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Abstract—Current security techniques can be implemented
with either secret key exchange or physical-layer wiretap codes.
In this paper, we investigate an alternative solution for MIMO
wiretap channels. Inspired by the artificial noise (AN) technique,
we propose the unshared secret key (USK) cryptosystem, where
the AN is redesigned as a one-time pad secret key aligned within
the null space between a transmitter and a legitimate receiver. The
proposed USK cryptosystem is a new physical-layer crypto-
graphic scheme, which was obtained by combining traditional
network-layer cryptography and physical-layer security. Unlike
previously studied AN techniques, rather than ensuring nonzero
secrecy capacity, the USK is valid for an infinite lattice input al-
phabet and guarantees Shannon’s ideal secrecy and perfect secrecy
without the need for secret key exchange. We then show how ideal
secrecy can be obtained for finite lattice constellations with an
arbitrarily small outage.

Index Terms—Perfect secrecy, ideal secrecy, secret key, physical
layer security, MIMO wiretap channel.

I. INTRODUCTION

THE broadcast characteristics of wireless communication
systems are struggling to provide security and privacy.

Research on secure communication falls into two categories:
network layer cryptography and physical layer security. The
former assumes that the physical layer provides error-free data
links, in which security depends on encryption. In the latter,
the strategy is to use the characteristics of wireless channels to
protect the secret data from eavesdropping without the need of
encryption. Despite the differences between these categories,
both are rooted in Shannon’s perfect secrecy [1], which is
defined as the mutual information I(u;y) = 0; that is, the
secret message u and the eavesdropper’s received message y
are mutually independent. Perfect secrecy requires one-time
pad secret key v [1]. A weaker version of perfect secrecy
is ideal secrecy [1], in which no matter how much of y is
intercepted, there is no unique solution of u and v but many
solutions of comparable probability.
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Wyner [2] introduced physical layer security by replacing
the shared secret key in Shannon’s model with channel noise,
achieving weak secrecy ( lim

n→∞
1
nI(u;y) = 0) through channel

coding as the codeword length n goes to infinity. Csiszár subse-
quently proposed strong secrecy [3] based upon lim

n→∞
I(u;y) =

0, which further reduced information leakage. These pioneering
results require that the intended receiver has a better channel
than the eavesdropper, leading to a long line of research that
relies on noise or fading to degrade the eavesdropper’s channel.
Here, the secrecy capacity is defined as a measure of the
transmission rate, below which the eavesdropper can recover no
information [4]. For Gaussian wiretap channels with a helping
interferer, Tang et al. [5] studied achievable secrecy rate and
secrecy capacity. For wireless fading channels and multiple-
input multiple-output (MIMO) wiretap channels, Gopala et al.
[6] and Liu et al. [7] derived secrecy capacities. In the context
of wiretap code design, polar codes achieving strong secrecy
over discrete memoryless channels have been proposed in [8].
For Gaussian wiretap channels, nested lattice codes achieving
strong secrecy were proposed in [9]. The impact of finite
code length and finite constellations on Eve’s equivocation
rate was studied in [10]. Physical layer security schemes, in
general, require an infinite-length wiretap code to approach the
secrecy capacity; this limits the applicability of these schemes
to practical communication systems.

In contrast to physical layer security, traditional crypto-
graphic techniques can protect the secret message, even when
secrecy capacity is zero. Its aim is to achieve semantic secrecy
[11], so that it is physically infeasible to extract any informa-
tion about u due to the very high computational complexity
involved. The most widely used cryptographic technology is
public-key cryptography [12], which requires two separate
keys: a public key that encrypts the plaintext and a secret
key that decrypts the ciphertext. An example is the NTRU
cryptosystem [13], where the secret key is based on a short
vector of a convolutional modular lattice, Λ, and the public
key corresponds to the Hermite normal form basis of Λ [14].
For wiretap channels, public-key cryptography has been exten-
sively studied in [15], [16], which focus on issues of secret-
key generation and distribution problems. Bloch et al. [17]
showed how to implement secret-key agreement using low-
density parity-check (LDPC) codes. In [18], turbo codes are
introduced to speed up the encryption and decryption processes
of the advanced encryption standard (AES) cryptosystems.
Although traditional cryptographic techniques can be applied
independently to communication channels, the exchange of se-
cret keys between transmitter and intended receiver is required.
A significant challenge is to reduce the risk of key disclosure
during its distribution.
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Despite the similarities between cryptography and physical
layer security, and the potential for major advances in cryp-
tography through combining their advantages, the theoretical
connections between them have not yet been investigated. One
direction has been to add controlled interference at the eaves-
dropper side—that is, to jam the eavesdropper at the physical
layer. This idea extends previous studies that were limited to
the assumptions on the eavesdropper’s channel noise. In the
literature, it is commonly assumed that the transmitted message
and jamming signal follow a multivariate Gaussian distribution.
The standard strategy of existing jamming techniques, such as
artificial noise (AN) [19] and the cooperative jammer [20], is to
ensure theoretical non-zero secrecy capacity. In [21], we pro-
posed a variant of AN using a finite M -QAM alphabet, called
practical secrecy (PS) scheme, where, instead of increasing the
secrecy rate with AN, the eavesdropper’s error probability is
maximized.

In this work, we analyze the security of the PS scheme from
an information theoretical perspective. This theoretical advance
shows that the PS scheme is de facto an unshared secret key
(USK) cryptosystem, where AN serves as an unshared one-time
pad secret key. The result is a development of our understanding
of the benefits of AN, with a cryptographic perspective. We
show that the USK provides Shannon’s ideal secrecy, with no
secret key exchange, under Goel et al.’s assumptions on the
physical channels that enable the use of the AN scheme.

Our work differs from previous studies of AN [19], [22], be-
cause it puts forward four new aspects that were not previously
accounted for:

1) Shannon’s secrecy: we aim at achieving Shannon’s ideal
secrecy and perfect secrecy, rather than ensuring non-
zero secrecy capacity. We show that perfect secrecy is
achieved in the high-power AN limit.

2) Finite alphabet based on QAM signaling: with practical
perspective, we use finite input alphabets rather than the
Gaussian input.

3) Artificial noise: we have no special requirement of the
distribution of AN; that is, not necessarily Gaussian.

4) Secrecy outage: we show that Shannon’s ideal secrecy
can be achieved for finite signal constellations with an
arbitrarily small outage probability.

Section II presents the system model. Sections III and IV
describe the USK cryptosystem with infinite lattice constella-
tions. Sections V and VI analyze the USK cryptosystem with
finite lattice constellations. Section VII provides a discussion on
open questions. Section VIII sets out the theoretical and applied
conclusions. The Appendix contains the proofs of the theorems.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the Hermitian transpose,
inverse, pseudo-inverse of a matrix B by BH , B−1, and B†,
respectively. The inner product in the Euclidean space between
vectors u and v is defined as 〈u,v〉 = uTv, and the Euclidean
length ‖u‖ =

√
〈u,u〉. The Frobenius norm of matrix A is

denoted by ‖A‖F . Let {Xn, X} be defined on the same proba-
bility space. We write Xn

a.s.→ X if Xn converges to X almost
surely or with probability one.

We use the standard asymptotic notation f(x) = O(g(x))
when lim sup

x→∞
|f(x)/g(x)| < ∞. 0m×n denotes an m× n null

matrix. In denotes the identity matrix of size n. We write
Δ
= for

equality in definition. vol(S) denotes the Euclidean volume of
S. The cardinality of a set A is defined as |A|.

A circularly symmetric complex Gaussian random variable x
with variance σ2 is defined as x � NC(0, σ

2). A Chi-squared
distributed random variable x with k degrees of freedom is
defined as x � X 2(k). The gamma function is represented by
Γ(x). The real, complex, integer and complex integer numbers
are denoted by R, C, Z, and Z[i], respectively. E(x) and Var(x)
represent the mean and variance of the random variable x.
�(·) and �(·) represent real and imaginary parts of a complex
number. H(·), H(·|·) and I(·) represent entropy, conditional
entropy and mutual information, respectively.

II. SYSTEM MODEL

The MIMO wiretap system model is given as follows. The
number of antennas at the transmitter (Alice), the intended
receiver (Bob), and the passive eavesdropper (Eve) are denoted
by NA, NB, and NE, respectively. Alice would like to com-
municate with Bob with arbitrarily low probability of error,
while maintaining privacy and confidentiality. Alice transmits
the information signal x, and Bob and Eve receive z and y,
respectively, given by

z =Hx+ nB, (1)
y =Gx+ nE, (2)

where H ∈ C
NB×NA and G ∈ C

NE×NA are the channel ma-
trices of Bob and Eve. We assume that all the channel matrix
elements are i.i.d. NC(0, 1) random variables (i.e., Bob and
Eve are not co-located). We assume that the noise vectors
nB and nE have i.i.d. NC(0, σ

2
B) and NC(0, σ

2
E) components,

respectively.
In this work, we assume that
1) Alice knows the realization of H.
2) Alice only knows the statistics of G, which varies in each

transmission.
3) Eve knows the realizations of H and G.
No assumption is needed about the statistics of H during

transmission, since its realization is known to Alice and Eve.
Our secure transmission strategy is based on the artificial

noise scheme [19] and the practical secrecy scheme [21], which
are summarized below.

A. Artificial Noise Scheme

In the AN scheme [19], NB is assumed to be smaller than
NA, thus H has a non-trivial null space with an orthonor-
mal basis given by columns of the matrix Z = null(H) ∈
C

NA×(NA−NB), i.e.,

HZ = 0NB×NB
. (3)

Let u ∈ C
NB×1 be the transmitted vector carrying the informa-

tion, and let v ∈ C
(NA−NB)×1 represent the “artificial noise”

generated by Alice but is unknown to Bob and Eve.
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Alice performs SVD precoding and transmits

x = V

[
u

v

]
= V1u+ Zv, (4)

where the columns of V = [V1,Z] are the right-singular
vectors of H (i.e., H = UΛVH , where U ∈ C

NB×NB , Λ ∈
C

NB×NA , V ∈ C
NA×NA , UHU = INB

, VHV = INA
).

Due to the orthogonality between V1 and Z, the total trans-
mission power ‖x‖2 can be written as

‖x‖2 = ‖u‖2 + ‖v‖2. (5)

Alice has an average transmit power constraint P ,

P ≥ E
(
‖x‖2

)
= E

(
‖u‖2

)
+ E

(
‖v‖2

)
. (6)

The AN scheme in [19] is based on the assumptions below:
1) u and v are assumed to be Gaussian random vectors.
2) NA > NB, NA > NE and NE ≥ NB.
The condition NE ≥ NB guarantees that Eve has at least the

same number of degree of freedom as Bob. This puts Eve in the
position of not losing a-priori any information that Bob could
receive.

Equations (1) and (2) can then be rewritten as

z =HV1u+ nB, (7)

y =GV1u+GZv + nE (8)

and show that v only degrades Eve’s reception, but not Bob’s.
The purpose of the AN scheme is to degrade Eve’s channel,

so that the secrecy capacity is positive [19]. Like other wiretap
schemes, to achieve the secrecy capacity, explicit wiretap codes
are required. A strong secrecy rate R is achievable if there exist
a sequence of wiretap codes {Cn} of increasing length n and
rate R, such that both Bob’s error probability and the amount
of information obtained by Eve approach zero when n → ∞
[3], [9], i.e.,

lim
n→∞

Pr{û �= u} = 0, (reliability)

lim
n→∞

I(u;y) = 0, (strong secrecy)

where û represents Bob’s estimation of u.

B. Practical Secrecy Scheme

Rather than attempting to increase secrecy rate, in [21],
we proposed a variant of the AN scheme, named practical
secrecy (PS) scheme, where Eve’s error probability is maxi-
mized. Although the transmission model is the same as that of
AN, the most important difference lies in the distributions of
u and v:

1) M -QAM transmitted symbols: u ∈ QNB with uni-
form distribution, where �(Q) = �(Q) = {−

√
M + 1,

−
√
M + 3, . . . ,

√
M − 1}.

2) There is no requirement on the distribution of v.
Different from the AN scheme, where the achievability of

security is based on an infinite-length wiretap code, the PS
scheme [21] is designed for practical communication systems,

that make use of finite input alphabets based on M -QAM
transmitted symbols. The aim is to ensure that Eve’s block error
probability approaches one with minimum distance decoding,
(e.g., sphere decoder), rather than strong secrecy. However,
this security criterion is not satisfactory from an information-
theoretic security viewpoint, as it may not ensure security for
all information bits within a message.

C. Proposed AN Scheme

Different from the original AN scheme [19], in this work, we
set a peak AN power constraint,

Pv ≥ ‖v‖2. (9)

This peak power constraint is essential to prove the secrecy of
USK, as detailed in Section III-A.

Moreover, we consider two lattice constellation models:

1) Infinite constellations with average power constraint
2) Finite constellations with peak power constraint

We focus on information theoretic security, hence, our anal-
ysis will focus on Eve’s equivocation H(u|y).

Throughout the paper, we consider the worst-case scenario
(for Alice) that Eve’s channel is noiseless, i.e.,

y = GV1u+GZv. (10)

Using Data Processing Inequality, it is simple to show that
Eve’s channel noise can only increase her equivocation:

H(u|GV1u+GZv) ≤ H(u|GV1u+GZv + nE). (11)

We further consider the worst-case scenario (for Alice) that
Eve’s antenna array elements are uncorrelated, i.e., the columns
of G are zero-mean independent complex Gaussian vectors
with an identity covariance matrix.

For a general complex Gaussian random matrix Ĝ with
an arbitrary non-singular covariance matrix Σ (which is the
covariance matrix of Eve’s antenna array), we can write

Ĝ = Σ1/2G. (12)

Using Data Processing Inequality, it is simple to show that
Eve’s antenna correlation can only increase her equivocation:

H(u|GV1u+GZv)≤H(u|Σ1/2GV1u+Σ1/2GZv). (13)

Remark 1: Throughout this paper, the proposed security
analysis of USK scheme is valid for a complex Gaussian
random matrix G with an arbitrary non-singular covariance
matrix Σ. The extension to USK of other distributed random
matrix G will be studied in our future work.

D. Shannon’s Secrecy

We consider a cryptosystem where a sequence of K mes-
sages {mi}K1 are enciphered into the cryptograms {yi}K1 using
a sequence of secret keys {ki}K1 . We recall from [1] the
definition of Shannon’s ideal secrecy and perfect secrecy.
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Definition 1: A secrecy system is ideal when

lim
K→∞

H
(
{mi}K1 |{yi}K1

)
�=0,

lim
K→∞

H
(
{ki}K1 |{yi}K1

)
�=0. (14)

Shannon explained the concept of ideal secrecy in [1] as:
“No matter how much material is intercepted, there is not a
unique solution but many of comparable probability.” It was
discussed in [23] how a system achieving ideal secrecy is
indeed unbreakable.

Definition 2: A secrecy system is perfect when

H
(
{mi}K1 |{yi}K1

)
= H

(
{mi}K1

)
. (15)

In the special case that {mi}K1 and {ki}K1 are mutually
independent, using the entropy chain rule, we have

H
(
{mi}K1

)
=

K∑
i=1

H(mi), (16)

H
(
{mi}K1 |{yi}K1

)
=

K∑
i=1

H(mi|yi), (17)

H
(
{ki}K1 |{yi}K1

)
=

K∑
i=1

H(ki|yi). (18)

From (17) and (18), ideal secrecy is achieved if H(mi|yi) �=
0 and H(ki|yi) �= 0 for one of any i. To protect all the mes-
sages, in this work, we use a slightly stronger condition as our
design criterion for ideal secrecy, given by

Definition 3: If {mi}K1 and {ki}K1 are mutually indepen-
dent, a secrecy system is ideal when

H(mi|yi) �= 0 and H(ki|yi) �= 0, for all i. (19)

From (16) and (17), perfect secrecy is achieved when

H(mi|yi) = H(mi), for all i. (20)

An overview of measures on information-theoretic security
can be found in [24].

E. Lattice Preliminaries

To describe our scheme, it is convenient to introduce some
lattice preliminaries. An n-dimensional complex lattice ΛC in a
complex space C

m (n ≤ m) is the discrete set defined by:

ΛC = {Bu : u ∈ Z[i]n} ,

where the basis matrix B = [b1 · · ·bn] has linearly indepen-
dent columns.
ΛC can also be easily represented as 2n-dimensional real

lattice ΛR [25]. In what follows, we introduce some lattice
parameters of ΛC, which have a corresponding value for ΛR.
The Voronoi region of ΛC, defined by

Vi(ΛC) = {y ∈ C
m : ‖y − xi‖ ≤ ‖y − xj‖, ∀ xi �= xj} ,

gives the nearest neighbor decoding region of lattice point xi.

The volume of anyVi(ΛC), definedas vol(ΛC)
Δ
= | det(BHB)|,

is equivalent to the volume of the corresponding real lattice.
The effective radius of ΛC, denoted by reff(ΛC), is the

radius of a sphere of volume vol(ΛC) [26]. For large n, it is
approximately

reff(ΛC) ≈
√

n/(πe)vol(ΛC)
1
2n . (21)

III. UNSHARED SECRET KEY CRYPTOSYSTEM

WITH INFINITE CONSTELLATIONS

In this section, we consider the system model with an infinite
lattice constellations, satisfying the average transmit power
constraint. This provides the theoretical basis for unshared
secret key cryptosystems.

A. Encryption

We consider a sequence of K mutually independent mes-
sages {mi}K1 , where each one is mapped to a transmitted vector
u ∈ Z[i]NB . The probability distribution of u can be arbitrary,
but has finite E(‖u‖2). To secure the K transmitted vectors
{ui}K1 , Alice enciphers {ui}K1 into the cryptograms {yi}K1 us-
ing a sequence of mutually independent secret keys {vi}K1 . We
assume that {vi}K1 and {ui}K1 are mutually independent, and
{Gi}K1 are mutually independent Gaussian random matrices.
No assumption is needed about the statistics of {Hi}K1 across
the K channel uses, since its realization is known to both Alice
and Eve.

Since {vi}K1 and {ui}K1 are mutually independent, from
(19) and (20), we only need to demonstrate the encryption
process for one transmitted vector ui. For simplicity, we drop
the subscript i.

For each u, Alice randomly and independently (without any
predefined distribution) chooses a one-time pad secret key v,
from a ball of radius

√
Pv:

S
Δ
=
{
v ∈ C

NA−NB : ‖v‖2 ≤ Pv

}
, (22)

and transmits

x = V1u+ Zv. (23)

In the worst-case scenario, when nE = 0, Eve will receive
(10), i.e.,

y = GV1u+ ñv, (24)

where ñv = GZv.
The signal model (24) can be interpreted as an encryption

algorithm, that is, the secret message u is encrypted to y using
a secret key v, which is not released neither to Bob nor to Eve.

The message u is received by Eve as a lattice point (see
Fig. 1) in:

ΛC =
{
GV1u,u ∈ Z[i]NB

}
. (25)
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Fig. 1. The USK cryptosystem with infinite constellations.

This enables us to partition the set S into D disjoint subsets
S1, . . . , SD, such that

S =

D⋃
k=1

Sk, (26)

where

Sk
Δ
={v :GV1u∈ΛC is the kth closest lattice point to y}. (27)

As shown in Fig. 1, the value of D is determined by

D = |SRmax
∩ ΛC| , (28)

where SRmax
is a sphere centered at y with radius

Rmax(Pv)
Δ
= max

‖v‖2≤Pv

‖GZv‖ =
√
λmaxPv, (29)

where λmax is the largest eigenvalue of (GZ)H(GZ).
Assuming v ∈ Sk, 1 ≤ k ≤ D, the signal model (24) can be

further viewed as an encryption algorithm that encrypts u to y
using a one time pad secret key v, such that GV1u is the kth

closest lattice point to y.
The security problem lies in how much Eve knows about k.

The value of k is uniquely determined by the vector ñv. Since
we assume that the realizations of G and Z are known to Eve,
k is a function of v. Since v is randomly and independently
selected by Alice and is never disclosed to anyone, Eve can
neither know its realization nor its distribution. Thus, given y,
Eve is not able to estimate the distribution of the index k.

Remark 2: The index k can be interpreted as the effective
one-time pad secret key, whose randomness comes from the
artificial noise. The effective key space size is D.

From Eve’s perspective, we assume that she knows Pv,
Rmax(Pv), D and the encryption process (24). Based on
the above analysis, given y, Eve only knows that GV1u ∈
SRmax

∩ ΛC. Therefore, the posterior probability that Eve ob-
tains u, or equivalently, finds k, from the cryptogram y, is
equal to

Pr{u|y} = Pr{k|y} = Pr{u|u ∈ U}, (30)

where

U Δ
= {u′ : GV1u

′ ∈ SRmax
∩ ΛC} , (31)

and |U| = D.

For any u′ ∈ U , using Bayes’ theorem, we have

Pr{u = u′|u ∈ U} =
Pr{u = u′}Pr{u ∈ U|u = u′}

Pr{u ∈ U}

=
Pr{u = u′}
Pr{u ∈ U} . (32)

From (30) and (32), Eve’s equivocation is given by

H(u|y)=H(k|y)=
∑
u′∈U

Pr{u=u′}
Pr{u∈U} log

Pr{u∈U}
Pr{u=u′} . (33)

Since

Pr{u ∈ U} =
∑
u′∈U

Pr{u = u′}, (34)

the security level is determined by the cardinality of the set U ,
or more specifically, by the value of D:

1) if D = 1, then Pr{u ∈ U} = Pr{u = u′}, so that

H(k|y) = H(u|y) = 0. (no security)

2) if D ≥ 2, then Pr{u ∈ U} > Pr{u = u′}, so that

H(k|y) = H(u|y) > 0. (ideal secrecy)

3) as D → ∞, then Pr{u ∈ U} → 1, so that

H(k|y) = H(u|y) = H(u). (perfect secrecy)

Remark 3: Different from Shannon’s one-time pad cryp-
tosystem, the effective one-time pad secret key k is not shared
between Alice and Bob. In particular, it is independently gen-
erated by Alice, but not needed by Bob to decipher, while it is
fully affecting Eve’s ability to decipher the original message.
This motivates the name of this cryptosystem as Unshared
Secret Key (USK) cryptosystem.

B. Analyzing Eve’s Equivocation

As shown in (33), Eve’s equivocation lies in the value of D,
which is known to Eve but not to Alice. We then estimate the
value of D from Alice’s perspective. According to (26) and
(27), D is a function of Pv, H, and G. Alice knows only Pv

and H, while regarding G, she knows the statistics, but doesn’t
know the realization. Although Alice cannot know the exact
value of D, she is able to estimate its cumulative distribution
function (cdf), denoted by

FD(d, Pv)
Δ
= Pr{D < d}, (35)

where d is a positive integer.
In the next section, we will show that Alice can ensure

FD(d, Pv) → 0 by increasing Pv, i.e., she can guarantee that
D ≥ d, for any given d.
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IV. THE SECURITY OF USK WITH

INFINITE CONSTELLATIONS

In this section, we show that the USK with infinite constella-
tions provides Shannon’s ideal secrecy and perfect secrecy. To
prove the main theorems, we first introduce some lemmas.

We first define

κ(d)
Δ
= d1/(2NE)/

√
π, (36)

Δ(d)
Δ
=

κ(d)2NEvol(ΛC)

PNE
v

, (37)

where d is an integer and

vol(ΛC) =
∣∣det ((GV1)

H(GV1)
)∣∣ . (38)

Here, G is a complex Gaussian random matrix, while V1

is deterministic. Thus, Δ(d) is a random variable from Alice
perspective. The following two lemmas are used to evaluate
FD(d, Pv) in (35).

Lemma 1: If Pv ≥ ρ2/Φ2NB/NE and ρ > κ(d), then
Δ(d)

a.s.→ 0 as NB → ∞, or equivalently,

Pr

{
Δ(d) >

(
ρ

κ(d)

)−NB

}
< O

((
ρ

κ(d)

)−NB

)
(39)

where

Φ =

[
(NE −NB)!

NE!

] 1
2NB

. (40)

Proof: See Appendix A. �
We next provide a more accurate expression of the tail

distribution of Δ(d) for finite NB.
Lemma 2: If Pv ≥ ρ2/Φ2NB/NE and ρ > κ(d), then

Pr

{
Δ(d) >

(
ρ

κ(d)

)−NB

}
< Υ

(
ρ

κ(d)

)
, (41)

where κ(d) is given in (36), Φ is given (40), and

Υ(x) =

NB∑
i=1

(xe1−x)
NE−i+1

. (42)

Proof: See Appendix B. �
Remark 4: From (42), it is easy to see that Υ(x) is monoton-

ically decreasing function. Let

N
Δ
= NE −NB + 1, (43)

then, as x → ∞, we have

Υ(x) = O
(
(x−1ex)

−N
)
= O(e−xN ). (44)

Lemmas 1 and 2 enable us to prove the following lemma.
Lemma 3: If Pv≥ρ2/Φ2NB/NE and ρ>κ(d), FD(d, Pv)→0

as NB → ∞, or equivalently,

FD(d, Pv) < O

((
ρ

κ(d)

)−NB

)
, (45)

and for finite NB, we have

FD(d, Pv) <

(
ρ

κ(d)

)−NB

+Υ

(
ρ

κ(d)

)
, (46)

where κ(d) is given in (36), Φ is given in (40), and Υ(x) is
given in (42).

Proof: See Appendix C. �

A. Achieving Ideal Secrecy

From (19) and the discussion following (33), ideal secrecy
is achieved when D ≥ 2. Lemma 3 enable us to prove the
following equivalent theorem about achieving ideal secrecy.

Theorem 1: If Pv>κ(d)2/Φ2NB/NE and d≥2, as NB→∞,

D
a.s.
≥ d, (47)

where κ(d) is given in (36) and Φ is given in (40).
Proof: From (35) and (45), it is straightforward to see that

Pr(D < d) → 0 as NB → ∞. �
Theorem 1 shows that for the USK, Eve cannot find a unique

solution u, since D is almost surely greater than 2.
We next estimate the secrecy outage probability when NB is

finite, defined by

Pout(d)
Δ
= Pr{D < d}, (48)

for any d ≥ 2.
Theorem 2: Let Nmin = min{N,NB}, where N is given in

(43). If

Pv ≥ ε−2/Nminκ(d)2/Φ2NB/NE (49)

and d ≥ 2, then

Pout(d) < O(ε), (50)

for any arbitrarily small ε > 0, i.e., ideal secrecy is achieved
with probability 1−O(ε), where κ(d) is given in (36) and Φ is
given in (40).

Proof: See Appendix D. �
Theorem 2 shows that for finite NB, the outage of ideal

secrecy can be made arbitrarily small by increasing Pv.
Example 1: Let us apply Theorem 2 to the analysis of a USK

scheme with NA = 9, NB = 4, NE = 8, σ2
E = 0, and

Pv = ε−2/Nminκ(d)2/Φ2NB/NE . (51)

We evaluate the secrecy outage probability in (48) for the ith

channel use. We generate 50 000 pairs of mutually independent
complex Gaussian random matrices {G,H}. For each pair of
{G,H}, we evaluate the corresponding realization D̃ of the
random variable D by

D̃ ≈ vol (SRmax
)

vol(ΛC)
=

(
Rmax(Pv)

reff(ΛC)

)2NB

, (52)

where reff(ΛC) is given in (21), Rmax(Pv) is given in (29).
Based on the corresponding 50 000 realizations of D, we com-
pute the probability of D < d, i.e., Pout(d). Fig. 2 shows the
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Fig. 2. Pout(d) vs. ε with NA = 9, NB = 4, and NE = 8.

value of Pout(d) as a function of ε, with d = 2 and d = 644

(large number), respectively. As expected, the value of Pout(d)
decreases with decreasing ε, or equivalently, increasing Pv.

B. Achieving Perfect Secrecy

From (20), perfect secrecy requires

H(u|y) = H(u). (53)

According to (33), the problem then reduces to ensuring
D → ∞. From Theorems 1 and 2, achieving perfect secrecy
requires infinite AN peak power Pv, which is of theoretical
interest only.

V. UNSHARED SECRET KEY CRYPTOSYSTEM

WITH FINITE CONSTELLATIONS

In this section, we show that the idea of USK can be applied
to practical systems using finite constellations. In this case, we
define the concept of secrecy outage and define a secrecy outage
probability. We will later show how such probability can be
made arbitrarily small by considering either longer blocks of
messages or larger constellation size.

A. Encryption

We consider a sequence of K mutually independent mes-
sages {ml}K1 , where each one contains n mutually independent
information bits. For each m, Alice maps the corresponding n
bits to NB elements of u for B channel uses. Each elements of
u is uniformly selected from a M -QAM constellation Q̃, where
�(Q̃) = �(Q̃) = {0, 1, . . . ,

√
M − 1}. We ignore the shifting

and scaling operations at Alice to minimize the transmit power.
Consequently, we have

n = BNB log2 M. (54)

Let {ui}B1 be the block of transmitted vectors corresponding to
one message m.

Fig. 3. The USK cryptosystem with finite constellations.

To secure the total C = KB transmitted vectors {uj}C1 ,
Alice enciphers {uj}C1 into the cryptograms {yj}C1 using a
sequence of mutually independent keys {vj}C1 . Across the C

channel uses, we assume that {vj}C1 and {uj}C1 are mutually
independent, and {Gj}C1 are mutually independent Gaussian
random matrices. No assumption is needed about the statistics
of {Hj}C1 , since its realization is known to Alice and Eve.

Since {vj}C1 and {uj}C1 are mutually independent, using
(19), we only need to demonstrate the encryption process for
one block of transmitted vectors {ui}B1 corresponding to a
message m.

The encryption process is the same as that of the infinite
constellation case: for the ith channel use, Alice independently
chooses a one time pad key vi from the set S in (22), and
encrypts ui to yi in (24) using vi, such that GiV1,iui is the
kthi closest lattice point to yi, within the infinite lattice

ΛC,i =
{
GiV1,iu,u ∈ Z[i]NB

}
. (55)

The value of ki ranges from 1 to Di, where

Di = |SRmax,i
∩ ΛC,i|, (56)

and SRmax,i
is a sphere centered at yi with radius:

Rmax,i(Pv)
Δ
= max

‖vi‖2≤Pv

‖GiZivi‖ =
√

λmax,iPv. (57)

where λmax,i is the largest eigenvalue of (GiZi)
H(GiZi). As

shown in Fig. 3, Di represents the total number of points within
the sphere SRmax,i

.
Different from the infinite constellation case, the condition

Di ≥ 2 in (33) cannot ensure H(ui|yi) > 0. The reason is that
Eve knows that GiV1,iui is a finite lattice constellation, i.e., a
finite subset of ΛC,i:

ΛF,i
Δ
= {GiV1,iu,u ∈ Q̃NB}. (58)

Since ki is a function of vi, which is randomly and inde-
pendently selected by Alice and is never disclosed to anyone,
Eve can neither know the distribution of ki. Given yi, Eve
only knows that GiV1,iui ∈ SRmax,i

∩ ΛF,i. Let Li be the
cardinality of such choices, i.e.,

Li = |SRmax,i
∩ ΛF,i|. (59)
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Since ΛF,i ⊂ ΛC,i, we have

1 ≤ Li ≤ Di. (60)

As shown in Fig. 3, Li represents the number of solid points
within the sphere SRmax,i

.
Remark 5: Due to the use of finite constellation Q̃NB , we

redefine the effective secrecy key ki as kF,i, that is, GiV1,iui

is the kthF,i closest lattice point to yi, within the finite lattice
constellation ΛF,i. The corresponding key space size is Li per
channel use.

Remark 6: The practical secrecy scheme [21] is a special
case of USK cryptosystem with kF,i ≥ 2.

B. Analyzing Eve’s Equivocation

We then show that Eve’s equivocation H({ui}B1 |{yi}B1 )
is determined by {Li}B1 . The posterior probability that Eve
obtains ui, or equivalently, finds kF,i, is equal to

Pr{ui|yi} = Pr{kF,i|yi} = Pr{ui|ui ∈ UF,i}, (61)

where

UF,i
Δ
= {u′ : GiV1,iu

′ ∈ SRmax,i
∩ ΛF,i}. (62)

Due to the use of uniform constellation Q̃NB , according to
Bayes’ theorem, we have

Pr{ui|ui ∈ UF,i} =
1

Li
. (63)

To recover one message m, Eve has to recover all vectors in
{ui}B1 , or equivalently, find {kF,i}B1 . Therefore, Eve’s equivo-
cation is given by

H
(
m|{yi}B1

)
= H

(
{kF,i}B1 |{yi}B1

)
= H

(
{ui}B1 |{yi}B1

)
.

(64)

Moreover, since ui is independent of uj and yj , we have

H
(
{ui}B1 |{yi}B1

)
=

B∑
i=1

H(ui|yi) =
B∑
i=1

logLi. (65)

C. Ideal Secrecy Outage

Based on (65), Eve’s equivocation is dominated by the values
in {Li}B1 , which are known to Eve. From Alice’s perspective,
according to (59) and (62), Li is a function of Gi, thus a
random variable. Although Alice cannot know the exact values
in {Li}B1 , she may be able to evaluate the cdf of Eve’s equivo-
cation, given by

Pr

{
B∑
i=1

logLi < log d

}
≤ Pr{logLi < log d, 1 ≤ i ≤ B}

= Pr{L1 < d, . . . , LB < d}
Δ
=PF,out(d,B). (66)

where 2 ≤ d ≤ MNB .

We refer to the event

B∑
i=1

logLi < log d, (67)

as the secrecy outage due to the use of the finite constellation
Q̃NB . We refer to PF,out(d,B) as the secrecy outage probabil-
ity. From (65) and (66), if PF,out(d,B) → 0,

H
(
{ui}B1 |{yi}B1

)
= H

(
{kF,i}B1 |{yi}B1

)
≥ log d. (68)

In the next section, we will show that Alice can ensure
PF,out(d,B) → 0 by increasing the message block size B with
certain M and Pv.

VI. THE SECURITY OF USK WITH

FINITE CONSTELLATIONS

In this section, we show that the USK with the finite constel-
lation Q̃NB provides Shannon’s ideal secrecy with an arbitrarily
small outage. To prove the main theorems, we first introduce the
following lemma.

We define

Θ(Pv)
Δ
=

2Rmax(Pv)√
Mreff(ΛC)

. (69)

where reff(ΛC) is given in (21) and Rmax(Pv) is given in (57).
From Alice perspective, Θ(Pv) is a function of G, thus is a
random variable. Its cdf is bounded by the following lemma.

Lemma 4:

Pr {Θ(Pv) < x}

>

NB∏
j=1

BNE(NA−NB)

NE−j+1

,

(
NE(NA −NB)g(x, j)

NE(NA−NB)g(x, j)+NE− j+ 1

)
,

(70)

where

g(x, j) =
x2MNB(NE − j + 1)

4πePvNE(NA −NB)
, (71)

and Ba,b(x) is the regularized incomplete beta function [27]:

Ba,b(x)
Δ
=

a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j . (72)

Proof: See Appendix E. �

A. Achieving Ideal Secrecy

As shown in (19) and (65), ideal secrecy is achieved when∑B
i=1 logLi > 0. From (66), the problem then reduces to

ensuring

PF,out(d,B) → 0, (73)

for any d ≥ 2. Lemma 4 enables us to prove the following
theorem.
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Fig. 4. PF,out(2, B) vs. M and B with NA = 4, NB = 2, and NE = 3.

Theorem 3: If ε<1, d≥2, Pv=ε−2/Nminκ(d)2/Φ2NB/NE ,
and M ≥ ε−3−2/Nminκ(d)2, then

PF,out(d,B) < O(εB), (74)

where κ(d) is given in (36) and Φ is given in (40), i.e., ideal
secrecy is achieved with probability 1−O(εB).

Proof: See Appendix F. �
Theorem 3 shows that for finite NB and finite constellation

Q̃NB , the ideal secrecy outage can be made arbitrarily small.
Given a desired pair {ε, d}, Alice can easily compute the
required values of Pv and M to realize the USK cryptosystem.

Example 2: We consider a USK scheme with NA = 4,
NB = 2, NE = 3, and σ2

E = 0. To apply Theorem 3, we fix
d = 2 and consider two cases where ε = 0.3981 and 0.1990.
The conditions in Theorem 3 then reduce to

Pv =1.8306 and M ≥ 15.9659, for ε = 0.3981,

Pv =3.6620 and M ≥ 255.7297, for ε = 0.1990. (75)

Fig. 4 compares the value of PF,out(2, B) as a function of B.
Note that PF,out(2, B) can be written as

Pr{L1 = 1, . . . , LB = 1} = Pr

{
B∑
i=1

logLi = 0

}
. (76)

We observe that PF,out(2, B) = 4.6250× 10−4 when Pv =
3.6620, M = 256, and B = 1. It confirms that the secrecy
outage probability can be made arbitrarily small by increasing
Pv and M . Meanwhile, we observe that the secrecy outage
probability decreases exponentially with B.

Remark 7: For the finite constellation case, the value of
target equivocation at Eve is given by log d in (68). Note that
this is not easily computable for the infinite constellation case
according to (33).

B. Peak AN-to-Signal Power Ratio

By shifting and scaling, u ∈ Q̃NB can be converted into
a regular M -QAM symbol ū ∈ QNB . To measure the power

efficiency of the proposed USK cryptosystem, we define

r
Δ
=

Pv

E (‖V1ū‖2)
, (77)

as the ratio of the peak AN power Pv and the average transmit-
ted signal power.

Since

E
(
‖V1ū‖2

)
= E

(
‖ū‖2

)
=

2(M − 1)NB

3
, (78)

the corresponding ratio as a function of Pv is given by

r =
3Pv

2(M − 1)NB
. (79)

Example 3: Under the same setting of Example 2, if
M = 256, r = 1.08%. We see that the proposed USK cryp-
tosystem is very practical, since it requires a very small pro-
portion of the total transmission power. Note that the value of r
can be further reduced by increasing the constellation size M .

VII. DISCUSSIONS

A. USK Cryptosystems vs. Previous AN Based Schemes

The existing AN based security schemes [19], [28], [29]
leverage infinite-length wiretap codes, where the aim is to
achieve strong secrecy.

In contrast, the proposed USK cryptosystem is valid for
any coded/uncoded MIMO with finite block length and QAM
signaling. Our scheme achieves Shannon’s ideal secrecy with
an arbitrarily small outage probability.

B. Extension to the Case of NE ≥ NA

The constraint NE < NA is a common assumption that ap-
pears in the vast literature on AN based schemes [19], [28],
[29]. Under this condition, we have shown the existence of an
unshared secret key cryptosystem which provides Shannon’s
ideal secrecy.

If NE ≥ NA, G has a left inverse, denoted by G†, then Eve
can remove the unshared secret key v by multiplying y by
W = HG†, i.e.,

Wy = HV1u+WnE. (80)

We can show that this attack amplifies Eve’s channel noise
greatly. Consequently, nE takes the role of the unshared secret
key. We can show that with certain amount of σ2

E, ideal secrecy
is achievable. This result will be reported in our next paper.

VIII. CONCLUSION

We have exploited the role that artificial noise plays in physi-
cal layer security to show that it can be used as an unshared one-
time pad secret key. The proposed unshared secret key (USK)
cryptosystem with an infinite lattice input alphabet provides
Shannon’s ideal secrecy and perfect secrecy by tuning the
power allocated to the artificial noise component. Moreover,
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unlike the traditional AN technique, this USK system can be
applied to practical systems using finite lattice constellations.
We have shown that ideal secrecy can be obtained with an arbi-
trarily small outage probability. Our results provide analytical
insights relating cryptography and physical layer security on a
fundamental level. Future work will generalize USK to relaying
networks.

APPENDIX

A. Proof of Lemma 1

Recalling that

Δ(d) =
κ(d)2NE

∣∣det ((GV1)
H(GV1)

)∣∣
PNE
v

. (81)

From Alice’s perspective, G is a complex Gaussian random
matrix. The matrix V1 with orthonormal columns is known.
According to [30], GV1 a Gaussian random matrix with i.i.d.
elements. Moreover, | det((GV1)

H(GV1))| can be expressed
as the product of independent Chi-squared variables [31]:

∣∣det ((GV1)
H(GV1)

)∣∣ = NB∏
i=1

1

2
X 2 (2(NE − i+ 1)) . (82)

Using the properties of the Chi-squared distribution and
central limit theorem, as NB → ∞, we have

NB∑
i=1

logX 2 (2(NE − i+ 1))−A

√
V

a.s.→ N (0, 1), (83)

where

A =

NB∑
i=1

E
(
logX 2 (2(NE − i+ 1))

)
,

V =

NB∑
i=1

Var
(
logX 2 (2(NE − i+ 1))

)
.

Using the properties of Log Chi-squared distributions [32],
we have

A =

NE∑
k=NE−NB+1

(log 2 + ψ(k)) ,

V =

NE∑
k=NE−NB+1

ψ1(k),

where ψ(x) = d
dx log Γ(x) is the digamma function, and

ψ1(x) =
d2

dx2 log Γ(x) is the trigamma function.
Informally, we may write (82) and (83) as∣∣det ((GV1)

H(GV1)
)∣∣ ≈ 2−NBeA+N (0,V ). (84)

According to (84), as NB → ∞, Δ(d) converges to the
random variable Ω:

Ω
Δ
=

κ(d)2NE exp (A+N (0, V ))

2NBPNE
v

. (85)

To simplify the expressions of A and V , we use the following
approximations [32]:

ψ(k) ≈ log k − 1/(2k),

ψ1(k) ≈ 1/k. (86)

Then, we have

V ≤
NB∑
i=1

1

k
≤ logNB + ς < log 2NB, (87)

where ς is Euler–Mascheroni constant. Similarly, we have

A =

NE∑
k=NE−NB+1

(
log 2 + log k − 1

2k

)

<NB log 2 + logΦ−2NB , (88)

where

Φ =

[
(NE −NB)!

NE!

] 1
2NB

. (89)

From (88) and (85), Ω can be upper bounded by

Ω <
κ(d)2NE exp (N (0, V ))

Φ2NBPNE
v

. (90)

Recall that NE ≥ NB. By substituting Pv ≥ ρ2/Φ2NB/NE

and ρ > κ(d) to the right side of (90), we have

Ω <
exp (N (0, V ))

(ρ/κ(d))2NE
≤ exp (N (0, V ))

(ρ/κ(d))2NB

Δ
= ΩUB, (91)

and

Pr
{
Δ(d) > (ρ/κ(d))−NB

}
< Pr

{
ΩUB > (ρ/κ(d))−NB

}
= Pr {N (0, V ) > NB log (ρ/κ(d))}

< 1/2 exp

(
−N2

B log2 (ρ/κ(d))

2V

)
a
< 1/2 exp

(
−N2

B log2 (ρ/κ(d))

2 log 2NB

)
= O

(
(ρ/κ(d))−NB

)
, (92)

where (a) holds because of (87).
From (92) and (81), if ρ > κ(d), as NB → ∞, we have

Δ(d)
a.s.→ 0. �

B. Proof of Lemma 2

We recall (81) and (82) and consider the random variable

Ψ
Δ
=

NB∏
i=1

X 2 (2(NE − i+ 1))

2(NE − i+ 1)
. (93)

Recalling thatNE≥NB. By substitutingΨ,Pv≥ρ2/Φ2NB/NE ,
and ρ > κ(d) to the right side of (81), we have

Δ(d) = (ρ/κ(d))−2NE Ψ

≤ (ρ/κ(d))−2NB Ψ. (94)
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Consequently, we obtain

Pr
{
Δ(d) > (ρ/κ(d))−NB

}
≤ Pr

{
Ψ(ρ/κ(d))−2NB > (ρ/κ(d))−NB

}
= Pr

{
Ψ > (ρ/κ(d))NB

}
a
≤ Pr

{
NB∑
i=1

X 2 (2(NE − i+ 1))

2(NE − i+ 1)
> NBρ/κ(d)

}

<

NB∑
i=1

Pr
{
X 2 (2(NE − i+ 1)) ≥ 2(NE − i+ 1)ρ/κ(d)

}

≤
NB∑
i=1

(
e1−ρ/κ(d)ρ/κ(d)

)NE−i+1

Δ
= Υ(ρ/κ(d)) , (95)

where (a) holds due to the inequality of arithmetic and geomet-
ric means. �

C. Proof of Lemma 3

We pick an element v0 from S with ‖v0‖2 = Pv. Suppose
that v0 ∈ Sk0

, where k0 is the corresponding effective secret
key. Since D ≥ k0, we have

FD(d, Pv) = Pr{D < d} < Pr{k0 ≤ d}. (96)

The problem then reduces to evaluating Pr{k0 ≤ d}.
Let SR be a sphere of radius R ≤ Rmax(Pv) centered at y,

where vol(SR) = d · vol(ΛC) (see Fig. 1). Let K be the number
of the points in SR ∩ ΛC. We have

K ≈ vol(SR)

vol(ΛC)
= d. (97)

If GV1u ∈ SR, we have k0 ≤ d, and vice versa. Thus, the
two events are equivalent, i.e.,

Pr{k0 ≤ d} = Pr{GV1u ∈ SR}. (98)

Let S′
R be a sphere with the same radius R centered at

GV1u. If GV1u ∈ SR, then y ∈ S′
R, and vice versa. Thus,

the two events are equivalent, i.e.,

Pr{GV1u ∈ SR} = Pr {y ∈ S′
R} . (99)

From (96), (98), and (99), we have

FD(d, Pv)

< Pr {y ∈ S′
R}

= Pr {y ∈ S′
R|vol (S′

R) ≤ C} · Pr {vol (S′
R) ≤ C}

+ Pr {y ∈ S′
R|vol (S′

R) > C} · Pr {vol (S′
R) > C}

< Pr {y∈S′
R|vol (S′

R)≤C}+Pr {vol (S′
R)>C} (100)

where C is a positive number.

We then evaluate the two terms in (100) separately. We use
the same settings as Lemmas 1 and 2, i.e., Pv ≥ ρ2/Φ2NB/NE ,
ρ > κ(d). We set

C = πNEPNE
v

(
ρ

κ(d)

)−NB

. (101)

1) Pr{y ∈ S′
R|vol(S′

R) ≤ C}: Let SC be a sphere centered
at GV1u, where vol(SC) = C. Let SC0 be a sphere
centered at the origin, where vol(SC0) = C. Recalling
that Alice knows Z and v0. For G, Alice knows its
statistics, but doesn’t know its realization. Therefore,
from Alice perspective, ñv = GZv0 has i.i.d. NC(0, Pv)
components [30].

Therefore, we have

Pr {y ∈ S′
R|vol (S′

R) ≤ C}
≤ Pr {y ∈ SC}

=

∫
SC0

f(ñv)dñv

≤ C

πNEPNE
v

= (ρ/κ(d))−NB , (102)

where f(ñv) is the probability density function (pdf) of
ñv. The last inequality holds since

f(ñv) =
1

πNEPNE
v

exp

(
−‖ñv‖2

σ̃2
v

)

≤ 1

πNEPNE
v

. (103)

2) Pr{vol(S′
R)>C}: Since vol(S′

R)=d · vol(ΛC), we have

Pr {vol (S′
R) > C} = Pr

{
Δ(d) > (ρ/κ(d))−NB

}
. (104)

From (100), (102), (104), and (39), as NB → ∞,

FD(d, Pv) < O

((
ρ

κ(d)

)−NB

)
. (105)

From (100), (102), (104), and (41), when NB is finite,

FD(d, Pv) <

(
ρ

κ(d)

)−NB

+Υ

(
ρ

κ(d)

)
. (106)

�

D. Proof of Theorem 2

From (48) and (33), we have

Pout(d) = FD(d, Pv). (107)

Let ρ = ε−1/Nminκ(d), for arbitrarily small ε > 0. We have

(ρ/κ(d))−NB = εNB/Nmin ≤ ε. (108)
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From Lemma 3, (108), and (44), if Pv≥ρ2/Φ2NB/NE, we have

FD(d, Pv) < ε+Υ(ε−1/Nmin) = O(ε), (109)

or equivalently,

Pout(d) < O(ε). (110)

�

E. Proof of Lemma 4

Recalling that

Rmax(Pv)= max
‖v‖2≤Pv

‖GZv‖, (111)

reff(ΛC)=
√
NB/(πe)

∣∣det ((GV1)
H(GV1)

)∣∣ 1
2NB . (112)

From (29), applying Cauchy–Schwarz inequality,

R2
max(Pv) = λmaxPv ≤ Pv‖GZ‖2F . (113)

From Alice perspective, GZ is a complex Gaussian random
matrix with i.i.d. components. Thus, ‖GZ‖2F can be expressed
in terms of a Chi-squared random variable:

‖GZ‖2F =
1

2
X 2 (2NE(NA −NB)) . (114)

According to (82), reff(ΛC) can be expressed in terms of NB

independent Chi-squared variables:

reff(ΛC)=
√
NB/(πe)

⎛
⎝NB∏

j=1

1

2
X 2(2(NE−j+1))

⎞
⎠

1
2NB

. (115)

Moreover, since GV1 and GZ are mutually independent
[30], Rmax(Pv) and reff(ΛC) are independent.

Then, we have

Pr

{
2Rmax,i(Pv)√
Mreff,i(ΛC)

< x

}

≥ Pr

{
Pv‖GZ‖2F
reff(ΛC)2

<
x2M

4

}

= Pr

⎧⎪⎨
⎪⎩

X 2 (2NE(NA −NB))(∏NB

j=1 X 2 (2(NE − j + 1))
) 1

NB

<
x2MNB

4πePv

⎫⎪⎬
⎪⎭

a
≥ Pr

⎧⎪⎨
⎪⎩

X 2 (2NE(NA −NB))
NB∑NB

j=1

1

X2(2(NE−j+1))

<
x2MNB

4πePv

⎫⎪⎬
⎪⎭

= Pr

⎧⎨
⎩

NB∑
j=1

X 2 (2NE(NA −NB))

X 2 (2(NE − j + 1))
<

x2MN2
B

4πePv

⎫⎬
⎭

b
>

NB∏
j=1

Pr

{
X 2 (2NE(NA −NB))

X 2 (2(NE − j + 1))
≤ x2MNB

4πePv

}

=

NB∏
j=1

Pr {F (2NE(NA −NB), 2(NE − j + 1))≤g(x, j)} ,

(116)

where g(x, j) is given in (71), and F(k1, k2) represents an
F-distributed random variable with k1 and k2 degrees of
freedom. (a) holds due to the inequality of geometric and
harmonic means. (b) holds by induction on the fact that if the
non-negative random variables Ai, 1 ≤ i ≤ N , are mutually
independent, given a constant C > 0,

Pr

{
N∑
i=1

Ai<C

}
>Pr

{
A1≤C/N ;

N∑
i=2

Ai≤C(N − 1)/N

}

= Pr {A1 ≤ C/N}Pr
{

N∑
i=2

Ai ≤ C(N − 1)/N

}
. (117)

Since the cdf of F(k1, k2) can be expressed using the reg-
ularized incomplete beta function [27], the final expression of
(116) is given in (70). �

F. Proof of Theorem 3

From Alice perspective, Li is a function of Gi. Since {Gi}B1
are mutually independent, {Li}B1 are mutually independent.
From (66), we have

PF,out(d,B) =
B∏
i=1

Pr{Li < d}. (118)

We then evaluate Pr{Li < d}. For simplicity, we remove the
index i. According to Theorem 2, with Pv = ε−2/Nminκ(d)2/
Φ2NB/NE , we have

Pr(D < d) < O(ε). (119)

We can upper bound Pr{L < d} by

Pr{L < d}

= Pr{L < d|D ≥ d}Pr{D ≥ d}

+ Pr{L < d|D < d}Pr{D < d}

≤ Pr {L < D|D ≥ d}Pr{D ≥ d}+O(ε)

≤ Pr{L < D}+O(ε). (120)

We then evaluate Pr{L < D}.

Pr{L < D} = Pr {L < D|Θ(Pv) < ε}Pr {Θ(Pv) < ε}

+ Pr {L < D|Θ(Pv) ≥ ε}Pr {Θ(Pv) ≥ ε}

≤ Pr {L < D|Θ(Pv) < ε}+ Pr {Θ(Pv) ≥ ε} ,

(121)

where Θ(Pv) is given in (69).
We then evaluate the two terms in (121), separately.
1) Pr{L < D|Θ(Pv) < ε}: Recalling that

y =GV1u+GZv, (122)

ΛF = {GV1u,u ∈ Q̃NB}. (123)
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Since L = |SRmax
∩ ΛF|, we begin by checking the

boundary of ΛF. Let O be the center point of ΛF. Accord-
ing to [33], for the Gaussian random lattice basis GV1,
the boundary of ΛF can be approximated by a sphere SF,S

centered at O with radius
√
Mreff(ΛC), where reff(ΛC)

is given in (21).
Given Θ(Pv) < ε and ε < 1, we have

√
Mreff(ΛC) >

2Rmax(Pv). We define a concentric sphere SF,C with
radius

√
Mreff(ΛC)− 2Rmax(Pv), where Rmax(Pv) is

given in (29). We then check when L = D given
Θ(Pv) < ε.

If GV1u ∈ SF,C, using triangle inequality, we have

‖y −O‖ ≤‖GV1u−O‖+ ‖GZv‖

≤
√
Mreff(ΛC)−Rmax(Pv). (124)

We then check the locations of the D elements in SRmax
∩

ΛC (56), denoted by, GV1u
′
t, 1 ≤ t ≤ D. Note that

‖GV1u
′
t − y‖ ≤ Rmax(Pv). (125)

From (124) and (125), using triangle inequality, for all t,

‖GV1u
′
t−O‖ ≤ ‖y−O‖+ ‖GV1u

′
t−y‖ ≤

√
Mreff(ΛC).

(126)

Therefore, SRmax
∩ ΛC ⊂ ΛF, i.e., L = D.

If GV1u �∈ SF,C, there is a probability that L < D.
Therefore, we have

Pr {L < D|Θ(Pv) < ε} < Pr{GV1u �∈ SF,C}. (127)

Since GV1u is uniformly distributed over SF,S, we have

Pr{GV1u ∈ SF,C} =
vol(SF,C)

vol(SF,S)

= (1−Θ(Pv))
2NB > (1− ε)2NB . (128)

Based on (127) and (128), we have

Pr {L < D|Θ(Pv) < ε} < 1− (1− ε)2NB = O(ε). (129)

2) Pr{Θ(Pv)≥ε}: Using Lemma 4 withM≥ε−3−2/Nminκ(d)2,
we have

Pr {Θ(Pv) < ε} ≥
NB∏
j=1

Ba,b(j)

(
1− b(j)

ag(ε, j) + b(j)

)

a
=

NB∏
j=1

1−Bb(j),a

(
b(j)

ag(ε, j) + b(j)

)

b
=

NB∏
j=1

(
1−O(εNE−j+1)

)

>
(
1−O(εN )

)NB
, (130)

where N = NE −NB + 1 and

a = NE(NA −NB) and b(j) = NE − j + 1. (131)

(a) and (b) hold due to the facts that

Ba,b(x) = 1−Bb,a(1− x), (132)

Bb(j),a(x) =O
(
xb(j)

)
, for x → 0. (133)

Consequently, we have

Pr {Θ(Pv) ≥ ε} < 1−
(
1−O(εN )

)NB
= O(εN ). (134)

By substituting (121), (129), and (134) to (120), we have

Pr{L < d} < O(ε). (135)

From (118) and (135), if M ≥ ε−3−2/Nminκ(d)2 and
Pv = ε−2/Nminκ(d)2/Φ2NB/NE , we have

PF,out(d,B) < O(εB). (136)

�
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