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Abstract—While the impact of finite-rate feedback on the
capacity of fading channels has been extensively studied in the
literature, not much attention has been paid to this problem
under secrecy constraint. In this work, we study the ergodic secret
capacity of a multiple-input multiple-output multiple-antenna-
eavesdropper (MIMOME) wiretap channel with quantized chan-
nel state information (CSI) at the transmitter and perfect CSI
at the legitimate receiver, under the assumption that only the
statistics of eavesdropper CSI is known at the transmitter. We
refine the analysis of the random vector quantization (RVQ) based
artificial noise (AN) scheme in [1], where a heuristic upper bound
on the secrecy rate loss, when compared to the perfect CSI
case, was given. We propose a lower bound on the ergodic
secrecy capacity. We show that the lower bound and the secrecy
capacity with perfect CSI coincide asymptotically as the number
of feedback bits and the AN power go to infinity. For practical
applications, we propose a very efficient quantization codebook
construction method for the two transmit antennas case.

Index Terms—artificial noise, secret capacity, physical layer
security, wiretap channel.

I. INTRODUCTION

Complexity-based cryptographic technologies (e.g. AES
[2]) have traditionally been used to provide a secure gateway
for communications and data exchanges at the network layer.
The security is achieved if an eavesdropper (Eve) without
the key cannot decipher the message in a reasonable amount
of time. This premise becomes controversial with the rapid
developments of computing devices (e.g. quantum computer).
In contrast, physical layer security (PLS) does not depend on
a specific computational model and can provide security even
when Eve has unlimited computing power. Wyner [3] and later
Csiszár and Körner [4] proposed the wiretap channel model
as a basic framework for PLS. Wyner has shown that for
discrete memoryless channels, if Eve intercepts a degraded
version of the intended receiver’s (Bob’s) signal, a prescribed
degree of data confidentiality could be simultaneously attained
by channel coding without any secret key. The associated
notion of secrecy capacity was introduced to characterize the
maximum transmission rate from the transmitter (Alice) to
Bob, below which Eve is unable to obtain any information.

Wyner’s wiretap channel model has been extended to fad-
ing channel [5], Gaussian broadcast channel [6], multiple-
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input single-output multiple-antenna-eavesdropper (MISOME)
channel [7], and multiple-input multiple-output multiple-
antenna-eavesdropper (MIMOME) channel [8]. All these
works rely on the perfect knowledge of Bob’s channel state
information (CSI) at Alice to compute the secrecy capacity
and enable secure encoding. In particular, Eve’s CSI is also
assumed to be known at Alice in [6], [8], although the CSI of
a passive Eve is very hard to be unveiled at Alice. It is more
reasonable to assume that Alice only knows the statistics of
Eve’s channel. Even the assumption of perfect knowing Bob’s
CSI is not realistic. In practice, Bob can only provide Alice
with a quantized version of his CSI via a rate constrained
feedback channel (i.e., finite-rate feedback).

In this work, we are interested in the secrecy capacity condi-
tioned on the quantized CSI of Bob’s channel and the statistics
of Eve’s channel. While the impact of finite-rate feedback on
the capacity of fading channels has been extensively studied
(see [9]–[13]), not much attention has been given to this
problem under secrecy constraint. In [14], assuming that Alice
only knows the statistics of Eve’s channel, the authors derived
lower and upper bounds on the ergodic secrecy capacity
for a single-input single-output single-antenna-eavesdropper
(SISOSE) system with finite-rate feedback of Bob’s CSI. In the
MIMOME scenario, the artificial noise (AN) scheme has been
shown to guarantee positive secrecy capacity without knowing
Eve’s CSI in [15]. Alice is assumed to have perfect knowledge
of Bob’s eigenchannel vectors. This assumption allows her to
align artificial noise within the null space of a MIMO channel
between Alice and Bob, so that only Eve’s equivocation is
enhanced. In [1], the authors show that if only quantized CSI
is available at Alice, the artificial noise will leak into Bob’s
channel, causing a decrease in the achievable secrecy rate. A
heuristic upper bound on the secrecy rate loss (compared to
the perfect CSI case) is proposed in [1, Eq. 34].

The main contribution of this paper is to provide a lower
bound on the ergodic secrecy capacity for the AN scheme
with quantized CSI, valid for any number of Alice/Bob/Eve
antennas, as well as for any Bob/Eve signal-to-noise ratio
(SNR) regimes. Following the work in [1], we use the random
vector quantization (RVQ) scheme in [9]. Namely, given B
feedback bits, Bob quantizes his eigenchannel matrix to one
of N = 2B random unitary matrices and feeds back the
corresponding index. We first show that RVQ is asymptotically
optimal for security purpose, i.e., the secrecy capacity/rate loss
compared to the perfect CSI case converges to 0 as B → ∞.
This result implies that the heuristic bound in [1, Eq. 34] is
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not tight, since it reduces to a positive constant as B → ∞.
To refine the analysis in [1], we establish a tighter upper
bound on the secrecy rate loss, which leads to an explicit
lower bound on the ergodic secrecy capacity. We further show
that the lower bound and the secrecy capacity with perfect CSI
coincide asymptotically as B and the AN power go to infinity.
This allows us to provide a sufficient condition guaranteeing
positive secrecy capacity.

From a practical point of view, it is often desirable to use
a deterministic quantization codebook rather than a random
one. The problem of derandomizing RVQ codebooks is related
to discretizing the complex Grassmannian manifold [9], [10].
Since the optimal constructions are possible only in very
special cases, deterministic codebooks are mostly generated
by computer search [16]. Interestingly, the case of codebook
design with two transmit antennas is equivalent to quantizing
a real sphere [13]. According to this fact, we propose a
very efficient codebook construction method for the two-
antenna case. Simulation results demonstrate that near-RVQ
performance is achieved by a moderate number of feedback
bits.

The novelty of this paper is to give a complete answer
to the question: how to guarantee secrecy for MIMOME
wiretap channels with finite-rate feedback? The pioneering
works in [1] and [14] haven’t actually solved this problem.
Our analytical results show that a positive ergodic secrecy
capacity for MIMOME channel with quantized CSI is always
achieved by using RVQ-based AN transmission scheme and
Gaussian input alphabets in high AN power limit. This new
finding justifies the use of AN scheme in practical limited
feedback systems.

It is worth mentioning that the latest work of Liang et al.
[17] studies the problem of knowing only statistics of Bob’s
CSI in SISOSE wiretap channel. The security of Liang et al.’s
scheme relies on the degraded channel assumption, i.e., Eve’s
channel is worse than the main channel. In this work, we tackle
the problem of how to guarantee secrecy when Eve’s channel
is non-degraded (e.g. can be noiseless). We induct the major
benefits of knowing a quantized version of Bob’s CSI: given
a sufficient number of feedback bits B, Alice is able to apply
the artificial noise technique to jam Eve, so that the positive
secrecy capacity can be guaranteed for arbitrarily small Eve’s
channel noise variance. We believe that avoiding the degraded
channel assumption is an interesting and fundamental problem.

The paper is organized as follows: Section II presents the
system model, followed by the analysis of secrecy capacity
with finite-rate feedback in Section III. Section IV provides
the deterministic quantization codebook construction method
for the two-antenna case. Conclusions are drawn in Section V.
Proofs of the theorems are given in Appendix.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the Hermitian transpose,
inverse, pseudoinverse of a matrix B by BH , B−1, and B†,
respectively. |B| denotes the determinant of B. Let the random
variables {Xn} and X be defined on the same probability
space. We write Xn

a.s.→ X if Xn converges to X almost surely
or with probability one. In denotes the identity matrix of size
n. An m × n null matrix is denoted by 0m×n. A circularly

symmetric complex Gaussian random variable x with variance
σ2 is defined as x v NC(0, σ

2). The real, complex, integer
and complex integer numbers are denoted by R, C, Z and Z [i],
respectively. I(x; y) represents the mutual information of two
random variables x and y. We use the standard asymptotic
notation f (x) = O (g (x)) when lim sup

x→∞
|f(x)/g(x)| < ∞.

⌈x⌋ rounds to the closest integer, while ⌊x⌋ to the closest
integer smaller than or equal to x and ⌈x⌉ to the closest integer
larger than or equal to x. A central complex Wishart matrix
A ∈ Cm×m with n degrees of freedom and covariance matrix
Σ, is defined as A v Wm(n,Σ). Trace of a square matrix B
is denoted by Tr (B). We write , for equality in definition.

II. SYSTEM MODEL

We consider secure communications over a three-terminal
system, including a transmitter (Alice), the intended receiver
(Bob), and an unauthorized receiver (Eve), equipped with NA,
NB, and NE antennas, respectively. The signal vectors received
by Bob and Eve are

z = Hx+ nB, (1)
y = Gx+ nE, (2)

where x ∈ CNA is the transmit signal vector, H ∈ CNB×NA

and G ∈ CNE×NA are the respective channel matrices between
Alice to Bob and Alice to Eve, and nB, nE are AWGN vectors
with i.i.d. entries ∼ NC(0, σ2

B) and NC(0, σ2
E). We assume that

the entries of H and G are i.i.d. complex random variables
∼ NC(0, 1).

Without loss of generality, we normalize Bob’s channel
noise variance to one, i.e.,

σ2
B = 1. (3)

In this paper, we assume that Bob knows its own channel
matrix H instantaneously and Eve knows both its own channel
matrix G and the main channel H, instantaneously; whereas
Alice is only aware of the statistics of H and G. There is also
an error-free public feedback channel with limited capacity
from Bob to Alice that can be tracked by Eve. In our setting,
the feedback is exclusively used to send the index of the
codeword in a quantization codebook that describes the main
channel state information H. The quantization codebook is
assumed to be known a priori to Alice, Bob and Eve.

A. Artificial Noise Scheme with Perfect CSI

The original AN scheme assumes NB < NA, in order
to ensure that H has a non-trivial null space with an or-
thonormal basis Z = null(H) ∈ CNA×(NA−NB) (such that
HZ = 0NB×(NA−NB)) [15]. Let H = UΛVH be the singular
value decomposition (SVD) of H, where U ∈ CNB×NB and
V ∈ CNA×NA are unitary matrices. Then, we can write the
unitary matrix V as

V = [Ṽ,Z], (4)

where the NB columns of Ṽ ∈ CNA×NB span the orthogo-
nal complement subspace to the null space spanned by the
columns of Z ∈ CNA×(NA−NB).
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With unlimited feedback (i.e., perfect CSI), Alice has per-
fect knowledge of the precoding matrix V, and transmits

x = Ṽu+ Zv = V

[
u
v

]
, (5)

where u ∈ CNB is the information vector and v ∈ C(NA−NB) is
the “artificial noise”. For the purpose of evaluating the achiev-
able secrecy rate, both u and v are assumed to be circular
symmetric Gaussian random vectors with i.i.d. complex entries
∼ NC(0, σ2

u ) and NC(0, σ2
v ), respectively. In [18], we have

shown that Gaussian input alphabets asymptotically achieves
the secrecy capacity as σ2

v → ∞.
Equations (1) and (2) can then be rewritten as

z = HṼu+HZv + nB = HṼu+ nB, (6)

y = GṼu+GZv + nE, (7)

to show that with unlimited feedback, the artificial noise only
degrades Eve’s channel, resulting in increased secrecy capacity
(compared to the non-AN case).

B. Artificial Noise Scheme with Quantized CSI

In [1], the authors analyzed the impact of finite-rate feed-
back on the secrecy rate achievable by the AN scheme. To
quantize the matrix Ṽ in (4), the random vector quantization
(RVQ) scheme in [9] is used. Given B feedback bits per
fading channel, Bob specifies Ṽ from a random quantization
codebook

V =
{
Ṽi, 1 ≤ i ≤ 2B

}
, (8)

where the entries are independent NA × NB random unitary
matrices, i.e., ṼH

i Ṽi = INB . The codebook V is known a
priori to all Alice, Bob and Eve. Bob selects the Ṽj that
minimize the chordal distance between Ṽi and Ṽ [11]:

Ṽj = min
Ṽi∈V

d2
(
Ṽi,Ṽ

)
, (9)

where
d
(
Ṽi,Ṽ

)
= NB − Tr

(
ṼHṼiṼ

H
i Ṽ

)
. (10)

Note that Tr (A) denotes the trace of the square matrix A.
Then, Bob relays the corresponding index j back to Alice.

Alice generates the precoding matrix from Ṽj as follows.
Let ṽ1, ... , ṽNB be the columns of Ṽj , and e1, ... , eNA−NB

be the standard basis vectors. Alice applies the Gram-Schmidt
algorithm to the matrix

[ṽ1, ... , ṽNB , e1, ... , eNA−NB ]

to generate the remaining orthonormal basis vectors spanning
the orthogonal complement space to the one generated by the
columns of Ṽj . This provides Alice with a unitary matrix

V̂ = [Ṽj , Ẑ] ∈ CNA×NA , (11)

that can be used to precode u and v as in (5).
Since Ẑ ̸= Z, the interference term HẐv cannot be nulled

at Bob. Therefore, equations (6) and (7) reduce to

z = HṼju+HẐv + nB, (12)

y = GṼju+GẐv + nE, (13)

and show that with finite rate feedback (i.e., quantized CSI),
some of the artificial noise will inevitably leak into the main
channel from Alice to Bob, causing degradation in the secrecy
capacity (compared to the unlimited feedback case).

C. Assumptions and Notations

The analysis in [1], [15] are based on the assumption of
NE < NA. Clearly, this assumption is not always realistic. In
this work, we remove this assumption and evaluate the secrecy
capacity for any number of Eve antennas.

Since V̂ in (11) is a unitary matrix, the total transmission
power can be written as

||x||2 =

[
u
v

]H
V̂HV̂

[
u
v

]
= ||u||2 + ||v||2. (14)

Then the average transmit power constraint P is

P = E(||x||2) = Pu + Pv, (15)

where
Pu = E(||u||2) = σ2

uNB,
Pv = E(||v||2) = σ2

v (NA −NB),
(16)

are fixed by the power allocation scheme that selects the power
balance between σ2

u and σ2
v .

We define Bob’s and Eve’s SNRs as
• SNRB , σ2

u/σ
2
B

• SNRE , σ2
u/σ

2
E

To simplify our notation, we define three system parameters:
• α , σ2

u/σ
2
E = SNRE

• β , σ2
v/σ

2
u (AN power allocation)

• γ , σ2
E/σ

2
B (Eve-to-Bob noise-power ratio)

Note that SNRB = αγ. If γ > 1, then Eve has a worse
SNR than Bob. Since we have normalized σ2

B to one, we can
rewrite (16) as

• Pu = αγNB
• Pv = αβγ(NA −NB)

D. Instantaneous and Ergodic Secrecy Capacities

We recall from [8] the definition of instantaneous secrecy
capacity for MIMOME channel:

CS , max
p(u)

{I(u; z)−I(u;y)} , (17)

where u is an auxiliary random vector used in the secrecy ca-
pacity characterization, which satisfies the Markov relationship
u → x → (z,H), (y,H,G). The maximum in (17) is taken
over all possible input distributions p (u). We remark that CS
is a function of H and G, which are embedded in z and y.

To average out the channel randomness, we further define
the ergodic secrecy capacity, as in [15]

E(CS) , max
p(u)

{I(u; z|H)−I(u;y|H, G)} , (18)

where u is an auxiliary random vector as above. Note that
I (X;Y |Z) , EZ [I (X;Y ) |Z], following the notation in
[19].
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Since closed form expressions for CS and E(CS) are not
always available, we often consider the corresponding secrecy
rates, given by

RS , I(u; z)−I(u;y), (19)

E(RS) , I(u; z|H)−I(u;y|H,G), (20)

where v and u are assumed to be mutually independent
Gaussian vectors with i.i.d. complex entries NC(0, σ2

v ) and
NC(0, σ2

u ), respectively, for the purposes of characterizing the
achievable secrecy rate.

Under the original AN framework in (6) and (7), the
achievable secrecy rate with perfect CSI can be written as

RS = log
∣∣∣INB + αγHHH

∣∣∣+ log
∣∣∣INE + αβ(GZ)(GZ)

H
∣∣∣

− log
∣∣∣INE + α(GṼ)(GṼ)H + αβ(GZ)(GZ)

H
∣∣∣ . (21)

The closed-form expression of E(RS) can be found in [18, Th.
1]. It is shown that the achievable secrecy rate E(RS) con-
verges to the ergodic secrecy capacity with AN-beamforming,
as the AN power Pv → ∞ in [18, Th. 3].

Remark 1: For the reader’s convenience, we summarize the
idea in [18, Th. 3]. A universal upper bound on E(CS) is

E(CS) = max
p(u)

{I(u; z|H)−I(u;y|H, G)}

≤ max
p(u)

{I(u; z|H)} , C̄Bob, (22)

where C̄Bob represents Bob’s ergodic channel capacity with
perfect CSI. In other words, the secrecy capacity cannot be
greater than the main channel capacity. In [18, Th. 3], we
have shown that if NE ≤ NA −NB, as Pv → ∞,

E(RS) → C̄Bob, (23)

which means that no input is better than Gaussian, under the
original AN framework in [15].

Under the RVQ-based AN framework in (12) and (13), the
achievable secrecy rate with quantized CSI can be written as

RS,Q = log

∣∣∣INB + αγ(HṼj)(HṼj)
H + αβγ(HẐ)(HẐ)

H
∣∣∣∣∣∣INB + αβγ(HẐ)(HẐ)

H
∣∣∣

− log

∣∣∣INE + α(GV1,j)(GṼj)
H + αβ(GẐ)(GẐ)

H
∣∣∣∣∣∣INE + αβ(GẐ)(GẐ)

H
∣∣∣ .

(24)

In the special case of NE ≤ NB, the ergodic MIMOME
secrecy capacity with statistical CSI, i.e., E(CS), was recently
reported in [20]. However, the ergodic MIMOME secrecy
capacity with quantized CSI, denoted by E(CS,Q), remains an
open problem. In this work, we focus on bounding E(CS,Q)
under the RVQ-based AN framework.

E. Open Problems and Motivations

Using [21, Eq. 2, pp. 56], it is simple to show that

E(RS) ≥ E(RS,Q). (25)

In [1], the ergodic secrecy rate loss is defined by:

E(∆RS) , E(RS)− E(RS,Q). (26)

A heuristic upper bound was proposed in [1, Eq. 34]:

E(∆RS) / NB log

(
NB + αβγNAD

(
NA, NB, 2

B
)

NB −D (NA, NB, 2B)

)

+NB log

(
1 +

1

αγ (NA −NB)

)
, UBheuristic. (27)

where

D
(
NA, NB, 2

B
)
= E

(
d2
(
Ṽj ,Ṽ

))
, (28)

and d (·, ·) is give in (10).
Note that the asymptotic inequality “/” in (27) means

“purely heuristic”. However, (27) is insufficient to characterize
the impact of quantized CSI on the secrecy rate achievable by
the AN scheme. To show this, we use the following:

Proposition 1: For the RVQ-based AN scheme, as B → ∞,

V̂ → V, (29)

where V is given in (4) and V̂ is given in (11).
Proof. See Appendix A. �
Proposition 1 shows the RVQ scheme is asymptotically op-

timal for large B, i.e., the secrecy capacity/rate loss (compared
to the perfect CSI case) converges to zero. In contrast, as
B → ∞, UBheuristic in (27) reduces to a positive constant:

UBheuristic → NB log

(
1 +

1

αγ (NA −NB)

)
, (30)

since D
(
NA, NB, 2

B
)

→ 0 as B → ∞ [11]. Hence, the
heuristic bound in (27) is not tight.

Remark 2: The ergodic secrecy capacity with quantized CS
E(CS,Q), is lower bounded by

E(CS,Q) ≥ E(RS,Q) = E(RS)− E(∆RS). (31)

Using the closed-form expression of E(RS) given in [18, Th.
1], we are motivated to establish a tighter upper bound on
E(∆RS), which allows us to obtain a lower bound on E(CS,Q).

We would like to emphasize that the difficulty of computing
E(∆RS) is in evaluating the first term in (24). The existing
results in [9]–[13] consider the impact of finite-rate feedback
on the capacity of fading channels, rather than on the secrecy
capacity of wiretap channels. More specifically, those results
focus on computing

E
(
log
∣∣∣INB + αγ(HṼj)(HṼj)

H
∣∣∣) , (32)

thus cannot be applied directly to computation of E(∆RS).
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III. BOUNDS AND ACHIEVABILITY ON SECRECY
CAPACITY WITH QUANTIZED CSI

In this section, we wish to determine the secrecy capacity
with RVQ-based AN scheme. A tight upper bound on the
ergodic secrecy rate loss and a lower bound on the ergodic
secrecy capacity are provided in Theorem 1 and Theorem 3,
respectively. In Theorem 4, we show that the lower bound
and the secrecy capacity with perfect/quantized CSI coincide
asymptotically as B and Pv go to infinity. This provides a
sufficient condition guaranteeing positive secrecy capacity.

In summary, the novelty of our main results is to link
the practical secure transmission scheme, i.e., RVQ-based AN
scheme, with the information-theoretic security measure, i.e.,
secrecy capacity.

To describe our result, we first recall the following function
from [22]:

Θ(m,n, x) , e−1/x
m−1∑
k=0

k∑
l=0

2l∑
i=0

{
(−1)i(2l)!(n−m+ i)!

22k−il!i!(n−m+ l)!

·
(
2(k − l)
k − l

)
·
(
2(l + n−m)

2l − i

)
·
n−m+i∑
j=0

x−jΓ(−j, 1/x)

}
,

(33)

where
(
a
b

)
= a!/((a−b)!b!) is the binomial coefficient, n ≥ m

are positive integers, and Γ(a, b) is the incomplete Gamma
function

Γ(a, b) =

∫ ∞

b

xa−1e−xdx. (34)

We further define

Nmin , min {NE, NA −NB} , (35)
Nmax , max {NE, NA −NB} , (36)

N̂min , min {NE, NA} , (37)
N̂max , max {NE, NA} . (38)

Finally, we define a set of NA power ratios {θi}NA
1 , where

θi ,
{

α 1 ≤ i ≤ NB
αβ NB + 1 ≤ i ≤ NA

(39)

We recall from [11, Th. 4] that

µ
(
NA, NB, 2

B
)
≤ D

(
NA, NB, 2

B
)
≤ η

(
NA, NB, 2

B
)

,
(40)

where D (·, ·, ·) is given in (28) and

η (n, p,K) =

Γ

(
1

p(n− p)

)
p(n− p)

(Kc (n, p))
−

1

p(n− p)

+p exp(− (Kc (n, p))
1−ζ

), (41)

µ (n, p,K) =
p(n− p)

p(n− p) + 1
(Kc (n, p))

−
1

p(n− p)
,

(42)

c (n, p) =


1

Γ(p(n− p) + 1)

p∏
i=1

Γ(n− i+ 1)

Γ(p− i+ 1)
, n ≥ 2p

1

Γ(p(n− p) + 1)

n−p∏
i=1

Γ(n− i+ 1)

Γ(n− p− i+ 1)
, n ≤ 2p

(43)
for any 0 < ζ < 1. Note that Γ(a) is the Gamma function.

A. Bounds on Ergodic/Instantaneous Secrecy Rate Loss

We first consider the ergodic secrecy rate loss E(∆RS).
Theorem 1: Let θmin = min {αγ, αβγ}. We have

E(∆RS) ≤ Θ(NB, NA, αγ)−Θ(NB, NA, θmin)

+ Θ

(
NB, NA, αβγ

η
(
NA, NB, 2

B
)

NB

)
, UB, (44)

where Θ(·, ·, ·) is given in (33) and η(·, ·, ·) is given in (41).
Proof. See Appendix B. �
Theorem 1 gives a tight upper bound on E(∆RS), for any

number of Alice/Bob/Eve antennas, as well as for any Bob/Eve
SNR regimes.

Remark 3: The function Θ(m,n, x) represents the closed-
form expression of the ergodic capacity of MIMO Rayleigh-
fading channels [22], where x represents the SNR. For exam-
ple, E

(
log
∣∣∣INB + xHHH

∣∣∣) = Θ(NB, NA, x). The properties
of Θ(m,n, x) are well studied and can be found in many
literatures, for example, [23]. Most importantly, Θ(m,n, x) is
a non-negative increasing function of x. It is easy to see that
UB in (44) is always non-negative, since αγ ≥ θmin. Due to
the fact limB→∞ η

(
NA, NB, 2

B
)
= 0, if β ≥ 1, we have

lim
B→∞

UB = log |INB | = 0, (45)

which is consistent with Proposition 1.
Remark 4: UB in (44) does not depend on the number of

antennas at Eve NE. This is because E(∆RS) itself does not
depend on NE. As shown in the proof of Theorem 1, we have

E(∆RS) = E
(
log
∣∣∣INB + αγHHH

∣∣∣)
− E

log

∣∣∣INB + αγ(HṼj)(HṼj)
H + αβγ(HẐ)(HẐ)

H
∣∣∣∣∣∣INB + αβγ(HẐ)(HẐ)

H
∣∣∣

 ,

(46)

which is unrelated to G and NE. In other words, finite-rate
feedback only degrades the main channel.

Example 1: Let us apply Theorem 1 to the analysis of a
RVQ-based AN scheme with β = 1, αγ = 1, NA = 4
and NB = 2. The numerical result in Fig. 1 shows that the
proposed upper bound in (44) is much tighter than the heuristic
one in (27), and captures the behavior of E(∆RS).

We then study the distribution of instantaneous secrecy rate
loss, defined by

∆RS , RS −RS,Q. (47)

Here, we consider the large system limit as NA and B → ∞
with finite ratio B/NA. An interesting case that leads to a
closed-form bound can be found when NB = NE = 1.

Theorem 2: If NB = NE = 1, as NA and B → ∞ with
B/NA → B̄,

∆RS
a.s.→ log (1 + P/β) + log

(
1 + 2−B̄P

)
− log

(
1 + P +

1− β

β
(1− 2−B̄)P

)
. (48)

Proof. See Appendix C. �
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P = 10: Estimation in (49)

P = 10: Simulation
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Fig. 2. E(∆RS) vs. B̄ with β = 1, P = 1, 10, NA = 10 and NB = 1.

Theorem 2 provides a closed-form asymptotic expression
for ∆RS when NB = NE = 1. Hence, the ergodic secrecy
rate loss also converges to the same constant, as stated in the
following corollary.

Corollary 1: Under the same assumptions of Theorem 2,

E(∆RS) → log (1 + P/β) + log
(
1 + 2−B̄P

)
− log

(
1 + P +

1− β

β
(1− 2−B̄)P

)
. (49)

Proof. The proof is straightforward. �
Example 2: The numerical result in Fig. 2 shows that (49)

is very accurate even for finite NA and B.

B. A Lower Bound on Ergodic Secrecy Capacity

A lower bound on E(CS,Q) can be derived using the results
from (31), Theorem 1 and [18, Th. 1].

Theorem 3:

E(CS,Q) ≥ Θ(Nmin, Nmax, αβ)− Ω+Θ(NB, NA, θmin)

−Θ

(
NB, NA, αβγ

η
(
NA, NB, 2

B
)

NB

)
, C̄LB,Q, (50)

where Θ(·, ·, ·) is given in (33), η(·, ·, ·) is given in (41) and

Ω =

 K
N̂min∑
k=1

det
(
R(k)

)
, β ̸= 1

Θ(N̂min, N̂max, α), β = 1

(51)

K =
(−1)NE(NA−N̂min)

ΓN̂min
(NE)

2∏
i=1

µmiNE
i

2∏
i=1

Γmi(mi)
∏
i<j

(µi − µj)
mimj

,

(52)

Γk(n) =
k∏

i=1

(n− i)!,

and µ1 > µ2 are the two distinct eigenvalues of the matrix
diag

({
θ−1
i

}NA

1

)
, with corresponding multiplicities m1 and

m2 such that m1 +m2 = NA. The matrix R(k) has elements

r
(k)
i,j =



(µei)
NA−j−di

(NA − j)!

(NA − j − di)!
, N̂min + 1 ≤ j ≤ NA

(−1)di
φ(i, j)!

(µei)
φ(i, j) + 1

, 1 ≤ j ≤ N̂min, j ̸= k

(−1)diφ(i, j)!eµei

φ(i, j)∑
l=0

Γ(l − φ(i, j), µei)

(µei)
l + 1

, otherwise

(53)
where

ei =

{
1 1 ≤ i ≤ m1

2 m1 + 1 ≤ i ≤ NA

di =

ei∑
k=1

mk − i,

φ(i, j) = NE − N̂min + j − 1 + di.

Proof. See Appendix D. �
Theorem 3 gives a lower bound on E(CS,Q), for any number

of Alice/Bob/Eve antennas, as well as for any Bob/Eve SNR
regimes. The lower bound in (50) is an increasing function
of the number of feedback bits B. To guarantee a positive
secrecy capacity, Alice just needs to increase B and checks
whether C̄LB,Q > 0.

Remark 5: We would like to emphasize that Theorem 3 does
not overlap with our previous results in [18]. Recalling that

E(CS,Q) ≥ E(RS,Q) = E(RS)− E(∆RS). (54)

The closed-form expression of E(RS) is given in [18, Th. 1],
but we still have to bound E(∆RS). Our key contribution is
the explicit upper bound on E(∆RS) in Theorem 1, which
allows us to finally provide a lower bound on E (RS,Q).
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C. Positive Secrecy Capacity with Quantized CSI

According to (18), a universal upper bound on E(CS,Q) is

E(CS,Q) ≤ E(CS) ≤ max
p(u)

{I(u; z|H)} = C̄Bob, (55)

where C̄Bob represents Bob’s ergodic channel capacity.
Combining (50) with (55), we obtain the following chain of

inequalities

C̄LB,Q ≤ E(CS,Q) ≤ E(CS) ≤ C̄Bob. (56)

Note that C̄Bob > 0. To characterize the achievability of
positive secrecy capacity, we start by analyzing the difference
between C̄LB,Q and C̄Bob.

Theorem 4: If NE ≤ NA−NB and β ≥ 1, as α, β, B → ∞,

C̄LB,Q → E(CS,Q) → E(CS) → C̄Bob. (57)

Proof. See Appendix E. �
Remark 6: We have shown that C̄LB,Q, E(CS) and C̄Bob

coincide asymptotically as B and Pv = αβγ(NA −NB) go to
infinity. This result guarantees that Eve is completely ineffec-
tive. This phenomenon is due to the fact that if NE ≤ NA−NB,
as Pv → ∞,

I(u;y|H,G) → 0, (58)

i.e., the AN scheme can jam all the eavesdropping in the high
AN power limit. We refer the reader to [18, Th. 3] for details.

Remark 7: Note that C̄LB,Q is derived based on Gaussian
input alphabets. From Theorem 4, we can conclude that a
positive maximum secrecy capacity for MIMOME channel
with quantized CSI is always achieved by using RVQ-based
AN transmission scheme and Gaussian input alphabets for
large B and Pv, if NE ≤ NA −NB.

Example 3: Fig. 3 compares C̄LB,Q and C̄Bob as a function
of AN power Pv, with NA = 4, NB = NE = 2, and α =
γ = 1. Since Pu = αγNB and Pv = αβγ(NA −NB), we have
Pu = 2 and Pv = 2β. The simulation result shows that C̄LB,Q
approaches to C̄Bob as Pv increases, for sufficiently large B.

IV. IMPLEMENTATION USING A DETERMINISTIC
CODEBOOK

In the previous section, random quantization codebooks
have been used to prove new results on secrecy capacity with
quantized CSI. The methods of constructing random unitary
matrices Ṽi in (8) can be found in [24]. In practice, it is
often desirable that the quantization codebook is deterministic.
The problem of derandomizing RVQ codebooks is typically
referred to as Grassmannian subspace packing [9], [10].
Despite of a few special cases (e.g., B ≤ 4 [13]), analytical
codebook design in general remains an intricate task. In this
section, we propose a very efficient quantization codebook
construction method for the case of NA = 2 and NB = 1.

According to [13, Eq. (20)], the codeword Ṽi can be
expressed as

Ṽi(ω, ϕ) =

[
cosω

ejϕ sinω

]
, (59)

which fully describes the complex Grassmannian manifold
G2,1 by setting 0 ≤ ϕ ≤ 2π and 0 ≤ ω ≤ π/2. Let (ω̂, ϕ̂) be
spherical coordinates parameterizing the unit sphere S2, where
0 ≤ ϕ̂ ≤ 2π and 0 ≤ ω̂ ≤ π. In [13, Lemma 1], the authors
further show that the map

S2 → G2,1

(ω̂, ϕ̂) 7−→ Ṽi(ω̂/2, ϕ̂) (60)

is an isomorphism. In other words, the sampling problem on
G2,1 can analogically be addressed on the real sphere S2.

The method of sampling points uniformly from S2 is pro-
vided in [25]. In details, one can parameterize (x, y, z) ∈ S2

using spherical coordinates (ω̂, ϕ̂):

x = sin ω̂ cos ϕ̂,
y = sin ω̂ sin ϕ̂,
z = cos ω̂. (61)

The area element of S2 is given by

dS = sin ω̂dω̂dϕ̂ = −d (cos ω̂) dϕ̂. (62)

Hence, to obtain a uniform distribution over S2, one has to
pick ϕ̂ ∈ [0, 2π] and t ∈ [−1, 1] uniformly and compute ω̂ by:

ω̂ = arccos t. (63)

In this way cos ω̂ = t will be uniformly distributed in [−1, 1].
Based on above analysis, we give a straightforward method

for codebook construction:

V̂ =

{
V̂1,i =

[
cos(0.5 arccos ti)

ejϕi sin(0.5 arccos ti)

]∣∣∣∣ i = 1, ..., 2B
}

,

(64)
where

ti = −1 +
2
⌈
i/2⌈B/2⌉⌉− 1

2⌊B/2⌋ , (65)

ϕi =
2π
(
i mod 2⌈B/2⌉)
2⌈B/2⌉ . (66)

Note that ⌊x⌋ rounds to the closest integer smaller than or
equal to x, while ⌈x⌉ to the closest integer larger than or
equal to x.
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Using the deterministic codebook in (64) can save storage
space on Alice, since she can generate the target codeword
V̂1,j directly without the knowledge of the whole codebook
V̂ . We remark that the proposed codebook construction is valid
for any B. This is different from the construction scheme in
[13, Sec. VI-A], which is only possible for the case of B ≤ 4.

Example 4: Fig. 4 examines the performance of the pro-
posed codebook construction with β = 2, γ = 1, P = 10,
and NE = 1. When B ≤ 4, it is seen that the performance
of codebook V̂ in (64) is indistinguishable from the optimal
one in [13, Sec. VI-A]. When B ≥ 8, the proposed codebook
provides the same performance as the random one in (8).

Note that our codebook construction is based on the fact
that the sampling problem on Grassmannian manifold G2,1

can be reduced to one on the real sphere S2 [13, Lemma 1].
For any arbitrary number of antennas, except for the special
case of NA = 2 and NB = 1, this argument does not hold in
general and deterministic codebooks are mostly generated by
computer search [16].

V. CONCLUSIONS

In this work, we have discussed the problem of guaran-
teeing positive secrecy capacity for MIMOME channel with
the quantized CSI of Bob’s channel and the statistics of
Eve’s channel. We analyzed the RVQ-based AN scheme and
provided a lower bound on the ergodic secrecy capacity. We
proved that a positive secrecy capacity is always achievable
by Gaussian input alphabets when NE ≤ NA − NB, and the
number of feedback bits B and the artificial noise power Pv are
large enough. We also proposed an efficient implementation
of discretizing the RVQ codebook which exhibits similar
performance to that of random codebook.

Our results are based on the assumption that the feedback
channel is error free. It would be interesting to see how the
secrecy capacity deteriorates when there is a feedback error
assuming the RVQ framework, e.g., delayed feedback [26]
[27]. Totally understand that this might be a whole new topic.
We will address this problem in our future work.

APPENDIX

A. Proof of Proposition 1

According to [12], as B → ∞, the RVQ operation in (9)
can guarantee

Ṽj → Ṽ. (67)

We then check the matrix Ẑ generated by Alice. The SVD
decomposition of H can be written as

H = UΛṼH . (68)

From (67) and (68), as B → ∞, we have

HẐ = UΛṼHẐ → UΛṼH
j Ẑ = 0NA×(NA−NB), (69)

which means
Ẑ → null(H). (70)

From (11), (67) and (70), we have V̂ → V as B → ∞. �

B. Proof of Theorem 1

Using [21, Eq. 12, pp. 55], we have∣∣∣INB + αγ(HṼj)(HṼj)
H + αβγ(HẐ)(HẐ)

H
∣∣∣

≥
∣∣∣INB + θmin(HṼj)(HṼj)

H + θmin(HẐ)(HẐ)
H
∣∣∣

=
∣∣∣INB + θminHHH

∣∣∣ , (71)

where θmin = min {αγ, αβγ}.
Since the unitary matrix V̂ = [Ṽj , Ẑ] is independent of

G and its realization is known to Alice, GṼj ∈ CNE×NB

and GẐ ∈ CNE×(NA−NB) are mutually independent complex
Gaussian random matrices with i.i.d. entries [28, Th. 1]. We
can write

E

log

∣∣∣INE + α(GṼj)(GṼj)
H + αβ(GẐ)(GẐ)

H
∣∣∣∣∣∣INE + αβ(GẐ)(GẐ)

H
∣∣∣

 (72)

as the average of a function of NE×NA i.i.d complex Gaussian
random variables ∼ NC(0, 1).

Similarly, with unlimited feedback, we have

E

log

∣∣∣INE + α(GṼ)(GṼ)H + αβ(GZ)(GZ)
H
∣∣∣∣∣∣INE + αβ(GZ)(GZ)

H
∣∣∣

 (73)

as the average of a function of NE×NA i.i.d complex Gaussian
random variables ∼ NC(0, 1).

From (72) and (73), we have

E

log

∣∣∣INE + α(GṼj)(GṼj)
H + αβ(GẐ)(GẐ)

H
∣∣∣∣∣∣INE + αβ(GẐ)(GẐ)

H
∣∣∣


= E

log

∣∣∣INE + α(GṼ)(GṼ)H + αβ(GZ)(GZ)
H
∣∣∣∣∣∣INE + αβ(GZ)(GZ)

H
∣∣∣

 .(74)
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From (21), (24), (71) and (74), E(∆RS) can be upper
bounded by

E(∆RS) ≤ E
(
log
∣∣∣INB + αγHHH

∣∣∣)
− E

(
log
∣∣∣INB + θminHHH

∣∣∣)
+ E

(
log
∣∣∣INB + αβγ(HẐ)(HẐ)

H
∣∣∣) . (75)

We remark that the upper bound (75) is better than the one
in [1, Eq. (33)]. More specifically, we do not need to compute
the term E

(
log
∣∣∣ṼHṼjṼ

H
j Ṽ

∣∣∣) in [1, Eq. (33)]. This new
strategy allows us to derive a tight upper bound on E(∆RS),
rather than a heuristic one in [1, Eq. (34)].

We then estimate the third term in (75). Let λ1, ... , λNB be
the eigenvalues of HHH . We have

HHH = ṼΛṼ
H

and Λ = diag ([λ1, ..., λNB ]) . (76)

Recalling the fact that for a Wishart matrix, its eigenvalues
and eigenvectors are independent. Therefore Ṽ and Λ are
independent. This allows us to bound the third term in (75)
by

EH

(
log
∣∣∣INB + αβγ(HẐ)(HẐ)

H
∣∣∣)

(a)
= EH

(
log
∣∣∣INA−NB + αβγ(HẐ)

H
(HẐ)

∣∣∣)
= EΛ

(
EṼ

(
log
∣∣∣INA−NB + αβγẐHṼΛṼ

H
Ẑ
∣∣∣))

(b)
= EΛ

(
EṼ

(
log
∣∣∣INB + αβγṼHẐẐ

H
ṼΛ

∣∣∣))
(c)

≤ EΛ

(
EṼ

(
log
∣∣∣INB + αβγEṼ

(
ṼHẐẐ

H
Ṽ
)
Λ
∣∣∣))

(d)
= EΛ

(
log

∣∣∣∣∣INB +
αβγD

(
NA, NB, 2

B
)

NB
Λ

∣∣∣∣∣
)

(e)

≤ EΛ

(
log

∣∣∣∣∣INB +
αβγη

(
NA, NB, 2

B
)

NB
Λ

∣∣∣∣∣
)

, (77)

where (a) and (b) hold because |I+AB| = |I+BA|, (c)
follows from the concavity of log determinant function, (d)
follows from [29, Lemma 1] [1, Lemma 2], (e) holds because
of (40).

Applying the fact [22, Th. 1]

E
(
log
∣∣∣INB + ρHHH

∣∣∣) = E(log |INB + ρΛ|) = Θ(NB, NA, ρ),
(78)

to (75) and (77), we can simply obtain (44). �

C. Proof of Theorem 2

Recalling the fact that ZZH = INA − ṼṼ
H

and ẐẐ
H

=
INA − ṼjṼ

H
j . From (21) and (24), if NB = NE = 1, we can

write ∆RS as

∆RS = log
(
1 + αγHHH

)
− log

1 + αGGH + α(β − 1)(GZ)(GZ)
H

1 + αβ(GZ)(GZ)
H

− log
1 + αβγHHH + αγ (1− β) (HṼj)(HṼj)

H

1 + αβγHHH − αβγ(HṼj)(HṼj)H

+ log
1 + αGGH + α(β − 1)(GẐ)(GẐ)

H

1 + αβ(GẐ)(GẐ)
H

. (79)

As NA and B → ∞ with B/NA → B̄, according to [12,
Th. 1], we have

(HṼj)(HṼj)
H

HHH

a.s.→ (1− 2−B̄). (80)

Since β (AN power allocation), γ (Eve-to-Bob noise-power
ratio), and P = αγ + αβγ(NA − 1) (average transmit power
constraint) are fixed, the central limit theorem tells us that

αγHHH a.s.→ P/β, αGGH a.s.→ P/βγ,

α(GZ)(GZ)
H a.s.→ P/βγ, α(GẐ)(GẐ)

H a.s.→ P/βγ. (81)

Note that GZ (or GẐ) is a complex Gaussian random vector
with i.i.d. entries [28, Th. 1].

By substituting (80) and (81) into (79), we obtain (48). �

D. Proof of Theorem 3
According to [18, Th. 1], we have

E(RS) = Θ(NB, NA, αγ) + Θ(Nmin, Nmax, αβ)− Ω, (82)

where Θ(·, ·, ·) is given in (33) and Ω is given in (51). By
substituting (44) and (82) into (31), we can obtain (50). �

E. Proof of Theorem 4
If β ≥ 1, then θmin = αγ. From (50) and (82), as B → ∞,

C̄LB,Q → Θ(NB, NA, αγ)+Θ(Nmin, Nmax, αβ)−Ω = E(RS).
(83)

According to [18, Th. 3], if NE ≤ NA −NB, as α, β → ∞,

E(RS) → E(CS) → C̄Bob, (84)

where C̄Bob represents the ergodic main channel capacity with
perfect CSI. The key step in the proof of [18, Th. 3] is to
show that if NE ≤ NA −NB, as α, β → ∞, then

I(u;y|H,G) → 0. (85)

Since E(RS) = I(u; z|H)−I(u;y|H,G), we have

E(RS) → I(u; z|H) = C̄Bob. (86)

We refer the reader to [18, Th. 3] for details.
Meanwhile, it always holds that

C̄LB,Q ≤ E(CS,Q) ≤ C̄Bob. (87)

From (83), (84) and (87), if NE ≤ NA −NB and β ≥ 1, as
α, β, B → ∞, we have

C̄LB,Q → E(CS,Q) → E(CS) → C̄Bob. (88)

�
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[23] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless
Communications. North America: Now Publishers Inc., 2004.
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