where is the eigenvectors matrix
of and is a diagonal matrix containing the eigenvalues
of . By using the result for symmetric matrices in [39,
Ch. 6] combined with the result in [40, p. 481], we have

where the random
variable is distributed as the asymptotic eigenvalues of . It
follows that
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