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Abstract— The recently proposed orthogonal time–frequency–
space (OTFS) modulation technique was shown to provide signif-
icant error performance advantages over orthogonal frequency
division multiplexing (OFDM) over delay-Doppler channels.
In this paper, we first derive the explicit input–output relation
describing OTFS modulation and demodulation (mod/demod).
We then analyze the cases of: 1) ideal pulse-shaping waveforms
that satisfy the bi-orthogonality conditions and 2) rectangular
waveforms which do not. We show that while only inter-Doppler
interference (IDI) is present in the former case, additional inter-
carrier interference (ICI) and inter-symbol interference (ISI) occur
in the latter case. We next characterize the interferences and
develop a novel low-complexity yet efficient message passing (MP)
algorithm for joint interference cancellation (IC) and symbol
detection. While ICI and ISI are eliminated through appropriate
phase shifting, IDI can be mitigated by adapting the MP algo-
rithm to account for only the largest interference terms. The MP
algorithm can effectively compensate for a wide range of channel
Doppler spreads. Our results indicate that OTFS using practical
rectangular waveforms can achieve the performance of OTFS
using ideal but non-realizable pulse-shaping waveforms. Finally,
simulation results demonstrate the superior error performance
gains of the proposed uncoded OTFS schemes over OFDM under
various channel conditions.

Index Terms— Delay–Doppler channel, OTFS, message
passing, time–frequency modulation.

I. INTRODUCTION

F IFTH-GENERATION (5G) mobile systems are expected
to accommodate an enormous number of emerging wire-

less applications with high data rate requirements such as
real-time video streaming, and online gaming, connected
and autonomous vehicles. While the orthogonal frequency
division multiplexing (OFDM) modulation scheme currently
deployed in fourth-generation (4G) mobile systems can
achieve high spectral efficiency for time-invariant frequency
selective channels, it is not robust to time-varying channels
with high Doppler spread (e.g., high-speed railway mobile
communications). Hence, new modulation techniques that
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are robust to channel time-variations have been extensively
explored.

To cope with time-varying channels, one existing approach
is to shorten the OFDM symbol duration so that the chan-
nel variations over each symbol appear inconsequential [1].
However, one major drawback is the reduced spectral effi-
ciency due to cyclic prefix (CP). Another approach exploits
time–frequency signaling [2], [3]. In [4] the authors have intro-
duced the frequency-division multiplexing with frequency-
domain cyclic prefix (FDM-FDCP), which can efficiently
compensate for channel Doppler spread. In high-Doppler low-
delay spread channels, FDM-FDCP is shown to outperform
OFDM at the same spectral efficiency. The performance of
FDM-FDCP under other channel conditions are yet to be
studied.

A new time–frequency modulation technique called orthog-
onal time frequency space (OTFS) was recently proposed
in [5] and [6], which shows significant advantages over OFDM
in delay–Doppler channels. The delay–Doppler domain pro-
vides an alternative representation of a time-varying channel
geometry modeling mobile terminals and reflectors [7], [8].
Leveraging on this representation, the OTFS modulator
spreads each information symbol over a two dimensional (2D)
orthogonal basis function, which spans across the entire time–
frequency domain required to transmit a frame. The set of
basis functions is specifically designed to combat the dynamics
of the time-varying multi-path channels. In [5], a general
framework of OTFS based on ideal pulse-shaping waveforms
was introduced. A coded OTFS system with turbo equaliza-
tion was compared with coded OFDM, showing remarkable
gains. In [9], since mm-wave channels incur high frequency
dispersion, OTFS is shown to outperform OFDM significantly.

In this paper, we analyze the input–output relation describ-
ing OTFS mod/demod for delay–Doppler channels using gen-
eral pulse-shaping waveforms. The relation reveals the effects
of the inverse symplectic finite Fourier transform (ISFFT)
and SFFT operations interpreted as pre- and post-processing
blocks applied to a time–frequency signaling scheme. We then
analyze the cases of (i) ideal pulse-shaping waveforms
that satisfy the bi-orthogonality conditions, and (ii) practi-
cal rectangular waveforms which do not. Unlike previous
works [10], [11], [12], we assume no CP in the second case.
While the OTFS input-output relation derived in [12] is com-
plex, and does not provide insights, our work presents a simple
relation characterizing the interference. Specifically, we show
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that, while only inter-Doppler interference (IDI) is present in
the ideal waveform case due to unavoidable fractional Doppler
effects, additional inter-carrier interference (ICI) and inter-
symbol interference (ISI) occur in the rectangular waveform
case due to imperfect bi-orthogonality in time–frequency
domain of the rectangular waveforms. Our interference analy-
sis enables the development of an efficient algorithm for OTFS
detection, which is the next main contribution of the work.

The delay–Doppler channel model with a small number
of paths, with varying delay and Doppler values, provides a
sparse representation of the communication channel. We then
propose a low-complexity yet efficient message passing (MP)
algorithm for a joint interference cancellation (IC) and detec-
tion, which takes advantage of the inherent delay–Doppler
channel sparsity. The MP algorithm is based on a sparse
factor graph and uses Gaussian approximation of the inter-
ference terms to further reduce the complexity. The approach
is similar to [13], where it was applied to massive MIMO
without the advantage of channel sparsity. The complexity
and convergence of the MP algorithm are analyzed. In the
MP algorithm, while the ICI and ISI can be eliminated by
suitable phase shifting, the IDI can be mitigated by adapting
the MP algorithm to account for only the largest interfer-
ence terms. Consequently, the proposed MP algorithm can
effectively compensate for a wide range of channel Doppler
spreads. Further, our results show that OTFS using practical
rectangular waveforms can achieve the performance of OTFS
using ideal but non-realizable pulse-shaping waveforms. Sim-
ulations results illustrate the superior performance gains of the
proposed uncoded OTFS schemes over OFDM under various
channel conditions. Note that by considering uncoded systems
in the simulation results, the focus is to demonstrate the
performance gains of OTFS over OFDM due to specific OTFS
mod/demod architecture (i.e., ISFFT and SFFT operations as
pre- and post-processing blocks) and the effect of the proposed
MP algorithm. The readers are referred to Hadani el al. works
for the performance of coded OTFS.

The rest of the manuscript is organized as follows. Section II
recalls the OTFS mod/demod and derives the corresponding
input–output relation. In Section III, we analyze the time–
frequency domain and delay–Doppler domain relations for the
ideal waveform case. Section IV is dedicated to the case of
OTFS using rectangular waveforms. Section V proposes the
MP algorithm for the joint IC and detection. Simulation results
are presented in Section VI followed by the conclusions in
Section VII. The proofs are relegated to Appendix at the end
of the manuscript.

II. SYSTEM MODEL

In this section, we first recall the basic concepts in OTFS
and then present the explicit analysis of OTFS mod/demod.
More importantly, we derive the input–output relation of OTFS
mod/demod for delay–Doppler channels.

A. Basic OTFS Concepts/Notations

We follow the notations in [5] and [14] summarized
below.

– The time–frequency signal plane is discretized to a grid
by sampling time and frequency axes at intervals T (seconds)
and Δf (Hz), respectively, i.e.,

Λ =
{
(nT, mΔf), n = 0, . . . , N − 1, m = 0, . . . , M − 1

}

for some integers N, M > 0.
– Modulated time–frequency samples X [n, m], n =

0, . . . , N − 1, m = 0, . . . , M − 1 are transmitted over an
OTFS frame with duration Tf = NT and occupy a bandwidth
B = MΔf .

– Transmit and receive pulses (or waveforms) are denoted
by gtx(t) and grx(t). Let Agrx,gtx(t, f) denote the cross-
ambiguity function between gtx(t) and grx(t), i.e.,

Agrx,gtx(t, f) �
∫

g∗rx(t
′ − t)gtx(t′)e−j2πf(t′−t)dt′. (1)

– The delay–Doppler plane is discretized to an information
grid

Γ =
{( k

NT
,

l

MΔf

)
, k = 0, . . . , N−1, l = 0, . . . , M−1

}
,

where 1/MΔf and 1/NT represent the quantization steps of
the delay and Doppler frequency, respectively.1

Remark 1 (Choice of Parameters in OTFS Systems): Given
a communications system with total bandwidth B = MΔf
and latency Tf = NT constraints, we may choose N , M , T
(since Δf = 1/T ) to support communications over a time-
varying channel with maximum delay τmax and maximum
Doppler νmax, among all channel paths. We can see that T and
Δf determine the maximum supportable Doppler (i.e., 1/T )
and delay (i.e., 1/Δf ). Hence, it is required that νmax <
1/T and τmax < 1/Δf so that N and M are determined.
To support a fixed data rate of NM symbols per frame,
depending on the channel conditions, we can choose a larger
T and smaller Δf , which results in a smaller N and larger M ,
respectively, or vice versa.

B. General OTFS Mod/Demod Block Diagram

The OTFS system diagram is given in Fig. 1. OTFS mod-
ulation is produced by a cascade of a pair of 2D transforms
at both transmitter and receiver. The modulator first maps
the information symbols x[k, l] in the delay–Doppler domain
to samples X [n, m] in the time–frequency domain using the
inverse symplectic finite Fourier transform (ISFFT). Next,
the Heisenberg transform is applied to X [n, m] to create the
time domain signal s(t) transmitted over the wireless channel.
At the receiver, the time-domain signal r(t) is mapped to
the time–frequency domain through the Wigner transform (the
inverse of the Heisenberg transform), and then to the delay–
Doppler domain using SFFT for symbol demodulation.

C. OTFS Modulation

Consider a set of NM information symbols {x[k, l], k =
0, . . . , N − 1, l = 0, . . . , M − 1} from a modulation alphabet

1Note that the first and second indexes, k and l, in Γ represent the Doppler
and delay axis, respectively.
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Fig. 1. OTFS mod/demod.

of size Q A = {a1, · · · , aQ} (e.g. QAM symbols), which are
arranged on the delay–Doppler grid Γ.

The OTFS transmitter first maps symbols x[k, l] to NM
samples X [n, m] on the time–frequency grid Λ using the
ISFFT as follows

X [n, m] =
1√
NM

N−1∑

k=0

M−1∑

l=0

x[k, l]ej2π
(

nk
N −ml

M

)
(2)

for n = 0, . . . , N − 1, m = 0, . . . , M − 1.
Next, a time–frequency modulator converts the samples

X [n, m] to a continuous time waveform s(t) using a transmit
waveform gtx(t) as

s(t) =
N−1∑

n=0

M−1∑

m=0

X [n, m]gtx(t − nT )ej2πmΔf(t−nT ). (3)

As noted in [5], (3) is also referred to in the mathematical
literature as the (discrete) Heisenberg transform [15], parame-
trized by gtx(t).

D. Wireless Transmission and Reception

The signal s(t) is transmitted over a time-varying channel
with complex baseband channel impulse response h(τ, ν),
which characterizes the channel response to an impulse with
delay τ and Doppler ν [8]. The received signal r(t) is given
by (disregarding the noise to simplify notation)

r(t) =
∫ ∫

h(τ, ν)s(t − τ)ej2πν(t−τ)dτdν. (4)

Equation (4) represents a continuous Heisenberg transform
parametrized by s(t) [5]. Since typically there are only a
small number of reflectors in the channel with associated
delays and Dopplers, very few parameters are needed to
model the channel in the delay–Doppler domain. The sparse
representation of the channel h(τ, ν) is given as

h(τ, ν) =
P∑

i=1

hiδ(τ − τi)δ(ν − νi) (5)

where P is the number of propagation paths; hi, τi, and νi

represent the path gain, delay, and Doppler shift (or frequency)
associated with i-th path, respectively, and δ(·) denotes the
Dirac delta function. We denote the delay and Doppler taps
for i-th path as follows

τi =
lτi

MΔf
, νi =

kνi + κνi

NT
(6)

for integers lτi , kνi and real − 1
2 < κνi ≤ 1

2 . Specifically, lτi

and kνi represent the indexes of the delay tap and Doppler tap
corresponding to (continuous) delay τi and Doppler frequency
νi, respectively. We will refer to κνi as the fractional Doppler
since it represents the fractional shift from the nearest Doppler
tap kνi . We do not need to consider fractional delays since
the resolution of the sampling time 1

MΔf is sufficient to
approximate the path delays to the nearest sampling points
in typical wide-band systems [16].

E. OTFS Demodulation

At the receiver, a matched filter computes the cross-
ambiguity function Agrx,r(t, f) as follows

Y (t, f) = Agrx,r(t, f) �
∫

g∗rx(t
′ − t)r(t′)e−j2πf(t′−t)dt′.

(7)

The matched filter output is obtained by sampling Y (t, f) as

Y [n, m] = Y (t, f)|t=nT,f=mΔf (8)

for n = 0, . . . , N − 1 and m = 0, . . . , M − 1. Operations (7)
and (8) are referred as the Wigner transform. In the follow-
ing theorem, we characterize the relationship between time–
frequency output samples Y [n, m] and input samples X [n, m].

Theorem 1 (OTFS Time–Frequency Domain Analysis): The
following input–output relation of OTFS in time–frequency
domain is given by

Y [n, m] =
N−1∑

n′=0

M−1∑

m′=0

Hn,m[n′, m′]X [n′, m′], (9)

where

Hn,m[n′, m′]

=
∫ ∫

h(τ, ν)Agrx ,gtx((n − n′)T − τ, (m − m′)Δf − ν)

× ej2π(ν+m′Δf)((n−n′)T−τ)ej2πνn′T dτdν. (10)

Proof: The proof is given in Appendix A. �
We can see that the terms Hn,m[n′, m′] include the com-

bined effects of the transmit pulse, channel response, and
receive pulse. Note that similar results have been presented
for the case of pulse-shaped (PS) OFDM [17], [18].

Next, the SFFT is applied on the samples Y [n, m] to obtain
symbols y[k, l] in the delay–Doppler domain

y[k, l] =
1√
NM

N−1∑

n=0

M−1∑

m=0

Y [n, m]e−j2π
(

nk
N −ml

M

)
. (11)
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Theorem 1 provides the basis of the study of OTFS in two
special cases, namely using ideal waveforms (Section III) and
more practical rectangular waveforms (Section IV). We will
obtain explicit input-output relations using the delay–Doppler
channel model (5) for both cases.

III. OTFS WITH IDEAL WAVEFORMS

The grx(t) and gtx(t) pulses are said to be ideal if they
satisfy the bi-orthogonal property [5]

Agrx,gtx(t, f)|t=nT+(−τmax,τmax),f=mΔf+(−νmax,νmax)

= δ[n]δ[m]qτmax(t)qνmax(f) (12)

where qa(x) = 1 for x ∈ (−a, a) and zero otherwise. Equiv-
alently, the cross-ambiguity function Agrx,gtx(t, f) = 0 for
t ∈ (nT −τmax, nT +τmax) and f ∈ (mΔf −νmax, mΔf +
νmax), ∀n, m except for n = 0, m = 0, where Agrx,gtx(t, f) =
1 for t ∈ (−τmax, τmax) and f ∈ (−νmax, νmax).

Unfortunately, ideal pulses cannot be realized in practice
but can be approximated by waveforms with a support concen-
trated as much as possible in time and in frequency, given the
constraint imposed by the uncertainty principle. Nevertheless,
it is important to study the error performance of OTFS with
ideal waveforms since it serves as a lower bound on the
performance of OTFS with practically realizable waveforms
such as rectangular waveforms, etc.

A. Time–Frequency Domain Analysis

For ideal waveforms, the following result was given in [5]
without proof. Here, we show that it can be obtained as a
special case of Theorem 1.

Proposition 1: For ideal pulses, the following result can be
obtained

Y [n, m] = Hn,m[n, m]X [n, m] (13)

where

Hn,m[n, m] =
∫ ∫

h(τ, ν)ej2πνnT e−j2π(ν+mΔf)τdτdν.

Proof: From (10), we observe that the value of Hn,m[n′, m′]
is non-zero only at n′ = n and m′ = m for the ideal pulses
satisfying the bi-orthogonal property (12). Hence, the result
in (13) follows from (9) by considering only the term with
n′ = n, m′ = m in the summations. �

B. Delay–Doppler Domain Analysis

1) Input–Output Relationship: We now apply SFFT on
Y [n, m] in (13) to obtain the symbols y[k, l] in the
delay–Doppler domain. The following proposition, given
in [5] without proof, describes the input–output relation in
delay–Doppler domain.

Proposition 2: For ideal pulses, the following input-output
relation holds

y[k, l] =
1

NM

N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]hw[k − k′, l − l′], (14)

where hw[·, ·] is a sampled version of the impulse response
function

hw[k − k′, l − l′] = hw(ν, τ)|
ν= k−k′

NT ,τ= l−l′
MΔf

for hw(ν, τ) being the circular convolution of the channel
response with the SFFT of a rectangular windowing function
in the time-frequency domain

hw(ν, τ) =
∫ ∫

h(τ ′, ν′)w(ν − ν′, τ − τ ′)e−j2πντdτ ′dν′,

(15)

w(ν, τ) =
N−1∑

n=0

M−1∑

m=0

1 · e−j2π(νnT−τmΔf). (16)

Proof: The proof is relegated to the Appendix B. �
2) Inter-Doppler Interference (IDI) Analysis: From (14),

we can see that a received signal y[k, l] is a linear combination
of all the transmitted signals x[k′, l′], k′ = 0, . . . , N − 1, l′ =
0, . . . , M −1. Consequently, the input-output relation (14) can
be represented as a linear system with NM variables x[k′, l′].
Since N and M tend to be very large for practical OTFS
systems, the detection complexity can be prohibitive. In the
following, by using (5) as the sparse representation of the
delay–Doppler channel, (14) reduces to a sparse linear system,
where each received signal can be approximately expressed as
a linear combination of only a few transmitted signals. Such
sparsity will then be exploited in Section V to devise a low-
complexity yet efficient iterative detection algorithm based on
message passing on the factor graph representation.

By substituting (5) and (16) into (15), we obtain

hw(ν, τ) =
P∑

i=1

hie
−j2πνiτi w(ν − νi, τ − τi)

=
P∑

i=1

hie
−j2πνiτi G(ν, νi)F(τ, τi),

where we have denoted

F(τ, τi) �
M−1∑

m′=0

ej2π (τ−τi)m
′Δf ,

G(ν, νi) �
N−1∑

n′=0

e−j2π(ν−νi)n
′T .

Let us first evaluate F(τ, τi) at τ = l−l′
MΔf as

F
(

l − l′

MΔf
, τi

)
=

M−1∑

m′=0

ej 2π
M (l−l′−lτi

)m′
=

ej2π(l−l′−lτi
)−1

ej 2π
M (l−l′−lτi

)−1
(17)

recalling that lτi is the delay tap of i-th path with a delay τi

defined in (6). From (17), we see that

F
(

l − l′

MΔf
, τi

)
=

{
M, [l − l′ − lτi ]M = 0,

0, otherwise,

where [·]M represents mod M operation, i.e., F
(

l−l′
MΔf , τi

)

equals to M for l′ = [l − lτi ]M and is zero otherwise.
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Similarly, we can evaluate

G
(

k − k′

NT
, νi

)
=

e−j2π(k−k′−kνi
−κνi

) − 1

e−j 2π
N (k−k′−kνi

−κνi
) − 1

. (18)

Due to the fractional κνi , we can see that for a given k,

G
(

k−k′
NT , νi

)
�= 0, for all k′.

We will show that the magnitude of 1
N G

(
k−k′
NT , νi

)
has a

peak at k′ = k − kνi and decreases as k′ moves away from
k − kνi . From (18), after some manipulations, we have

∣
∣
∣
∣
1
N

G
(

k − k′

NT
, νi

)∣∣
∣
∣ =

∣
∣
∣
∣
sin (Nθ)
N sin (θ)

∣
∣
∣
∣

where we set θ � − π
N (k − k′ − kνi − κνi). It can be easily

shown that
∣
∣
∣
∣
sin(Nθ)
N sin(θ)

∣
∣
∣
∣ =

∣
∣
∣
∣
sin((N−1)θ) cos(θ) + sin(θ) cos((N−1)θ)

N sin(θ)

∣
∣
∣
∣

≤ N − 1
N

|cos(θ)| + 1
N

. (19)

Here, we used the inequality, | sin(Nθ)| ≤ N | sin(θ)|, which
can be proven by induction. The upper bound (19) is tight
for small values of θ (when both sides are close to 1)
and it has a peak at the smallest value of θ when k′ =
k − kνi . As |θ| increases (due to k′ moving away from
k− kνi ), the upper bound decreases with (approximate) slope
of π

N (k − k′ − kνi − κνi). Since N is quite large in OTFS,
the function decreases rapidly.

From the above analysis, we need to consider only a small
number 2Ni + 1, for some Ni > 0, of significant values of
G
(

k−k′
NT , νi

)
in (18) around the peak k − kνi , i.e., [k − kνi −

Ni]N ≤ k′ ≤ [k − kνi + Ni]N , where Ni � N . Using this
approximation, we can now express the receive signal y[k, l]
in (14) as

y[k, l] ≈
P∑

i=1

[k−kνi
+Ni]N∑

k′=[k−kνi
−Ni]N

(
e−j2π(k−kνi

−k′−κνi
) − 1

Ne−j 2π
N (k−kνi

−k′−κνi
) − N

)

× hie
−j2πνiτi x [k′, [l − lτi]M ]

≈
P∑

i=1

Ni∑

q=−Ni

(
e−j2π(−q−κνi

) − 1

Ne−j 2π
N (−q−κνi

) − N

)
hie

−j2πνiτi

× x [[k − kνi + q]N , [l − lτi ]M ]. (20)

In the simulation result section, we will demonstrate that for
N = 128, by choosing Ni = 10, negligible performance loss is
incurred. From (20), we can see that the received signal y[k, l]
is a linear combination of S =

∑P
i=1 2Ni + 1 transmitted

signals. Out of 2Ni + 1 transmitted signals in i-th path,
the signal corresponding to q = 0, x [[k − kνi ]N , [l − lτi ]M ],
contributes the most and all the other 2Ni signals can be seen
as interference. Such interference is due to the transmitted
signals that are neighboring x [[k − kνi ]N , [l − lτi ]M ] in the
Doppler domain and we refer to this interference as inter-
Doppler interference (IDI). Further, the number of transmitted
signals S affecting the received signal y[k, l] in (20) is much
smaller than NM in (14). Hence, the graph (or linear system)
describing (20) is sparsely-connected.

3) Special Channel Model Cases: The above input-output
expression simplifies for the following special cases.

i) Ideal channel: Assuming h(τ, ν) = δ(τ)δ(ν), the received
signal becomes

y[k, l] = x[k, l]

and behaves as an AWGN channel as expected.
ii) No fractional Doppler (i.e., κνi = 0, ∀i): Assuming

that Doppler frequencies exactly coincide with Doppler taps,
the received signal can be obtained by replacing Ni = 0
in (20), i.e.,

y[k, l] =
P∑

i=1

hie
−j2πνiτix[[k − kνi ]N , [l − lτi ]M ].

For each path, the transmitted signal is circularly shifted by the
delay and Doppler taps and scaled by the associated channel
gain.

IV. OTFS WITH RECTANGULAR WAVEFORMS

Since the ideal pulses cannot be realized in practice, we now
analyze the OTFS with the rectangular pulses at both the
transmitter and receiver. These pulses do not satisfy the bi-
orthogonality conditions and generate some interference which
degrades the system performance. Here, we analyze the effect
of such interference and show that it can be compensated to
achieve the ideal pulses performance.

We assume the rectangular pulse has amplitude 1/
√

T for
t ∈ [0, T ] and 0 at all other values, to have unit energy.

A. Time–Frequency Domain Analysis

For the rectangular pulses, we can see that the cross-
ambiguity term in the time–frequency relation of Theorem 1,
Agrx,gtx((n − n′)T − τ, (m − m′)Δf − ν) is non-zero for
|τ | < τmax |ν| < νmax only when n′ = n and n′ = n − 1,
since gtx(t) and grx(t) are pulses of duration T and τmax � T .
Hence, the time–frequency relation (9) becomes

Y [n, m] =
n∑

n′=n−1

M−1∑

m′=0

Hn,m[n′, m′]X [n′, m′]

= Hn,m[n, m]X [n, m]

+
M−1∑

m′=0,m′ �=m

Hn,m[n, m′]X [n, m′]

+
M−1∑

m′=0

Hn,m[n − 1, m′]X [n− 1, m′]. (21)

The second term in (21) can be seen as the total interference
from the samples X [n, m′] at different frequencies m′ �= m,
but in the same time slot n as the current sample X [n, m].
On the other hand, the third term in (21) accumulates the
interference from the samples X [n − 1, m′] in the previous
time slot n − 1. Hence, we call the second and third terms
as the inter carrier interference (ICI) and inter symbol inter-
ference (ISI), respectively. The interference depends on the
delay τ and Doppler ν of the channel. In particular, they
are affected by the value of the cross-ambiguity function
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Agrx,gtx((n − n′)T − τ, (m − m′)Δf − ν) in Hn,m[n′, m′].
In the following, we focus on the cross-ambiguity function for
ICI and ISI.

1) ICI Analysis: Fix n, m. We note that the cross-
ambiguity function in the Hn,m[n, m′], m′ �= m term of ICI,
Agrx,gtx(−τ, (m − m′)Δf − ν), is independent of n, and is
computed for the i-th channel path with delay τi and Doppler
νi (i.e., see (5)) as

Aici �
∫

g∗rx(t
′ + τi)gtx(t′)e−j2π((m−m′)Δf−νi))(t

′+τi)dt′.

We discard the dependency of Aici on (m, m′, τi, νi) for
simplicity. Since the received signal r(t) is sampled at intervals
of T/M (or 1/(MΔf)), we can compute Aici as

Aici =
1
M

M−1−lτi∑

p=0

e−j2π((m−m′)Δf−νi)( p
MΔf +τi). (22)

Recall that the pulses gtx(t) and grx(t) have duration T , and
lτi is the delay tap defined in (6). The amplitude of Aici is

|Aici| =
1
M

∣
∣
∣
∣
∣∣

M−1−lτi∑

p=0

e−j2π((m−m′)Δf−νi)
p

MΔf

∣
∣
∣
∣
∣∣

=

∣
∣
∣
∣e

−j2π
�

m−m′− kνi
+κνi
N

�
M−lτi

M − 1
∣
∣
∣
∣

∣∣
∣
∣Me

−j2π
�

m−m′− kνi
+κνi
N

�
1

M − M

∣∣
∣
∣

.

Similar to the analysis of (18), we can observe that |Aici|
decreases as m′ moves away from m. It implies that the ICI
becomes less as the interfering subcarriers are further away
from the interfered subcarrier. We can also see that an increase
in Doppler (i.e., kνi +κνi) increases the number of neighboring
subcarriers that interfere with the present subcarrier. This is
similar to the fractional Doppler effect studied for (18).

2) ISI Analysis: Similar to the ICI analysis, the cross-
ambiguity function in the Hn,m[n− 1, m′] term of ISI, Aisi �
Agrx,gtx(T − τ, (m − m′)Δf − ν), is computed for the i-th
channel path as

Aisi =
1
M

M−1∑

p=M−lτi

e−j2π((m−m′)Δf−νi)( p
MΔf +τi−T). (23)

The amplitude |Aisi| also has similar properties of |Aici|, where
it reduces as m′ moves away from m implying that the ISI is
smaller for interfering symbols further away (in the frequency
axis) from the interfered symbol.

Note that the terms that affect the ICI and ISI in the
summations (22) and (23) are mutually exclusive, i.e., p = 0 to
M −1− lτi contributes to ICI whereas p = M − lτi to M −1
contributes to ISI. This property helps in differentiating the
ICI and ISI effects in delay–Doppler domain, which will be
studied below.

B. Delay–Doppler Domain Analysis

We now characterize the input–output relation in
delay–Doppler domain for OTFS with rectangular pulses.

Theorem 2: The received signal y[k, l] in delay–Doppler
domain with the rectangular pulses can be written as

y[k, l] ≈
P∑

i=1

Ni∑

q=−Ni

hie
j2π

�
l−lτi

M

��
kνi

+κνi
N

�
αi(k, l, q)

× x [[k − kνi + q]N , [l − lτi ]M ] (24)

where we have

αi(k, l, q) =

⎧
⎪⎨

⎪⎩

1
N

βi(q) lτi ≤ l < M

1
N

(βi(q) − 1) e−j2π
[k−kνi

+q]N
N 0 ≤ l < lτi

βi(q) =
e−j2π(−q−κνi

) − 1
e−j 2π

N (−q−κνi
) − 1

. (25)

Proof: The proof is relegated to the Appendix C. �
Note that the approximation error in (24) is very small and it

reduces by increasing N (see (62) in Appendix C). Theorem 2
implies that the ICI and ISI in time–frequency domain are
converted to simple phase shifts in the delay–Doppler domain.
Moreover, from (20) and (24), we can observe that the number
of transmitted signals that affects a received signal is the
same for both ideal and rectangular pulse cases. The only
difference is that the channel is shifted by an additional phase
that depends on the location of the transmitted signal in the
delay–Doppler plane (i.e., k and l).

Special channel model cases: Let us consider the above
input-output expression (24) for the special cases mentioned
in Sec. III-B.3.

i) Ideal channel: The received signal becomes

y[k, l] = x[k, l],

which is the same as the ideal pulses case since the rectangular
pulses satisfy the bi-orthogonal property in (12) when the
channel is ideal (i.e., τmax = 0 and νmax = 0). This can
be seen easily by observing (1) at t = nT and f = mΔf .

ii) No fractional Doppler (i.e., κνi = 0, ∀i): Equation (24)
simplifies to

y[k, l] ≈
P∑

i=1

hie
j2π

�
l−lτi

M

�
kνi
N αi(k, l)x[[k − kνi ]N , [l − lτi ]M ],

where

αi(k, l) =

⎧
⎨

⎩

1 lτi ≤ l < M
N − 1

N
e
−j2π

� [k−kνi
]N

N

�
0 ≤ l < lτi .

In this case, IDI does not appear as in the case of ideal
pulses.

V. MESSAGE PASSING ALGORITHM FOR JOINT

INTERFERENCE CANCELLATION

AND DETECTION

We now propose a message passing (MP) algorithm for
OTFS using the input-output relation in (20) (or (24)).
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A. Low-Complexity MP Detection Algorithm

The received signal in vectorized form can be written as

y = Hx + z (26)

where y and z are complex vectors of dimension NM × 1
with elements denoted by y[d] and z[d], 1 ≤ d ≤ NM ,
respectively; H is a NM × NM complex matrix with ele-
ments H [d, c], 1 ≤ d, c ≤ NM ; x is the information vector
of dimension NM × 1 with elements x[c] ∈ A, 1 ≤ c ≤
NM .2 The elements of y,x, and H are determined from (20)
(or (24)) and z is the noise vector. Due to mod N and mod M
operations in (20), we observe that only S =

∑P
i=1(2Ni + 1)

elements out of NM are non-zero in each row and column of
H. Recall that P is the number of propagation paths. We can
see that since S is much smaller than NM , H is a sparse
matrix. Let I(d) and J (c) denote the sets of indexes with non-
zero elements in the d-th row and c-th column, respectively,
then |I(d)| = |J (c)| = S for all rows and columns. Note
that although (26) applies to both ideal pulses case in (20)
and rectangular pulses case in (24), with different matrices H,
the number of non-zero elements S in each row and column
of H remains the same for both cases. This condition helps in
compensating ICI and ISI of rectangular pulses with the same
complexity detection algorithm of ideal pulses.

Based on (26), we model the system as a sparsely-connected
factor graph with NM variable nodes corresponding to x
and NM observation nodes corresponding to y. In this factor
graph, each observation node y[d] is connected to the set of
S variable nodes {x[c], c ∈ I(d)}. Similarly, each variable
node x[c] is connected to the set of S observation nodes
{y[d], d ∈ J (c)}.

From (26), the joint maximum a posterior probabil-
ity (MAP) detection rule for estimating the transmitted signals
is given by

x̂ = arg max
x∈ANM×1

Pr
(
x
∣
∣y,H

)
,

which has a complexity exponential in NM . Since the joint
MAP detection can be intractable for practical values of N
and M , we consider the symbol-by-symbol MAP detection
rule for c = 1, . . . , NM

x̂[c] = arg max
aj∈A

Pr
(
x[c] = aj

∣∣y,H
)

= arg max
aj∈A

1
Q

Pr
(
y
∣
∣x[c] = aj ,H

)
(27)

≈ arg max
aj∈A

∏

d∈Jc

Pr
(
y[d]

∣∣x[c] = aj ,H
)
. (28)

In (27), we assume all the transmitted symbols aj ∈ A are
equally likely and in (28) we assume the components of y
are approximately independent for a given x[c], due to the
sparsity of H. That is, we assume the interference terms ζ

(i)
d,c

defined in (29) are independent for a given c. In order to solve
the approximate symbol-by-symbol MAP detection in (28),

2The proposed algorithm can also be applied for the corresponding real
valued systems which is beneficial for higher order QAM modulation. Here,
for the general case, we consider a complex valued system.

Fig. 2. Messages in factor graph.

we propose a MP detector which has a linear complexity
in NM . Similarly to [13], for each y[d], a variable x[c] is
isolated from the other interference terms, which are then
approximated as Gaussian noise with an easily computable
mean and variance.

In the MP algorithm, the mean and variance of the interfer-
ence terms are used as messages from observation nodes to
variable nodes. On the other hand, the message passed from
a variable node x[c] to the observation nodes y[d], d ∈ J (c),
is the probability mass function (pmf) of the alphabet pc,d =
{pc,d(aj)|aj ∈ A}. Fig. 2 shows the connections and the
messages passed between the observation and variable nodes.
The MP algorithm is described in Algorithm 1.

Algorithm 1 MP Algorithm for OTFS Symbol Detection
Input: Received signal y, channel matrix H.
Initialization: pmf p(0)

c,d = 1/Q, c = 1, · · · , NM, d ∈ J (c),
iteration count i = 1.
repeat

- Observation nodes y[d] compute the means μ
(i)
d,c and

variances (σ(i)
d,c)

2 of Gaussian random variables ζ
(i)
d,c using

p(i−1)
c,d and pass them to variables nodes x[c], c ∈ I(d).

- Variable nodes x[c] update p(i)
c,d using μ

(i)
d,c, (σ(i)

d,c)
2, and

p(i−1)
c,d and pass them to observation nodes y[d], d ∈ J (c).

- Compute convergence indicator η(i).
- Update the decision on the transmitted symbols x̂[c], c =
1, . . . , NM if needed.
- i = i + 1

until Stopping criteria;
Output: The decision on transmitted symbols x̂[c].

The details of the steps in iteration i in the MP algorithm are
detailed below. Message passings from observation nodes
y[d] to variable nodes x[c], c ∈ I(d): The mean μ

(i)
d,c and

variance (σ(i)
d,c)

2 of the interference, approximately modeled

as a Gaussian random variable ζ
(i)
d,c defined as

y[d] = x[c]H [d, c] +
∑

e∈I(d),e�=c

x[e]H [d, e] + z[d]

︸ ︷︷ ︸
ζ
(i)
d,c

, (29)

can be computed as

μ
(i)
d,c =

∑

e∈I(d),e�=c

Q∑

j=1

p
(i−1)
e,d (aj)ajH [d, e], (30)
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and

(σ(i)
d,c)

2 =
∑

e∈I(d),e�=c

(
Q∑

j=1

p
(i−1)
e,d (aj)|aj |2|H [d, e]|2

−
∣
∣
∣
∣
∑Q

j=1
p
(i−1)
e,d (aj)ajH [d, e]

∣
∣
∣
∣

2
)

+ σ2. (31)

Message passings from variable nodes x[c] to observation
nodes y[d], d ∈ J (c): The pmf vector p(i)

c,d can be updated as

p
(i)
c,d(aj) = Δ · p̃(i)

c,d(aj) + (1−Δ) · p(i−1)
c,d (aj), aj ∈ A (32)

where Δ ∈ (0, 1] is the damping factor used to improve the
performance by controlling the convergence speed [19], and

p̃
(i)
c,d(aj) ∝

∏

e∈J (c),e�=d

Pr
(
y[e]

∣
∣
∣x[c] = aj ,H

)

=
∏

e∈J (c),e�=d

ξ(i)(e, c, j)
∑Q

k=1 ξ(i)(e, c, k)
, (33)

where ξ(i)(e, c, k) = exp
(

−|y[e]−μ(i)
e,c−He,cak|2

(σ
(i)
e,c)2

)
.

Convergence indicator: Compute the convergence
indicator η(i) as

η(i) =
1

NM

NM∑

c=1

I

(
max
aj∈A

p(i)
c (aj) ≥ 1 − γ

)
, (34)

for some small γ > 0 and where

p(i)
c (aj) =

∏

e∈J (c)

ξ(i)(e, c, j)
∑Q

k=1 ξ(i)(e, c, k)
(35)

and I(·) is an indicator function which gives a value of 1,
if the expression in the argument is true, and 0 otherwise.

Update decision: If η(i) > η(i−1), then we update the
decision of the transmitted symbol as

x̂[c] = arg max
aj∈A

p(i)
c (aj), c = 1, · · · , NM. (36)

We update the decision on the transmitted symbols only when
the current iteration can provide better estimates than the
previous iteration.

Stopping criteria. The MP algorithm stops when at least
one of the following conditions is satisfied.

1) η(i) = 1.
2) η(i) < η(i∗) − ε, where i∗ is the iteration index from

{1, · · · , (i − 1)} for which η(i∗) is maximum.
3) Maximum number niter of iterations is reached.

We select ε = 0.2 to disregard small fluctuations of η. Here,
the first condition occurs in the best case, where all the
symbols have converged. The second condition is useful to
stop the algorithm if the current iteration provides a worse
decision than the one in previous iterations.

Remark 2 (Complexity of the Proposed MP Algorithm):
The complexity of one iteration involves the computation
of (30), (31), (32), (34), and (36). More specifically, each

of (30), (31), and (32),3 has a complexity order O(NMSQ).
Furthermore, (34) and (36) can be computed with a complexity
order O(NMQ).4 Therefore, the overall complexity order
is O(niterNMSQ). In simulations, we observed that the
algorithm converges typically within 20 iterations (i.e., see
Figure 4 in the illustrative result section for more references).
We conclude that the IDI analysis, which includes the smart
approximation of IDI, to exploit the sparsity of the delay-
Doppler channel representation is a key factor in reducing the
complexity of the detector (due to relatively small S). The
memory requirement is dominated by the storage of 2NMSQ

real values for p(i)
c,d and p(i−1)

c,d . In addition, we have the

messages (μ(i)
d,c, (σ

(i)
d,c)

2), requiring NMS complex values and
NMS real values, respectively.

B. Application of MP Detection Algorithm for
OFDM Over Delay–Doppler Channels

In the simulation result section, we will compare the per-
formance of OTFS and OFDM over delay–Doppler channels.
In this section, we demonstrate that it is also possible to utilize
the above MP algorithm to compensate the Doppler effects in
OFDM systems.

Consider OFDM system with OFDM symbol of duration T
and M subcarriers. Hence, the received signal and noise are
sampled at T/M . Then, the frequency-domain signal after fast
Fourier transform (FFT) operation is given by

y = WHtWHx + z (37)

where (·)H denotes Hermitian transpose, W is M -point FFT
matrix, and x ∈ A

M×1 is the transmitted OFDM symbol. The
elements Ht[p, q] of time-domain channel matrix Ht are given
in [20] as

Ht[p, q] =
P∑

i=1

hiδ

[[
p − q − τiM

T

]

M

]
ej

2π (q−1)νi
M ,

p, q = 1, . . . , M.

Using the M × M frequency-domain channel matrix Hofdm =
WHtWH, we can re-write (37) as

y = Hofdmx + z. (38)

Since (38) has the form similar to (26), the MP previously
developed for OTFS can also be applied for OFDM symbol
detection. We note that Hofdm is diagonally dominant and
the values of off-diagonal elements in each row decay as
we move away from the diagonal entry as explained in [20].
Hence, the Hofdm matrix is also sparse enabling the use of the
proposed low-complexity MP detection algorithm.

3In computing (33), first we find the p
(i)
c (aj) in (35) which requires

O(NMQ) complexity and then we obtain (33) by dividing (35) with the
term related to e = d for all d, which requires O(S) complexity for each c.
Hence, the over all complexity of (33) becomes O(NMSQ).

4The computation of (34) and (36) require to find the maximum element
out of Q elements for each c. As (35) is already computed for (33), finding
the maximum element requires O(Q) complexity for each c, which leads to
an overall complexity of O(NMQ) to compute (34) and (36).
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TABLE I

SIMULATION PARAMETERS

Fig. 3. The BER performance of OTFS for different number of interference
terms Ni with 4-QAM.

VI. ILLUSTRATIVE RESULTS AND DISCUSSIONS

In this section, we simulate the error performance of
uncoded OTFS and OFDM systems over delay-Doppler chan-
nels. In particular, we first study the bit-error-rate (BER)
performance of OTFS for ideal pulses with the number of IDI
interference terms Ni and MP parameter Δ. We next study the
BER performance of OTFS with ideal pulses and rectangular
pulses, and its comparison with OFDM.

All relevant simulation parameters are given in Table I. First,
ideal channel estimation is assumed, i.e., the channel impulse
function h(τ, ν) is perfectly known at the receiver. Then,
we consider the effect of imperfect channel estimation on
OTFS performance. For both OTFS and OFDM systems,
Extended Vehicular A model [22] is adopted as the channel
model for the path delays (or delay taps) and each delay tap
has a single Doppler shift generated using Jakes’ formula

νi = νmax cos(θi)

where νmax is the maximum Doppler shift determined by
the UE speed and θi is uniformly distributed over [−π, π].
In general, the channel can have multiple paths with the
same delay but different Doppler shifts. In our simulations,
we consider channels with only one path for given delay.
However, it is straightforward to consider multiple paths with
different Doppler shifts for a given delay, and our main
theoretical result in Theorem 2 is still valid.

In order to obtain BER values, we consider 7×104 different
channel realizations in the Monte-Carlo simulations.

We first demonstrate the effects of IDI in OTFS. Fig. 3
shows the BER performance of OTFS system with ideal pulses

Fig. 4. The variation of BER and average no. of iterations with Δ.

using the proposed MP detector for different number of IDI
interference terms Ni with 4-QAM signaling over the delay–
Doppler channel with different Doppler frequencies (i.e., UE
speeds of 120, 500 Kmph) and SNRs. Note that ICI and ISI
are not present for the ideal pulses case. We consider the same
Ni for all paths. We can see that there is a significant BER
improvement when Ni increases from 0 to 10 and saturation
thereafter. Note that Ni = 0 corresponds to the case when
IDI is not taken into account. The results imply that fewer
neighboring interference terms are sufficient to consider in the
MP algorithm (e.g. Ni = 10) without incurring performance
loss. We also observe that if IDI is not taken into account
at all or an insufficient number of IDI terms is considered
(i.e., Ni ≤ 5), the error performance worsens significantly.
These observations demonstrate the importance of our previ-
ous IDI analysis for suitable interference cancellation algo-
rithm development. Also, it can be observed that for given
SNR (e.g., SNR = 18 dB), the error performances of OTFS
with different Doppler frequencies are similar since the pro-
posed MP algorithm can effectively compensate for a wide
range of channel Doppler variations as demonstrated further
in the following.

In Fig. 4, we illustrate the BER performance and average
number of iterations with ideal pulses using the MP algorithm.
We fix Ni = 10 and vary the damping factor Δ. We consider
4-QAM signaling, SNR = 18 dB, and UE speed of 120 Kmph.
We observe that, when Δ ≤ 0.7, the BER remains almost
the same, but deteriorates thereafter. Further, when Δ = 0.7,
the MP algorithm converges with the least number of itera-
tions. Hence, we choose Δ = 0.7 as the optimum damping
factor in terms of performance and complexity.

In Fig. 5, we compare the BER performance of OTFS
with ideal pulses and OFDM using 4-QAM signaling over
the delay-Doppler channels of different Doppler frequencies
(i.e., UE speeds of 30, 120, 500 Kmph). Note that the MP algo-
rithm proposed in Section V.B is used for OFDM detection.
We observe that OTFS outperforms OFDM by approximately
15 dB at BER of 10−4 thanks to the constant channel gain
over all transmitted symbols in OTFS, whereas in OFDM,
the overall error performance is limited by the subcarrier(s)
experiencing the worse channel conditions. Moreover, OTFS
exhibits the same performance at different Doppler frequencies
thanks to the IDI cancellation provided by the MP detector.
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Fig. 5. The BER performance comparison between OTFS with ideal pulses
and OFDM systems at different Doppler frequencies.

Fig. 6. The BER performance of OTFS with rectangular and ideal pulses at
different Doppler frequencies for 4-QAM.

Similar behavior applies to OFDM, since the ICI can be
removed by the MP detector. We can conclude that the
performance of OTFS under the proposed MP algorithm is
robust to Doppler variations and is much better than that of
OFDM.

Fig. 6 shows the BER performance of OTFS with rectangu-
lar pulses using 4-QAM signaling for two scenarios: one with
ICI and ISI cancellations (WC) and the other without (WO).
In the second scenario, we observe that OTFS with rectan-
gular pulses has an error floor incurred by the ICI and ISI.
The performance degradation becomes more severe at high
Doppler (e.g., 500 Kmph) due to large ICI and ISI. On the
other hand, the BER performance of OTFS with rectangular
pulses approaches that of OTFS with ideal pulses, when ISI
and ICI are mitigated. Moreover, we can see that the proposed
MP algorithm can effectively mitigate ISI and ICI and thus
OTFS performance remains almost constant regardless of the
Doppler frequencies. These results show that it is possible
to achieve the performance of OTFS with ideal waveforms
even with the more practical rectangular waveforms by using
our MP algorithm together with appropriate IDI, ICI and ISI
cancellation.

Fig. 7. The BER performance of OTFS with rectangular and ideal pulses
for 16-QAM.

Fig. 8. The BER performance of OTFS with rectangular pulses and low
latency (N = 16, Tf ≈ 1.1).

In Fig. 7, we compare the BER performance of OTFS and
OFDM at a Doppler of 120 Kmph using 16-QAM signaling.
We observe that OTFS with ICI and ISI cancellation outper-
forms OFDM by 11 dB at BER = 10−3. We also simulate
OTFS at different Doppler frequencies of 30 and 500 Kmph
and we observe the BER performances are similar to that
of 120 Kmph.

In the next experiments, we study the performance of OTFS
under different practical constraints, namely low-latency and
non-ideal channel estimation.

Fig. 8 shows the OTFS performance under low-latency
constraint where N = 16, M = 128, and 16-QAM. In this
experiment, the frame duration is Tf = NT ≈ 1.1 ms, which
is much smaller than the previous case with N = 128 and
Tf ≈ 8.8 ms. We can observe that the OTFS performance is
the same for different Dopplers. Further, the performance of
OTFS degrades with low-latency because the delay–Doppler
grid has lower resolution on the Doppler axis, and hence,
the receiver resolves a smaller number of paths in the channel.
This leads to the diversity loss over the high-latency case.
When compared to OFDM, we observe that OTFS outperforms
OFDM below BER = 2 × 10−3 with a significant diversity
gain.

Fig. 9 shows the effect of imperfect channel estimation on
the performance of OTFS with N = 128, M = 512, 16-QAM,
and a Doppler of 120 Kmph. Here, we introduce the error in
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Fig. 9. The BER performance of OTFS with channel estimation errors.

the channel estimation using the model [21]

h′
i = hi + ne, 1 ≤ i ≤ P

where ne ∼ CN (0, σ2
e) and we assume the delay and Doppler

taps are perfectly estimated. From Fig. 9, we see that as the
noise variance reduces, performance of OTFS is approaching
the ideal system, particularly for a noise variance of −20 dB
it is very close to the ideal system. A comprehensive study on
the performance of OTFS under non-ideal channel estimation
is out of the scope of this paper, and will be a topic of future
work.

VII. CONCLUSION

In this paper, we have analyzed the input–output relation
describing OTFS mod/demod over delay–Doppler channels.
We have studied in detail the cases of ideal waveforms
and rectangular waveforms. In particular, we have char-
acterized the inter-Doppler interference (IDI), inter-carrier
interference (ICI), and inter-symbol interference (ISI) using
sparse representation of the channel in the delay–Doppler
domain. A low-complexity yet efficient message passing (MP)
algorithm for joint IC and symbol detection was proposed,
which is suitable for large-scale OTFS with inherent chan-
nel sparsity. In the MP algorithm, the ISI and ICI can
be canceled by using appropriate phase shifting, while the
IDI can be mitigated by accounting for a small number of
significant interference terms only. The proposed MP algo-
rithm can effectively compensate for a wide range of channel
Doppler spreads. Moreover, we have demonstrated that it is

possible to achieve the performance of OTFS with ideal yet
non-realizable waveforms using practical rectangular wave-
forms. Through simulations, we have shown that OTFS has
significant error performance gains over OFDM under vari-
ous communications scenarios including ideal and non-ideal
channel estimation, low-latency communications etc.

APPENDIX A
PROOF OF THEOREM 1: OTFS INPUT–OUTPUT

RELATION IN TIME–FREQUENCY DOMAIN

The received signal after Wigner transform Y (t, f),
from (4), can be written as in (39), as shown at the bottom of
this page. It can be further expanded as in (40) and (41), as
shown at the bottom of this page, using the transmitted signal
s(t) in (3) and some re-ordering of summations and integra-
tions. Therefore, the sampled version of Y (t, f), i.e., Y [n, m],
can be written as

Y [n, m] =
N−1∑

n′=0

M−1∑

m′=0

X [n′, m′]Hn,m[n′, m′],

where Hn,m[n′, m′] is given in (42), as shown at the top of
the next page. By applying the change of variable t′ − τ −
n′T → t′′ in the inner integral and some simple algebraic
calculations, we can write Hn,m[n′, m′] as in (43) and (44),
as shown at the top of the next page, respectively. Finally,
we obtain Hn,m[n′, m′] as in (45), as shown at the top of
the next page, by replacing the square bracket in (44) with
cross-ambiguity function in (1), which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2: OTFS INPUT–OUTPUT

RELATION IN DELAY–DOPPLER DOMAIN

FOR IDEAL PULSES

The received signal y[k, l] for the ideal pulses, from (11)
and (13), can be written as

y[k, l] =
1√
NM

N−1∑

n=0

M−1∑

m=0

Hn,m[n, m]X [n, m]e−j2π
(

nk
N −ml

M

)
.

By substituting the ISFFT equation from (2), y[k, l] can be
expanded as in from (46) to (48), as shown at the top of the
next page. Here, hw[k − k′, l − l′] can be seen as the value
of hw(ν, τ) sampled at ν = k−k′

NT , τ = l−l′
MΔf . The value of

Y (t, f)

=
∫

t′
g∗rx(t

′ − t)
[∫

τ

∫

ν

h(τ, ν)s(t′ − τ)ej2πν(t′−τ)dτdν

]
e−j2πf(t′−t)dt′ (39)

=
∫

t′
g∗rx(t

′ − t)
[ ∫

τ

∫

ν

h(τ, ν)

{
N−1∑

n′=0

M−1∑

m′=0

X [n′, m′]gtx(t′ − τ − n′T )ej2πm′Δf(t′−τ−n′T )

}

ej2πν(t′−τ)dτdν

]

× e−j2πf(t′−t)dt′. (40)

=
N−1∑

n′=0

M−1∑

m′=0

X [n′, m′]
[ ∫

τ

∫

ν

h(τ, ν)
{∫

t′
g∗rx(t

′ − t)gtx(t′ − τ−n′T )ej2πm′Δf(t′−τ−n′T )ej2πν(t′−τ)e−j2πf(t′−t)dt′
}

dτdν

]
.

(41)



6512 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 10, OCTOBER 2018

Hn,m[n′, m′]

=
∫

τ

∫

ν

h(τ, ν)
[ ∫

t′
g∗rx(t

′ − nT )gtx(t′ − τ − n′T )ej2πm′Δf(t′−τ−n′T )ej2πν(t′−τ)e−j2πmΔf(t′−nT )dt′
]
dτdν (42)

=
∫

τ

∫

ν

h(τ, ν)
[ ∫

t′′
g∗rx(t

′′ − (n − n′)T + τ)gtx(t′′)ej2πm′Δft′′ej2πν(t′′+n′T )e−j2πmΔf(t′′+(n−n′)T+τ)dt′′
]
dτdν (43)

=
∫

τ

∫

ν

h(τ, ν)
[∫

t′′
g∗rx(t

′′ − (n − n′)T + τ)gtx(t′′)e−j2π((m−m′)Δf−ν)(t′′−(n−n′)T+τ)dt′′
]

ej2π(ν+m′Δf)((n−n′)T−τ)ej2πνn′T dτdν (44)

=
∫

τ

∫

ν

h(τ, ν)Agrx ,gtx((n −n′)T −τ, (m −m′)Δf −ν)ej2π(ν+m′Δf)((n−n′)T−τ)ej2πνn′T dτdν. (45)

y[k, l] =
1

NM

N−1∑

n=0

M−1∑

m=0

Hn,m[n, m]

[
N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]ej2π
(

nk′
N −ml′

M

)]

e−j2π
(

nk
N −ml

M

)
(46)

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]

[
N−1∑

n=0

M−1∑

m=0

Hn,m[n, m]e−j2πnT
(

k−k′
NT

)
ej2πmΔf

(
l−l′

MΔf

)]

(47)

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]hw[k − k′, l − l′]. (48)

hw(ν, τ) =
N−1∑

n=0

M−1∑

m=0

[∫

τ ′

∫

ν′
h(τ ′, ν′)ej2πν′nT e−j2π(ν′+mΔf)τ ′

dτ ′dν′
]

e−j2πnTνej2πmΔfτ (49)

=
∫

τ ′

∫

ν′
h(τ ′, ν′)

[
N−1∑

n=0

M−1∑

m=0

e−j2π(ν−ν′)nT ej2π(τ−τ ′)mΔf

]

e−j2πτ ′ν′
dτ ′dν′ (50)

=
∫

τ ′

∫

ν′
h(τ ′, ν′)w(ν − ν′, τ − τ ′)e−j2πτ ′ν′

dτ ′dν′. (51)

y[k, l] =
1√
NM

N−1∑

n=0

M−1∑

m=0

[
M−1∑

m′=0

Hn,m[n, m′]X [n, m′] +
M−1∑

m′=0

Hn,m[n − 1, m′]X [n− 1, m′]

]

e−j2π
(

nk
N −ml

M

)
. (52)

yici[k, l] =
1

NM

N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

Hn,m[n, m′]

[
N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]ej2π
(

nk′
N −m′l′

M

)]

e−j2π
(

nk
N −ml

M

)

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]

[
N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

Hn,m[n, m′]e−j2πn
(

k−k′
N

)
ej2π

(
ml−m′l′

M

)]

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]hici
k,l[k

′, l′]. (53)

hw(ν, τ) can be obtained as from (49) to (51), as shown at
the top of this page, by substituting Hn,m[n, m] from (10),
which completes the proof.

APPENDIX C
PROOF OF THEOREM 2: OTFS INPUT–OUTPUT

RELATION IN DELAY–DOPPLER DOMAIN

FOR RECTANGULAR PULSES

We start with expanding y[k, l] in (11) using the Y [n, m]
for rectangular pulses in (21) as in (52), as shown at the top
of this page. We write y[k, l] as

y[k, l] = yici[k, l] + yisi[k, l],

where yici[k, l] and yisi[k, l] contains the first term and
the second term of the summation in square brackets

of (52), respectively. We analyze these ICI and ISI terms as
below.

Analysis of yici[k, l]: The value of yici[k, l] can be written
as in (53), as shown at the top of this page, using the ISFFT
of X [n, m] given in (2). Now, hici

k,l[k
′, l′] is expanded in (54),

as shown on the next page, by using the Hn,m[n, m′] value
in (10). This can be further written as in (55), as shown on
the next page, from the channel assumption in (5) and the
cross-ambiguity function in (22).

To write the expression in (55) to a simple form, let us
separate the terms related to n, m, m′, and p. The terms
related to n are

ζn = e−j2πn
(

k−k′
N

)
ej2πνinT

= e−j2πn
(

k−k′−kνi
−κνi

N

)
.
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hici
k,l[k

′, l′]

=
N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

[∫

τ

∫

ν

h(τ, ν)Agrx ,gtx(−τ, (m − m′)Δf − ν)e−j2π (ν+m′Δf)τej2πνnT dτdν

]
e−j2πn

(
k−k′

N

)
ej2π

(
ml−m′l′

M

)

(54)

=
1
M

N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

⎡

⎣
P∑

i=1

hi

M−1−lτi∑

p=0

e−j2π((m−m′)Δf−νi)(p(T/M)+τi)e−j2π (νi+m′Δf)τiej2πνinT

⎤

⎦ e−j2πn
(

k−k′
N

)
ej2π

(
ml−m′l′

M

)

(55)

=
P∑

i=1

hi

[
N−1∑

n=0

e−j2πn
(

k−k′−kνi
−κνi

N

)] [ 1
M

M−1−lτi∑

p=0

e
j2π p

M

�
kνi

+κνi
N

� M−1∑

m=0

e−j2π (p+lτi
−l) m

M

M−1∑

m′=0

ej2π (p−l′) m′
M

]
.

=
P∑

i=1

hiGici(νi)F ici(τi, νi). (56)

F ici(τi, νi) = M

M−1−lτi∑

p=0

e
j2π p

M

�
kνi

+κνi
N

�
δ([p + lτi − l]M )δ([p − l′]M ). (57)

yici[k, l] =
1
N

P∑

i=1

hi

⎡

⎣
M−1∑

l′=0

M−1−lτi∑

p=0

e
j2π p

M

�
kνi

+κνi
N

�
δ([p + lτi − l]M )δ([p − l′]M )

N−1∑

k′=0

Gici(νi)x[k′, l′]

⎤

⎦

≈ 1
N

P∑

i=1

hi

[M−1−lτi∑

p=0

e
j2π p

M

�
kνi

+κνi
N

�
δ([p + lτi − l]M )

Ni∑

q=−Ni

(−ej2π(−q−κνi
) − 1

e−j 2π
N (−q−κνi

) − 1

)
x[[k − kνi + q]N , p]

]

. (58)

yici[k, l] ≈

⎧
⎪⎪⎨

⎪⎪⎩

P∑

i=1

Ni∑

q=−Ni

hi

[
1
N

βi(q)
]

e
j2π

�
l−lτi

M

��
kνi

+κνi
N

�
x [[k − kνi + q]N , [l − lτi]M ] l ≥ lτi ,

0 otherwise.

(59)

yisi[k, l] =
1

NM

N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

Hn,m[n − 1, m′]

[
N−1∑

k′=0

M−1∑

l′=0

x[k′, l′]ej2π
(

(n−1)k′
N −m′l′

M

)]

e−j2π
(

nk
N −ml

M

)

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

e−j2π k′
N x[k′, l′]

[
N−1∑

n=0

M−1∑

m=0

M−1∑

m′=0

Hn,m[n − 1, m′]e−j2πn
(

k−k′
N

)
ej2π

(
ml−m′l′

M

)]

=
1

NM

N−1∑

k′=0

M−1∑

l′=0

e−j2π k′
N x[k′, l′]hisi

k,l[k
′, l′]. (60)

hisi
k,l[k

′, l′] =
P∑

i=1

hi

[
N−1∑

n=1

e−j2πn
(

k−k′−kνi
−κνi

N

)][ 1
M

M−1∑

p=M−lτi

e
j2π( p−M

M )
�

kνi
+κνi
N

�M−1∑

m=0

e−j2π (p+lτi
−l+M) m

M

M−1∑

m′=0

ej2π (p−l′) m′
M

]

=
P∑

i=1

hiGisi(νi)F isi(τi, νi). (61)

yisi[k, l] =
1
N

P∑

i=1

hi

[
M−1∑

l′=0

M−1∑

p=M−lτi

e
j2π( p−M

M )
�

kνi
+κνi
N

�
δ([p + lτi − l]M )δ([p − l′]M )

N−1∑

k′=0

Gisi(νi)e−j2π k′
N x[k′, l′]

]

=
1
N

P∑

i=1

hi

⎡

⎣
M−1∑

p=M−lτi

e
j2π( p−M

M )
�

kνi
+κνi
N

�
δ([p + lτi − l]M )

N−1∑

k′=0

Gisi(νi)e−j2π k′
N x[k′, p]

⎤

⎦
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≈ 1
N

P∑

i=1

hi

[
M−1∑

p=M−lτi

e
j2π( p−M

M )
�

kνi
+κνi
N

�
δ([p + lτi − l]M )

{
Ni∑

q=−Ni

(βi(q) − 1) e−j2π
[k−kνi

+q]N
N x[[k − kνi + q]N , p]

−
N−1∑

k′=0,
k′ �=[k−kνi

+q]N ,q∈[−Ni,Ni]

e−j2π k′
N x[k′, p]

}]

(62)

≈ 1
N

P∑

i=1

hi

[
M−1∑

p=M−lτi

e
j2π( p−M

M )
�

kνi
+κνi
N

�
δ([p + lτi − l]M )

Ni∑

q=−Ni

(βi(q) − 1) e−j2π
[k−kνi

+q]N
N x[[k − kνi + q]N , p]

]

. (63)

yisi[k, l] ≈

⎧
⎪⎪⎨

⎪⎪⎩

P∑

i=1

Ni∑

q=−Ni

hi

[
1
N

(βi(q) − 1)
]

e−j2π
[k−kνi

+q]N
N e

j2π
�

l−lτi
M

��
kνi

+κνi
N

�
x [[k − kνi + q]N , [l − lτi ]M ] l < lτi ,

0 otherwise.

(64)

Here, we used the delay and Doppler taps defined in (6).
Similarly, the terms related to m and m′ are

ζm = e−j2πmΔf (p(T/M)+τi)ej2πl m
M

= e−j2π (p+lτi
−l) m

M .

ζm′ = ej2πm′Δf (p(T/M)+τi)e−j2πm′Δfτie−j2πl′ m′
M

= ej2π (p−l′) m′
M .

Finally, the terms related to p are

ζp = ej2πνi (p(T/M)+τi)e−j2πνiτi

= e
j2π p

M

�
kνi

+κνi
N

�
.

Therefore, from the above terms, the value of hici
k,l[k

′, l′] can
be written as in (56), as shown on the previous page, where
Gici(νi) and F ici(τi, νi) denote the terms in the first and second
square brackets. The value of Gici(νi) is the same as the one
studied in (18) for ideal pulses case. Similar to the analysis
of (17), F ici(τi, νi) can be written as in (57), as shown on the
previous page. Hence, by substituting (56) and (57) in (54),
yici[k, l] can be approximated as in (58), as shown on the
previous page. From (58), we can easily see that it is non-
zero only if the following conditions satisfied

p = [l − lτi ]M and 0 ≤ p ≤ M − 1 − lτi.

These conditions are satisfied only if l ≥ lτi and p = l − lτi .
Finally, with the conditions on l and p, yici[k, l] can be obtained
as in (59), as shown on the previous page, where βi(q) is
defined in (25).

Analysis of yisi[k, l]: Similar to yici[k, l] in (53), yisi[k, l]
can be expanded as in (60), as shown on the previous page.
By substituting the value of Hn,m[n−1, m′] from (10), cross-
ambiguity function in (23), and similar analysis of separating
terms for hici

k,l[k
′, l′], the value of hisi

k,l[k
′, l′] can be obtained as

in (61), as shown on the previous page. Here, the summation
n starts from 1 as the first symbol does not have previous
symbol to experience ISI. Therefore, the value of Gisi(νi) is
equal to Gici(νi)− 1. Using the value of Gisi(νi), yisi[k, l] can
be approximated as in (62), as shown at the top of this page.

Further, the expression in (62) can be approximated as in (63),
as shown at the top of this page, by neglecting the signals
x[k′, p] for which k′ �= [k− kνi + q]N , q ∈ [−Ni, Ni], as their
coefficients are very small (1/N ) for practical values of N
(e.g., N = 64, 128).

Now, (63) is non-zero only if the following conditions are
satisfied

p = [l − lτi ]M and M − lτi ≤ p ≤ M − 1.

These conditions are satisfied only if l < lτi and p = l −
lτi +M . With these conditions, the value of yisi[k, l] is written
in (64).

Finally, by combining (59) and (64), as shown at the top
of this page, the value of y[k, l] in (52) can be obtained as
in (24), which completes the proof.
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