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Abstract—A new architecture called integer-forcing (IF) linear
receiver has been recently proposed for multiple-input multiple-
output (MIMO) fading channels, wherein an appropriate integer
linear combination of the received symbols has to be computed as
a part of the decoding process. In this paper, we propose a method
based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski
lattice basis reduction algorithms to obtain the integer coefficients
for the IF receiver. We show that the proposed method provides
a lower bound on the ergodic rate, and achieves the full receive
diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL)
lattice reduction algorithm (CLLL) to solve the problem is also
investigated. Furthermore, we establish the connection between
the proposed IF linear receivers and lattice reduction-aided
MIMO detectors (with equivalent complexity), and point out the
advantages of the former class of receivers over the latter. For
the 2 x 2 and 4 x 4 MIMO channels, we compare the coded-
block error rate and bit error rate of the proposed approach with
that of other linear receivers. Simulation results show that the
proposed approach outperforms the zero-forcing (ZF) receiver,
minimum mean square error (MMSE) receiver, and the lattice
reduction-aided MIMO detectors.

Index Terms—MIMO, integer-forcing, lattice reduction,
Minkowski reduction, Hermite-Korkine-Zolotareff reduction,
complex Lenstra-Lenstra-Lovasz lattice reduction, linear re-
ceivers.

I. INTRODUCTION

ODERN wireless communication systems use multiple

antenna transceivers to achieve capacity gains. It is
known that such gain comes at the cost of high decoding com-
plexity at the receiver [1]. On one extreme, high-complexity
joint maximum likelihood (ML) decoders can be used at
the receiver to reliably decode the information. On the other
extreme, there are well-known linear receivers such as the ZF
receivers, the MMSE receivers [2], and lattice reduction-aided
MIMO detectors [3], [4], [5], which reduce the complexity of
the decoding process with respect to ML decoding, trading
off some error performance. The ZF, MMSE, and lattice
reduction-aided MIMO receivers use the knowledge of the
channel state information (CSI) [3], [5] at the receiver. For
the ZF and the MMSE receivers, the channel coefficient
matrix H is used as it is to recover the information symbols.
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For the lattice reduction-aided MIMO detectors, the matrix
H is reduced to an equivalent channel matrix through a
lattice reduction algorithm, prior to recovering the information
symbols. The main purpose of this channel reduction is to
obtain an equivalent channel matrix which “looks more like
an orthogonal matrix”, which in turn is more suitable for
component-wise symbol decoding. It is well known that the
lattice reduction-aided MIMO decoding algorithms achieve
the full receive diversity [4], [6], while the ZF and MMSE
receivers only provide receive diversity of one for the full-
rate transmission in n x n MIMO channel [7]. There are
also receiver architectures which “focus” a lattice basis onto
another basis suitable for specific detection such as trellis
decoding [8]. For MIMO receivers with near optimum per-
formance, we refer the reader to decoding by sampling [9].
For various transmitter-side techniques that employ linear
precoding schemes based on lattice codes, we refer the reader
to [3], [10] and the references within. Throughout this paper,
we only consider the receiver-side techniques with no CSIT
for MIMO channels.

A new receiver architecture called integer forcing (IF) linear
receiver has been recently proposed in [1], [11], [12] to
attain higher rates in MIMO channels with reduced decoding
complexity. In this framework, the source employs a layered
transmission scheme, and transmits independent codewords
simultaneously across the layers. A distinctive property of this
scheme is the use of identical lattice codes as codebooks for
each layer. At the receiver side, each layer is allowed to decode
an integer linear combination of transmitted codewords. Since
any integer linear combination of lattice points is another
lattice point, the decoded point will be another lattice point,
and this substantially reduces the decoding complexity. This
idea for MIMO detection was derived from the compute-and-
forward approach for physical layer network coding [13], [14],
[15], [16], [17]. In the MIMO IF architecture, a filtering matrix
B is used to approximate the channel matrix H to a “nearest”
integer matrix A [1]. In such a case, finding a non-singular
integer matrix A, whose rows play the role of the coefficients
of the linear system of equations, is crucial. Hence, a matrix
B is needed such that A is full rank and BH =~ A, with
minimum quantization error at high signal-to-noise ratio (SNR)
values. In the special case, when H has rational entries, the
matrix B is simply a constant (which is the least common
divisor of all the denominators of the entries of H) times
the identity matrix. The problem of finding A and B for IF
receivers is addressed in [1]. However, its solution is based on
an exhaustive search with high computational complexity. In
particular, the exhaustive search is computationally complex
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even for 2 x 2 real MIMO channel, and becomes impractical to
implement for 2 x 2 complex MIMO and higher order MIMO
channels.

In this paper, we propose a practical method for choosing
the integer matrix A. Our method is based on the HKZ and
Minkowski lattice reduction algorithms [18], [19], which were
recently developed and employed as part of lattice reduction-
aided MIMO detectors in [20]. In particular, we use these
algorithms to find a matrix A, which is not only full rank but
also unimodular and invertible over the underlying alphabet R.
For the 2x2 and 4 x4 MIMO channels, we compare the perfor-
mance (in terms of ergodic rate and probability of error) of the
proposed practical IF solutions based on HKZ and Minkowski
lattice reduction with the known linear receivers. We show
that (7) it provides a lower bound on the ergodic rate of the IF
receiver, (if) it attains full receive diversity, (iii) it outperforms
lattice reduction-aided detectors in error performance, and (iv)
it trades-off error performance for computational complexity
in comparison with the IF receiver based on exhaustive search.
Since CLLL has much lower complexity in comparison to
HKZ and Minkowski lattice reduction algorithms, we also
study the use of CLLL algorithm to find matrix A. It has been
shown in [26] that CLLL-SVD algorithm does not provide full
diversity. In this work, we give a new low-complexity method
based on CLLL algorithm which achieves full receive diversity
only in 2 x 2 MIMO channels. This algorithm provides the
same performance as that of HKZ and Minkowski with much
lower complexity only in 2 x 2 MIMO channels. However,
we recall the better performance of IF receivers based on
HKZ and Minkowski lattice reduction algorithms for 4 x 4
MIMO channels and beyond. We also provide the connection
between IF linear receivers and lattice reduction-aided MIMO
detectors, and point out the benefits of the former class of
receivers over the latter.

The rest of the paper is organized as follows. In Section
II, we review the background on lattice reduction algorithms.
We present the problem statement along with the signal model
in Section III. In Section IV, we study the solution to the IF
receiver problem based on three lattice reduction algorithms.
The definition of the ergodic rate is introduced and a lower
bound on the ergodic rate of IF receiver is also presented. In
Section V, we point out the differences between the proposed
solution to IF receivers and the lattice reduction-aided MIMO
detectors. In Section VI, we present simulation results on the
ergodic rate and the error performance of IF receiver, and
compare these results with the traditional linear receivers as
well as the lattice reduction-aided MIMO detectors. Finally,
we present concluding remarks in Section VII.

Notations. Boldface letters are used for row vectors, and
capital boldface letters for matrices. We let C and Z[i] denote
the field of complex numbers and the ring of Gaussian inte-
gers, respectively, where 12 = —1. We let I, and 0,, denote the
n x n identity matrix and zero matrix and the operations (-)7
and ()" denote transposition and Hermitian transposition. We
also denote the composition of Hermitian transposition and
inversion by (-)~H. We let | - | and || - || denote the absolute
value of a real number and the Euclidean norm of a vector,
respectively, and the operation E(-) denotes mean of a random
variable. We let [2] and |v] denote the closest integer to x
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and the component-wise equivalent operation. We denote the
kxn matrix X = [x?, . ,xﬂ T, formed from stacking the n-
dimensional row vectors {X,, | 1 < m < k}. The symbol X; ,,,
denotes the element in the j-th row and m-th column of X.
The notation diag(z1, . .., x, ) refers to a diagonal matrix with

entries xy,...,x, on its main diagonal and zero elsewhere.
If X = diag(zy,...,z,), then X", for » € R denotes
diag(«7,...,2]). The Hermitian product of two vectors v

and w is denoted by (v, w) = vw’. The orthogonal vectors
generated by the Gram-Schmidt orthogonalization procedure
are denoted by {GS(b1),...,GS(b,)} which spans the same
space of {by,...,b,}. We define

5 (GS(by),GS(b;))
" Gsby)E

where 1 < m,j <n.

II. BACKGROUND ON LATTICES AND LATTICE
REDUCTIONS

A k-dimensional lattice A with a basis set {£€;,...,£x} C
R? is the set of all points of the form {x = uL|u € Z*} where
L is the generator matrix of A, formed by placing £,,’s as its
rows. Throughout the paper, we only consider full rank lattices
where d = k. The Gram matrix of A is G = LL”. The m~th
successive minima of a lattice, denoted by \,,, is the radius
of the smallest possible closed ball around origin containing
m or more linearly independent lattice points forming a basis.
Given a basis set, a lattice reduction technique is a process
to obtain a new basis set of the lattice with shorter vectors.
Specifically, for the generator matrix L, the matrix L' = UL
denotes a reduced generator matrix obtained through a lattice
reduction technique, where U is a unimodular matrix.

o A lattice generator matrix L’ is called Minkowski-reduced
if for 1 < m < d, the vectors E;n are as short as
possible [19]. In particular, L’ is Minkowski-reduced
if for 1 < m < d, the row vector E;n has minimum
possible energy amongst all the other lattice points such
that {£],...,£,,} can be extended to another basis of A.

o A generator matrix L’ for a lattice A is called HKZ-
reduced [18] if it satisfies

D |pm,j| <1/2forall1 <j<m<d,

2) the vector £; be the shortest vector of A, and

3) the orthogonal projections of the vector £; onto
{£,,...,€,} is a HKZ-reduced basis.

o A generator matrix L/ for a lattice A is called LLL-

reduced [21] if it satisfies
D) |ptm,j] <1/2forall 1 <j<m <d, and
2) 4||GS (€,_,) |I? < IGS (€,,) +
(12, 1GS (£, 1) ||? forall 1 <m < d,
where § € (1/4,1] is a factor selected to achieve a good
quality-complexity tradeoff.
For each 1 < m < d, it is known that the length of the m-
th row vector in L’ is upper bounded by a scaled version of
the m-th successive minima of A [20]. For the Minkowski
reduction, we have

X2, < 8,12 < max {1, (5/4)" "} 22, for 1 <m < a
(1)
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Fig. 1. System model block diagram.

For the HKZ reduction [22], we have

AN (m + 3)A2
o< ™ for 1< m < d. 2

For the LLL reduction [21], we have
BN P < BTN

m?

for1 <m<d, (3)

where 3 = (6 — 1/4)~ 1.

Note that the upper bounds given in (1)—(3) are all scalar
multiples of the successive minimas. These scalar multiples
are exponential in d for the LLL and the Mikowski reduction
algorithms, while polynomial in d for the HKZ reduction
algorithm.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a flat-fading MIMO channel with n transmit
antennas and n receive antennas as Fig. 1. The channel matrix
is denoted by H € C™*", where the entries of H are i.i.d.
as CN(0,1). We assume that H remains fixed for a given
interval (of at least N complex channel uses) and take an
independent realization in the next interval. We use an n-layer
horizontal coding scheme where the information transmitted
across different antennas are independent. For 1 < m < n, the
m-th layer is equipped with a lattice encoder &£ : R* — CV
which maps a message s,,, € R¥ over the ring R into a lattice
codeword x,, € A C C¥ in the complex space. If X denotes
the matrix of transmitted vectors, the received signal Y is
given by

YnXN = \/ﬁHanXnXN + Zn><N7

where P = SNTR and SNR denotes the average signal-to-noise

ratio at each receive antenna. We assume that the entries of Z
are i.i.d. as CA/(0,1). We also assume that H is known only
at the receiver. The goal is to project H (by left multiplying
it with a receiver filtering matrix B) onto a non-singular
integer matrix A. In order to uniquely recover the information
symbols, the matrix A must be invertible over the ring R.
Thus, we have

Y' £ BY = vVPBHX + BZ. 4)

The above signal model is applicable to all linear receivers
including the ZF, MMSE (with A = T in both cases), and

IF (where A is invertible over R). For the IF receiver [1]
formulation, a suitable signal model is

Y' = VPAX + VP(BH — A)X + BZ, (5)

where PAX is the desired signal component, and the
effective noise is vP(BH — A)X + BZ. In particular, the
effective noise power along the m-th row of Y’ is defined as

g(amabm)éP||bmH_amH2+HbmH2v (6)

where a,, and b,, denote the m-th row of A and B,
respectively. Note that in order to increase the effective signal-
to-noise ratio for each layer, the term g¢(a,,,b,,) has to be
minimized for each m by appropriately selecting the matrices
A and B. We formally put forth the problem statement below:

Problem 1: Given H and P, the problem is to find
the matrices B € C"*" and A € Z[i|"*" such that:
o The maxi<m<n g(am, by,) is minimized, and
o The corresponding matrix A is invertible over the
ring R.

In [1], the authors considered the invertibility of the matrix A
only over finite fields, in which case is equivalent to requiring
det(A) # 0. A block diagram of the scheme is presented in
Fig. 1 where D is a lattice decoder which converts y/,, to T,
an estimate for the m-th layer of AX.

A. Known Approaches

If we choose B = H™! (or pseudo-inverse of H in general)
and A =1, then we get the ZF receiver [2]. If we choose
B =H”S! (see (4) in [7]), where

S =P 1, + HHY, (7)

and A = I,,, then we get the linear MMSE receiver. With
this, the well known linear receivers can be viewed under the
umbrella of the IF architecture. However, the ZF and MMSE
receivers are known not to minimize g(a,,,b.,,) [1]. The
lattice reduction-aided MIMO detector [3] is another approach
which will be discussed in details in Section V. Henceforth,
we use W £ H#S~1! to simplify notation.



4908

In [1], the authors have proposed a method to solve
Problem 1. We now recall the approach presented in [1].
First, conditioned on a fixed a,, = a, the term g(a, b,,) is
minimized over all possible values of b,,. As a result, the
optimum value of b,, can be obtained as

b,, = aH?S™!. (8)

Then, after replacing b, from (8) in g(a,b,,), the term
g(a,aH”S~1) is minimized over all possible values of a to
obtain a,, as a,, = argmin, g(a,aH”?S~!). Based on the
proof of Theorem 3 in [1], the previous expression can be
written as

arg mZi[n] a(I, —-H"S 'H)a". 9)
acZm™

a, =

If we replace the singular value decomposition (SVD) of H
into (9), we get

a, = arg min aVDV#all (10)

a€cZli|"
where V is the matrix composed of the eigenvectors of
HH” and D is a diagonal matrix with m-th entry D, ,,, =
(Pp?, + 1)71, where p,,, is the m-th singular value of H.
Since the matrix I, — H?S™'H = VDV is symmetric,
G = VDVH can also be viewed as the SVD of G.
This makes G = LL a Gram matrix for a lattice with
generator matrix L. With this, we have to obtain n vectors
a,, 1 < m < n, which result in the first n smaller values
of aVDV#a'l along with the non-singular property on A.
In order to get a,,, 1 < m < n, the authors of [1] have
suggested an exhaustive search for each component of a,,
within a sphere of squared radius

L+ Pppaxs (I

where pmax = max,, p,,. Hence, for a fixed P, the complexity
of this approach is of order O (P™). It has also been pointed
out in [1] that this search can be accelerated by means of a
sphere decoder on the lattice with Gram matrix G = VDVH
see [23]. It is also shown in [1] that the exhaustive search ap-
proach provides a diversity order of n and a multiplexing gain
of n. At this stage, we note that the exhaustive computation
of a,, has high complexity, especially for large values of P
and n, and hence the approach in [1] is not practical even for
the 2 x 2 complex case.

IV. PRACTICAL INTEGER-FORCING MIMO RECEIVERS

In this section, we propose a practical method to get an
invertible integer matrix A solving the Problem 1. Once we
obtain A, we construct B = AW, where W £ H¥S~! for
simple notation. Henceforth, we only address the method for
finding A.

A. Lattice Reduction Algorithms for IF Architecture

It is pointed out in [1] that the minimization problem in
(10) is the shortest vector problem for a lattice with Gram
matrix G = VDV _ Since G is a symmetric positive definite
matrix, we can write G = LL7 for some L € Cr*"
by using Cholesky decomposition. With this, the rows of
L = VD3 generate a lattice, say A. Based on (10), a set
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of possible choices for {aj,...,a,} is the set of complex
integer vectors, whose corresponding lattice points in A have
lengths at most equal to the n-th successive minima of A.
The two well-known lattice reduction algorithms satisfying
the above property up to constants are HKZ and Minkowski
lattice reduction algorithms. In particular, we use HKZ and
Minkowski lattice reduction algorithms, given in [20], to
reduce the basis set in L and obtain a new generator matrix L.
Hence, both the HKZ and the Minkowski reduction algorithm
can be employed and the rows of L'L~! can be used to
obtain the desired matrix A for IF architecture. Since both
L’ and L are generator matrices for the same lattice A, the
integer matrix A is not only invertible over every non-trivial
ring but also unimodular. We summarize this in procedure
ALGORITHMI (H, P), where HKZ(-) and MINKOWSKI(-)
refer to HKZ and Minkowski lattice reduction algorithms,
respectively whose pseudo-codes are given in [20].

1: procedure ALGORITHMI(H, P)
2: S« P~ 'I, + HHY

3 (U,%,V) <~ SVD(H) where ¥ = diag(p1,...,pn)>
The SVD of H. . .

4: D<—diag((Pp%+1)7 o (PP2+1) )

5= L+« VD

6: L’ <~ HKZ(L) (or MINKOWSKI(L)) > Lattice

reduction algorithm.
7 return A = L’L~! and B = AW n rows a,, of A
for1 <m <n.
8: end procedure
For fixed P and n, the expected asymptotic complexity of
Minkowski lattice reduction algorithm is upper bounded by
(5/ 4)2"2, while the computational complexity of HKZ lattice
reduction is of order (2me)"t©U°827) [20]. Note that unlike
the IF receiver based on exhaustive search, the complexity
of the lattice reduction techniques are independent of P.
Hence, the above algorithms have lower complexity than
the exhaustive search and its accelerated version by sphere
decoder [24], [1], especially for large values of P. Based on
(1) and (2), if n = 2 in complex setting (which implies d = 4
in (1)), then the Minkowski algorithm provides us a basis set
with lengths exactly equal to all successive minimas. For larger
values of n, the bounds become loose. The following theorem
states that the above mentioned loose bound will not reduce
the diversity order of the scheme for large values of n.
Theorem 1: For a MIMO channel with n transmit and n
receive antennas over a Rayleigh fading channel, the integer-
forcing linear receiver based on lattice reduction achieves full
receive diversity.
Proof: The proof is similar to the proof of Theorem 4 in
the extended version of [1] except that equation (197) in [1]
becomes an inequality. [ |

B. CLLL Algorithm for IF Receiver

One can also consider complex version of the LLL lattice
reduction algorithm [25] (CLLL) to solve Problem 1. How-
ever, since CLLL aims only at obtaining the shortest vector
in the corresponding basis, it is not a suitable choice for
our problem. In addition, a small improvement to the poor
performance of CLLL for IF receiver has been obtained by
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combining it with two other algorithms [26]. This combina-
tion of three algorithms is called “combined CLLL-SVD”.
The simulation results show that the combined CLLL-SVD
algorithm fails to achieve full receive diversity [26]. Now, we
proceed to introduce a small modification to Algorithm 2 of
[26] in order to get a better quality A matrix. Let us define

flc,d) 2 p~(m+badf 4 pdHH?A?
—vP-ncH"dY — vV P-ndHc! + cc¥,

for 0 #c e Z[i]" and 0 #d € C".
Lemma 1: For a fixed c, the optimum value d,, that mini-
mizes f(c,d) is d,, = vV P"cW.
Proof: Setting 0 = g—g, we have

g—é = p~(tUgH 4 pHH"Q? — VP-"Hc",
pr— 0’

which turns out that d,,, = vV P*cW. |
Now if we substitute back d,, into f(c,d), we get

fle,d,) = c(PT'WW"+WHWH
~WH - WH) c”.

It is easy to see that f(c,d,) = P lg(c,cW) =
P~ 1eVDV#c | where the second equality follows from (9).
This implies the following proposition.

Proposition 1: A solution 0 # ¢ € Z[i]™ with correspond-
ing optimum d = v/P"c¢W to minimize the function f is
also a solution with corresponding optimum d = ¢cW to the
minimization of the function g.

Based on the above progosition, we take the approach of

minimizing f (c, V' P"cW ) rather than g(c,cW) and instead

of conditionally minimizing f (c, \/ﬁcW), we solve the
unconditional minimization of f(c,d) with an additional
constraint of d € Z[i]™. We recognize that minimizing f(c,d)
with ¢,d € Z[i]™ is nothing but finding the shortest vector of
a 2n—dimensional complex lattice A’ generated by

L [ VP-(n1L, | —VP-"H
B 0 | L

The above observation stems from the fact that f(c,d) =
vLLEvH = ||vL||?, where v € Z[i]*" and v = [d|c] formed
by adjoining the vector d after c.

Our CLLL-based solution for Problem 1 is as follows: for
the matrix L in (12), let L’ denote the 2n—dimensional CLLL-
reduced generator matrix of A’. Using the short vectors in L/,
we obtain the complex integer matrix V with 2n row vectors
Vin = [dm|cy] such that V = /L1, It gives us complex
integer vectors d,,, ¢, resulting in smaller values for f(c,d)
and consequently smaller values for g(c,d). Hence, we can
use the vectors d,,, ¢, for the IF architecture as b,, = d,,,
and a,, = c,,. Note that we ignore b,, as it is a complex
integer vector and we only use a,,, and subsequently, obtain
b,,, using (8). A summary of this can be found in procedure
ALGORITHM?2(H, P), where CLLL(-) refers to the CLLL
algorithm whose pseudo-code is given in [25].

1: procedure ALGORITHM2(H, P)
2: S « P71, + HHY

:| c CQTLXQTL. (12)
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—(n+1 _ —-n
. L. | VP OUL | —VPH

0 | I,
4: L’ + CLLL(L)
5: V « LL!
6: Vi 4 [dm|Cim) >1<m<2n
7: a,, < ¢, and b,, + a,, W >1<m<2n
8: return A and B = AW > The best n vectors

satisfying conditions of Problem 1
9: end procedure

C. Ergodic Rate of IF Linear Receivers

For a given H matrix, the achievable rate R under the IF
architecture is given by [1],

R <minnR(H, a,,, by,), (13)

where

R(H,a,,,b,,) =log" ( (14)

)

g (a’ITL7 bm) ’
is the achievable rate for the m—th layer of lattice decoding,
and logt(z) = max{log(z),0}. Hence, the overall rate
is dominated by the layer which has the largest value of
g(am, by). Using (14), we now define the ergodic rate of
the IF architecture for a n x n MIMO channel as below.

Definition 1: The ergodic rate R, of an IF receiver for a
MIMO channel is defined as

R AE {n}in nR(H, apn, bm)} :

where the mathematical expectation is taken over the channel
coefficient matrix H.

Since a,,, and b,,, are functions of H, we can alternatively
denote R(H, a,,, b,,) as R(H, a,,(H), b,,(H)). As a result,
the definition of the ergodic rate does not depend on a specific
matrix pair A and B. For a given Hand P, let {@,,,b,, | 1 <
m < n} denote the IF solution based on the lattice reduction
algorithm. Further, let R, denote the corresponding ergodic
rate which is obtained as per Definition 1. It is straightforward
to observe that the ergodic rate of the IF architecture is lower
bounded by R., since {a,,,b,, | 1 < m < n} obtained using
the exhaustive search results in smaller values of g(-,-) when
compared to the lattice reduction technique.

V. COMPARISON OF IF RECEIVERS WITH LATTICE
REDUCTION AIDED MIMO DETECTORS

In this section, we point out the differences between the
conventional lattice reduction-aided MIMO detectors, and the
IF receivers based on lattice reduction techniques. In [6], the
authors have analyzed two types of lattice reduction-aided
decoding based on reducing either dual or primal lattice, and
have shown that the former method is more appropriate to
reduce the effective noise, see also [27], [28]. Hence, we only
compare IF receivers with lattice reduction-aided detectors,
which use dual lattice basis reduction. In this technique, the
goal is to reduce the dual lattice generator matrix H=# to an
equivalent matrix H' using the lattice reduction algorithms [1],
[4], [25]. If the columns of H’ denote the reduced basis
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set corresponding to the columns of H™#, then we get
H' = H YU, where U is a unimodular matrix. If we use

B=(H)" =U"H, (15)
and A = U¥ | then (4) can be written as Y’ = PUH#X +
BZ. Since UH is a unimodular matrix, it is invertible over
‘R and the information symbols can be recovered by solving
a system of linear equations based on U¥ . Henceforth, when
we use lattice reduction on H= and use B = UPH !, we
refer to such a method as “lattice reduction zero-forcing” (LR-
ZF) detector. Apart from the above choice of B, one can also
use

B=U"w, (16)

as in (8) to obtain a better projection matrix. For such a
choice, we refer to the method as “lattice reduction MMSE”
(LR-MMSE) detector. Note that for large values of P, the
matrix W is the pseudo-inverse of H, and hence, the LR-
ZF detector and the LR-MMSE detector are the same [29].
It follows that LR-MMSE is a natural generalization of LR-
ZF. We are interested in LR-MMSE since MMSE is known
to perform better than ZF at low and moderate P values.

We now compare the lattice reduction-aided detectors with
the IF linear receiver based on lattice reduction techniques.
To facilitate the comparison, we study the role of LR-ZF
and LR-MMSE detectors in solving the Problem 1. Along
that direction, applying lattice reduction on H~# can be
viewed as the result of substituting b,, = aH~! in the
problem of minimizing g(a,,,b,,) conditioned on a fixed
a,, = a. However, we already know that the solution to
the above conditional minimization problem is given by (8),
which is not b,, = aH~!. Hence, the choice of B in
(15) and (16) does not minimize the effective noise. This
explains the weakness of the LR-ZF and LR-MMSE receivers
in solving the Problem 1, and in-turn explains the benefit of
the proposed IF linear receivers. This key difference between
the IF receivers and lattice reduction-aided detectors can be
pointed to Step 1 in Table I. This difference will result in
performance degradation of lattice reduction-aided decoders
in comparison with IF receivers at low and moderate values
of P. However, for large values of P, the error performance
of LR-ZF, LR-MMSE and the IF receiver based on lattice
reduction will coincide since the MMSE solution is known
to coincide with the ZF solution at high SNR values. The
above advantages are applicable for IF receivers based on
lattice reduction techniques. Apart from the above discussed
advantages, in general, the IF receiver brings in the following
advantages: (7) in the IF receiver, if the computations are done
over a finite field, the integer matrix A must be non-singular,
however, in the lattice reduction-aided detectors, the integer
matrix U is unimodular, which is a stronger condition than
the non-singularity property. This relaxation in the constraint
will help the IF receivers in selecting a better integer matrix
A, (ii) the other difference, pointed out in [1], comes from
the level of operation of the decoder. The well-known lattice
reduction-aided detectors work at symbol-level by detecting
the symbols of UPX from the received vectors. However,
the IF receiver primarily works at codeword level, although
one can then look at the symbol level as well.
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VI. SIMULATION RESULTS

In this section, we present simulation results on the ergodic
rate and the probability of error of various linear receivers.
For the ergodic rate, we compare the IF receivers based
on the exhaustive search and the lattice reduction algorithm
on 2 x 2 MIMO channels. For the probability of error, we
compare the following receiver architectures on 2 x 2 and 4 x 4
MIMO channels: (i) IF linear receiver with exhaustive search,
(ii) IF linear receiver with lattice reduction solutions, (iif)
lattice reduction-aided detectors, and (iv) the joint maximum
likelihood (ML) decoder. For the IF receiver with exhaustive
search, the results are presented with the constraint of fixed
radius for the exhaustive search. We have not used the radius
constraint given in (11) as the corresponding search space
increases with P. Instead, we have used a fixed radius of
8 for all values of P. This radius was optimized based on
the experimental results by studying the trade-off between
the complexity and the error-performance for various radius
values. For the 2 x 2 complex MIMO channel, there are only
4 shortest vectors to be found in the real dimension. Further,
the entries of the channel are Gaussian distributed with higher
concentration towards the zero value. This intuition prompted
us to experiment with shorter values on the radius. With this
new radius, we have noticeably reduced the complexity of
brute force search.

A. Ergodic Rate Results

In order to obtain the ergodic rate, we have used (13),
(14) and Definition 1. To this end, for a given H and P, the
corresponding matrices A and B are obtained using various
introduced methods. Next, we have calculated (14) for each
row of A and B. Finally, (13) is computed and an average of
(13) over different realizations of H gives us the ergodic rate
corresponding to the employed algorithm at P.

In Fig. 2, we compare the ergodic rates of the IF receivers
with the ergodic MIMO capacity [30] for 2 x 2 MIMO channel.
Note that the IF receiver based on Minkowski lattice reduction
provides ergodic rate approximately same as that of the IF
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TABLE 1
THE ROLE OF IF, LR-ZF, AND LR-MMSE DETECTORS IN SOLVING THE PROBLEM 1. IN THIS TABLE, LR DENOTES LATTICE REDUCTION. WE RECALL
THAT W = HHS-1,

IF receiver |

LR-ZF receiver |

LR-MMSE receiver |

Step 1 Substitute b,,, = aW Substitute b,, = aH I Substitute b, = aH 1
in g(am,bm) in g(am, bm) in g(am,bm)
Step 2 | argmingeyn aVDVTal [ argmingegin aH T (H- D Ta | argmingeypn aH- T(H-1)7a
Step 3 employ LR on employ LR on employ LR on
VD2 HH H-H

Step 4 use the output of LR use the output of LR use the output of LR

as the rows of as A as the rows of UH as the rows of UH
Step 5 use B = AW use B=UPH! use B = UAW

—*— ML

—=o— IF Brute Force

—*— IF-Minkowski

107¢L | —8— IF-HKZ

LR-MMSE

—&0— LR-ZF

— — —MMSE

5 . ; ; ;
5 10 15 20 25 30

SNRin dB

Coded-Block Error Rate

Fig. 3. Coded-block error rate for various IF linear receivers versus lattice
reduction-aided MIMO detectors with 4-QAM constellation over a 2 x 2
MIMO channel.

receiver based on exhaustive search. For the IF receiver based
on exhaustive search, we have searched for a non-singular
A over Z[i]. For higher order MIMO channels, we have not
studied the tightness of the lower bound since the exhaustive
search is too complex to implement.

B. Error Probability Results

For the error probability results, we employ the points from
a 2-dimensional integer lattice as codewords. With reference
to the signal model in Section II, we use N = 1 and
A = Z][i]. In general, large block-length integer lattice codes
(with N > 1) can be used to further improve the error
performance. However, in this work, we are only interested in
the diversity achieved by the proposed reduction algorithms,
and hence, we consider N = 1. We now present the error
performance of various receiver architectures with 4-QAM
constellation. We use the finite constellation S = {0, 1,4, 1+i}
carved out of the infinite lattice Z[i], where S is the set
of coset representatives of Z[i]/27Z][i]. With reference to the
signal model in Section II, R corresponds to the finite ring
Zs = {0, 1}. In this method, an appropriate translated version
of the symbols of S is transmitted to reduce the average
transmit power and removed at the receiver. After suitable
modification on the received vector we get, y = VPHs + z,

where s € S"*!. Using the standard one-to-one relation
between C and R2, the received vector y is unfolded to a real
vector [20] to obtain y = /PHS + z, where § € {0,1}>"*1,
For this setting, we use modulo lattice decoding at the receiver
as follows:

1) Infinite lattice decoding: Each component of By is
decoded to the nearest point in Z to get y. In particular,
we use y = |By].

2) Projecting onto lattice codewords: Then, “mod 2”
operation is performed independently on the components
of y. With this, we get r =y (mod 2).

3) Decoupling the lattice codewords: Further, we solve
the system of linear equations r = AS (mod 2) over
the ring {0, 1} to obtain the decoded vector § = A~'r
(mod 2).

For higher order constellations such as M-QAM, where M is
a power of 2, the decoding process is similar to the above
steps except that the second and the third steps work on
the finite ring Z /37 = {0, 1,....v/M—1}. In general, for
decoding integer lattice codes of large block-length (with
N > 1), the above listed decoding procedure should be
suitably modified based on the structure of the underlying
lattice code. Obviously, the complexity of decoding arbitrary
length lattices is larger than the rounding operation used for
the 2-dimensional lattices, and in particular, the complexity
depends on the existence of a low complexity decoder for
the underlying lattice code. In the second and third steps,
the complexity grows with the block length N. For example,
if the lattice code C C Z[i]'® from the Barnes-Wall lattice
BWhg = C + 4Z[i]'% [31] is employed (which corresponds
to N = 16), then step 1 is achieved by the decoder in
[31], while, step 2 and step 3 are solved over the finite ring
Zs=40,1,2,3}.

Remark 1: The last step of our decoding process involves
inversion (over real numbers) and mod 2 operation. These
two operations together can be considered as the inversion
operation over the ring {0, 1}. In our setting, the matrix A is
unimodular and hence invertible. Since A is always a square
invertible matrix, the inversion (using the Guassian elimination
technique) gives a unique s.

1) Coded-Block Error Rate: We are interested in studying
the capability of the proposed solutions in reducing the ef-
fective noise in (5). Along that direction, we define a coded-
block error if ¥ # AS. This refers to the event of incorrectly
decoding a block of codewords transmitted across all the
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Fig. 4. Coded-block error rate for various IF linear receivers versus lattice
reduction-aided MIMO detectors with 4-QAM constellation over a 4 X 4
MIMO channel. The IF Brute Force is computationally complex to simulate
in this case.

antennas. In order to obtain the coded-block error results for
the IF receiver, we implement the first step of the above
decoding procedure. In Fig. 3—4, we present the coded-block
error rate results for all the receiver architectures. For the
IF receiver based on exhaustive search, we search for non-
singular A over Z[i]. We refer to such a method as “IF Brute
Force”. From the figures, note that IF receiver with lattice
reduction solutions outperform the MMSE, LR-ZF, and LR-
MMSE receivers. This difference in the performance between
the proposed IF receiver and the lattice reduction-aided MIMO
detectors confirm the outcome of our comparative study in
Section V. For the LR-ZF, and LR-MMSE receivers, we
use the Minkowski reduction algorithm, and the decoding
operation is same as the IF receiver except that the matrix
B is obtained as in (15) and (16), respectively. Evident from
the figures, the proposed lattice reduction solution achieves
full receive diversity but trades-off error performance for
complexity in comparison with IF brute force search. In the
IF receiver based on brute force search, we search for non-
singular A over Z[i] (but not necessarily invertible over Z[i],
ie. A=t ¢ Z[i]"*™), however, in the IF receiver based on
lattice reduction, the integer matrix A is unimodular, which
is a stronger condition than the non-singularity property.
This relaxation in the constraint can be attributed to the
difference in the performance between IF receivers based on
exhaustive search and lattice reduction solution. This has also
been pointed out in [1]. From the figure, it is clear that
the ML decoder outperforms the class of linear receivers.
For the proposed IF receiver, a lattice reduction algorithm is
performed only at the beginning of each quasi-static interval
and subsequently, a system of linear equations has to be
solved for each codeword use. However, for the ML decoder,
a sphere decoder algorithm is performed for every codeword
use. Hence, the complexity of the proposed IF receiver is lower
than the ML decoder for slow varying channels.

2) Bit Error Rate: To obtain the BER results of the IF
receiver, we have implemented all the steps explained in the
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Fig. 6. BER for various IF linear receivers based on brute force search and
various lattice reduction algorithms with 4-QAM constellation over a 2 x 2
MIMO channel.

decoding procedure. For the IF brute-force search, we have
searched for A which is invertible over S. This additional
constraint is necessary to solve the linear system of equations
with a unique solution. In Fig. 5-8, we present the BER
results for all the receiver architectures. We call the approach
based on CLLL algorithm introduced in IV-B as “IF CLLL".
The figures show that in the case of 2 x 2 MIMO channel
the IF receiver with lattice reduction solution marginally
trades-off error performance for complexity in comparison
with brute force search. In particular, our approach provides
diversity results as that of the exhaustive search approach
with much lower complexity in comparison with fixed radius
exhaustive search. The error performance of lattice reduction-
aided MIMO detectors are also presented as other methods of
low-complexity detectors which achieve full diversity. Note
that for the 4 x 4 MIMO channel the IF-CLLL solution is the
only one which fails to provide diversity results.
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Fig. 7. BER for various IF linear receivers versus lattice reduction-aided
MIMO detectors with 4-QAM constellation over a 4 x 4 MIMO channel. The
IF Brute Force is computationally complex to simulate in this case.

C. Complexity Comparison

To get an idea on the relative complexities among the
proposed methods (as they are used for simulations), in
Fig. 9 we provide the average computation time of the three
algorithms to produce the output for various P values. These
three algorithms are HKZ, Minkowski and the brute force
as in [1]. We again remind the reader that the base line
option in terms of performance is exhaustive search proposed
in [1]. It is clear from the figure that our solution based
on HKZ and Minkowski lattice reductions has significantly
lower complexity than the brute force search. Note also
that the average computation time for the brute force search
increases with P up to SNR = 20dB, since we have used

min {8, V14 Pp?nax} as the radius.

The complexity and the diversity results of various IF
receivers are summarized in Table II. The complexity expres-
sions suggest that Combined CLLL-SVD and CLLL reduction
presented in Algorithm 2 has lower complexity in comparison
with the HKZ and Minkowski algorithms, especially for higher
order MIMO channels.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

The problem with designing MIMO IF receiver architecture
has two folds: (i) to find the integer matrix A based on
the channel matrix H such that the effective noise (after
the post-processing operations) is minimized, (ii) to design
efficient lattice codes which when used in the IF architecture
improves the error performance of IF receiver. Though the
problem statements in (i) and (ii) appear independent, the
solution to (i) is key to the effectiveness of the solution in
(ii). Therefore, in this paper, we have proposed a system-
atic method based on HKZ and Minkowski lattice reduction
algorithms to obtain integer coefficients for the MIMO IF
architecture. We have also discussed the possible use of CLLL
algorithm. We have presented the simulation results on the
ergodic rate, error performance and the average computation
complexity to reveal the effectiveness of lattice reduction
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Fig. 8. BER for various IF linear receivers based on brute force search and
various lattice reduction algorithms with 4-QAM constellation over a 4 x 4
MIMO channel. The IF Brute Force is computationally complex to simulate
in this case.

solution in comparison with other linear receivers. We have
also shown the connections between our solution and the
conventional lattice-aided MIMO detectors. In summary, the
proposed approach provides full receive diversity at a much
lower complexity in comparison with the optimum solution
based on exhaustive search. The IF receiver architecture still
has the following limitation. That is, the complexity of finding
the matrix A using HKZ and Minkowski lattice reduction
algorithms is still high when the number of antennas increase.
To verify the receive diversity of the proposed solution, we
have employed the 2-dimensional integer lattice constellations.
Once the diversity property with 2-dimensional constellations
(uncoded system) is shown, it is straightforward to see that
lattice codes will continue to provide the receive diversity,
with additional coding gain due to the distance properties of
the lattice code.

In general, a complete solution to the IF architecture de-
mands the design of good lattice codes (of large block lengths)
which are not only optimized in terms of error performance but
also compatible to work with decoders with lower decoding
complexity. This problem of lattice code construction is out
of the scope of this paper, and is certainly an important
problem for future work. Some possible strong lattices can
be found in [31], [32], [33], [34], and [35]. Studying coded
IF schemes with outer codes such as turbo and LDPC codes is
also an interesting forthcoming direction, which could reveal
more details on the possibility of near ML performance of
the IF receivers. Comparing IF architecture with other MIMO
linear detectors such as lattice reduction algorithm followed
by successive interference cancelation (SIC) is also of interest.
Another possible future work is to study the tightness of (11),
and possibly propose tighter bounds on this radius.
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TABLE 11
SUMMARY OF RESULTS.

( Approach | Complexity | Receive diversity |
IF based on Brute Force as in [1] P™ Full
IF based on HKZ reduction (27e)n+O(log2n) Full
IF based on Minkowski reduction (5/ 4)2"2 Full
IF based on Combined CLLL-SVD as in [26] (n*logn)/2 Not Full
IF based on CLLL reduction in Algorithm 2 ((2n)*log2n)/2 | Not Full (except for 2 x 2)
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