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Modulation Diversity in Fading Channels with a
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Abstract—In this paper, we address the design of codes
which achieve modulation diversity in block fading single-
input single-output (SISO) channels with signal quantization
at the receiver. With an unquantized receiver, coding based
on algebraic rotations is known to achieve maximum modu-
lation coding diversity. On the other hand, with a quantized
receiver, algebraic rotations may not guarantee gains in diversity.
Through analysis, we propose specific rotations which result in
the codewords having equidistant component-wise projections.
We show that the proposed coding scheme achieves maximum
modulation diversity with a low-complexity minimum distance
decoder and perfect channel knowledge. Relaxing the perfect
channel knowledge assumption we propose a novel channel train-
ing/estimation technique to estimate the channel. We show that
our coding/training/estimation scheme and minimum distance
decoding achieves an error probability performance similar to
that achieved with perfect channel knowledge.

Index Terms—Modulation diversity, fading, quantization.

I. INTRODUCTION

IN practical communication receivers, the analog received
signal is quantized into a finite number of bits for fur-

ther digital baseband processing. With increasing bandwidth
requirements of modern communication systems, analog-to-
digital converters (ADC) are required to operate at high
frequencies. However, at high operating frequencies, the pre-
cision of ADC’s is limited [1]. Limited precision generally
leads to high quantization noise, which degrades performance.
In case of fading channels, floors in the bit error performance
have been reported, and it seems difficult to avoid this behavior
[2], [3]. On the other hand, channel capacity results show that
even with 2-bit quantizers, the capacity of a quantized output
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channel is not far from that of a channel with unquantized out-
put [4], [5]. Therefore, there appears to be a gap between the
theoretical limits of communication with quantized receivers,
and the current state of art.

In communication systems with fading, an important per-
formance metric is the diversity order of reception. For sin-
gle antenna fading scenarios, modulation diversity is a well
known signal space diversity technique to improve the relia-
bility/diversity of reception [6], [7]. However, with a quantized
receiver, this coding alone does not guarantee improvement in
diversity.

In this paper, we propose 2-dimensional constellations
rotated by an angle 𝜃, which can achieve full modulation
diversity with a quantized receiver. With a quantized receiver,
the maximum likelihood (ML) decoder is not the usual mini-
mum distance decoder and would be much more complex to
implement. We therefore assume a minimum distance decoder
operating on the quantized channel outputs. We observe that,
with a quantized receiver, i) for a given rate of information
transmission in bits per channel use, there is a minimum
requirement on the number of quantization bits, without which
floors1 appear in the error probability performance, ii) there
is only a small subset of admissible rotation angles which
can guarantee diversity improvement and no error floors, and
iii) for a quantized receiver with perfect channel knowledge
and minimum distance decoding, we analytically show that,
among all admissible rotation angles, a good choice is one
in which the transmitted vectors have equidistant projections
along both the transmitted components. We then show that
the 𝑀2-QAM constellation rotated by 𝜃 = tan−1(1/𝑀) has
equidistant projections.

Further, we relax the perfect channel knowledge assumption
and propose novel training sequences and a channel estimation
scheme, which achieves an error probability performance close
to that achieved with perfect channel knowledge. Through
Monte-Carlo simulations we show that even with coarse
analog-to-digital conversion, and short training sequences, the
error performance with the estimated channel is similar to that
with perfect channel knowledge. The main interesting result
is that, even when the channel estimate is not perfect, an error
probability performance exactly the same as that with perfect
channel estimate is achievable under some sufficiency condi-
tions on the channel estimate and the number of quantization
bits. These conditions are analytically derived and shown to be

1Error probability performance is said to floor, if and only if it converges
to a non-zero positive constant as the signal-to-noise ratio tends to infinity.
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Fig. 1. Receiver analog front end (AFE) .

satisfied by the proposed training/estimation scheme for some
specific scenarios. Another interesting result is that, with suffi-
cient number of quantization bits, the error performance never
floors irrespective of the quality of channel estimate. Also, to
the best of our knowledge, the issue of achieving modulation
diversity with quantized receivers having imperfect channel
knowledge has not been addressed before in literature.

II. SYSTEM MODEL AND QUANTIZED RECEIVER

We consider SISO block fading channels with a single
transmit and a single receive antenna. The channel gains are
assumed to be quasi-static for the coherence interval of the
channel, and change to an independent realization in the next
coherence interval. We assume frequency flat fading, with the
complex channel frequency response given by

𝐻(𝑓) = ∣ℎ∣𝑒−𝑗2𝜋𝜏𝑓 , ∣𝑓 − 𝑓𝑐∣ ≤ 𝑊

2
, (1)

and zero elsewhere, i.e., scaling by ∣ℎ∣, and a delay of 𝜏 sec-
onds2. Figure 1 shows the signal path of a typical heterodyne
receiver [8]. Due to space constraints we are unable to present
the details of the continuous-time received signal model, for
which we refer the reader to [11].

Prior to the transmission of information symbols, there is a
training phase in which a known preamble sequence (carrier
of constant amplitude 𝐴) is transmitted to enable carrier
frequency synchronization in the receiver and also for tuning
the receiver gain. Let the combined gain of the analog front
end (AFE) (consisting of Low Noise Amplifier (LNA), Mixer
(MXR) and Low Pass Filter (LPF)) be denoted by 𝑔𝐴𝐹𝐸 . In
the training phase, after the Phase Locked Loop (PLL) has
locked, the LPF output is digitized using a Nyquist rate sample
& hold type analog-to-digital converter (ADC), as shown in
Fig. 1.

Let the input dynamic range of the ADC3 be −𝑐𝑞/2 to 𝑐𝑞/2.
For optimum performance, it is desirable that the range of the
input signal to the ADC matches with its dynamic range (ADC
range matching). Due to fading, the input level at the ADC
may vary, and therefore a variable gain amplifier (VGA) is
generally used to ensure ADC range matching. The gain of
the VGA is controlled by the automatic gain control (AGC)
module [8]. During the training phase, AGC detects the peak

2 𝑊 is the signaling bandwidth and 𝑓𝑐 ≫ 𝑊 is the carrier frequency.
3We also refer to 𝑐𝑞/2 as the clip level, since any input greater than 𝑐𝑞/2

would be limited to 𝑐𝑞/2.

of the LPF output signal using a conventional analog peak
detector whose output is given by

𝑉𝑎𝑔𝑐−𝑝𝑘 = 𝐴𝑔𝐴𝐹𝐸 ∣ℎ∣. (2)

Let 𝑋 denote the peak value of the transmitted symbols (both
real and imaginary component), during normal information
transmission phase. During information transmission phase,
ADC range matching (i.e., 𝑐𝑞

2 = 𝑔𝑉 𝐺𝐴𝑔𝐴𝐹𝐸∣ℎ∣𝑋) requires
the VGA gain to be

𝑔𝑉 𝐺𝐴 =
𝑐𝑞

2

𝐴

𝑋

1

𝑉𝑎𝑔𝑐−𝑝𝑘
. (3)

Since the ratio 𝐴/𝑋 and 𝑐𝑞/2 are known a priori, this
computation can be performed in the AGC using simple analog
circuits [9]. In the rest of the paper, we assume that this
computation is perfect.

During the information transmission phase, PLL tracking is
turned off and VGA gain is frozen to the value given by (3).
Subsequently, without loss of generality, we assume 𝑐𝑞/2 = 1.
Assuming perfect timing synchronization, the 𝑘-th output of
the sample & hold circuit, at time 𝑡 = 𝜏 + 𝑘𝑇 is given by4

𝑠𝐼
𝑘 =

𝑥𝐼
𝑘

𝑋
+

𝑤𝐼
𝑘

∣ℎ∣𝑋 , 𝑠𝑄
𝑘 =

𝑥𝑄
𝑘

𝑋
+

𝑤𝑄
𝑘

∣ℎ∣𝑋 , (4)

where 𝑥𝑘 = 𝑥𝐼
𝑘 +𝑗𝑥𝑄

𝑘 is the 𝑘-th transmitted information sym-
bol. The additive noise components 𝑤𝐼

𝑘 and 𝑤𝑄
𝑘 are i.i.d. Gaus-

sian random variables with variance denoted by 𝜎2/2. Let the

average transmit power be denoted by 𝑃𝑇
Δ
= 𝔼[∣𝑥𝑘∣2]. Then

the instantaneous signal-to-noise ratio (SNR) at the output of
the sample & hold circuit is given by 𝛾𝑖𝑛𝑠𝑡

Δ
= 𝑃𝑇 ∣ℎ∣2/𝜎2.

Assuming a Rayleigh fading model with ℎ ∼ 𝒞𝒩 (0, 1)
(complex Gaussian with zero mean and unit variance), the
average SNR is given by 𝛾

Δ
= 𝔼ℎ[𝛾𝑖𝑛𝑠𝑡] = 𝑃𝑇 /𝜎

2. The output
of the sample & hold circuit is then quantized by a 𝑏-bit
uniform quantizer 𝑄, as shown in Fig. 1. The quantizer is
modeled by the function 𝑄𝑏(𝑡), 𝑡 ∈ ℝ, which is given by

𝑄𝑏(𝑡) =

⎧⎨⎩
+1, 𝜉(𝑡) ≥ (2𝑏−1 − 1)
−1, 𝜉(𝑡) ≤ −(2𝑏−1 − 1)

(2𝜉(𝑡)+1)
2𝑏−1 , otherwise

(5)

𝜉(𝑡)
Δ
=
⌊ 𝑡 (2𝑏 − 1)

2

⌋
(6)

where ⌊𝑥⌋ denotes the largest integer not greater than 𝑥. For a
𝑛-dimensional complex vector z = (𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛), let Q𝑏(z)
denote the 𝑛-dimensional component-wise quantized version
of z. That is, z̃ = (𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛) = Q𝑏(z) implies that

𝑧𝐼
𝑖 = 𝑄𝑏(𝑧

𝐼
𝑖 ) , 𝑧𝑄

𝑖 = 𝑄𝑏(𝑧
𝑄
𝑖 ) 𝑖 = 1, 2, . . . , 𝑛. (7)

The 𝑘-th quantized received symbol, 𝑟𝑘 = 𝑟𝐼
𝑘 + 𝑗𝑟𝑄

𝑘 is
therefore given by

𝑟𝐼
𝑘 = 𝑄𝑏(𝑠

𝐼
𝑘) , 𝑟𝑄

𝑘 = 𝑄𝑏(𝑠
𝑄
𝑘 ) (8)

where 𝑠𝐼
𝑘 and 𝑠𝑄

𝑘 are the real and imaginary components of
the 𝑘-th sample & hold output symbol.

Since achieving modulation coding diversity with quantized
output is the main subject of this paper, we next give a brief

41/𝑇 is the rate at which information symbols are transmitted.
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Original
Constellation

(a)

Rotated
Constellation

(b)

Fig. 2. Signal space of the transmitted constellation consisting of four
codewords in 2 dimensions (horizontal and vertical). The average transmit
power constraint is 𝑃𝑇 = 1/4. For the rotated constellation, the rotation
angle is 28.5∘. The codewords are represented by solid dots.

introduction to modulation coding/signal space diversity in
SISO fading channels with an unquantized receiver [7]. We
illustrate the signal space diversity technique through Fig. 2
and Fig. 3. We consider two possible transmission schemes.
In the first scheme, the original 2-dimensional constellation
(with four codewords) is transmitted as it is (Fig. 2(a)),
whereas in the second scheme the original constellation is
rotated before transmission (Fig. 2(b)). For a given 2-D
codeword chosen for transmission, the two components of
the chosen codeword are transmitted separately during two
different coherence time intervals with channel gains ∣ℎ1∣
and ∣ℎ2∣ respectively. From Fig. 3, it is observed that with
a total transmit power constraint of 𝑃𝑇 = 1/4, the minimum
distance between the received codewords is larger when the
rotated constellation is transmitted. Under deep fading along
a certain signal dimension/component (i.e., channel gain ≈ 0
along this component), the received codeword is essentially
the projection of the transmitted codewords onto the other
signal dimension. With no rotation, some of the transmitted
codewords have the same projection onto a given signal
component, and therefore the minimum distance would be
approximately 0. However with a rotated constellation, since
the projections of the codewords are distinct, the minimum
distance between received codewords is strictly positive even
when the channel gain along a certain component is zero.
Therefore, when the rotated constellation is transmitted, an
error event (i.e., very small minimum distance) occurs only

d
min
2  = 0.0313

Original
Constellation

(a)

Rotated
Constellation

d
min
2  = 0.138

(b)

Fig. 3. Signal space of the received 2-D codewords. The gains along the
horizontal and vertical signal component/dimension are ∣ℎ1∣ = 1 and ∣ℎ2∣ =
1/4 respectively. 𝑑2𝑚𝑖𝑛 is the minimum Euclidean distance between any two
received codewords.

when the channel gain along both the signal components are
small, thereby implying second order diversity. In contrast,
with no rotation, an error event occurs if the channel gain
along any one of the signal components is small, thereby
implying only single order diversity.

The example above was with 𝑛 = 2 signal compo-
nents/dimensions. For a general 𝑛-dimensional signal space,
modulation diversity coding is illustrated in Fig. 4. Coding
is performed across 𝑛 > 1 information symbols resulting
in 𝑛 coded symbols/codeword. These 𝑛 coded symbols are
interleaved and then transmitted over 𝑛 independent channel
coherence intervals (realizations). At the receiver, the channel
outputs during the 𝑛 coherence intervals are buffered, followed
by de-interleaving and detection. Suitable coding across 𝑛 in-
dependent channel realizations results in an 𝑛-fold increase in
the diversity of reception. In fading channels, codes designed
using algebraic lattices can achieve modulation diversity, and
are therefore employed to improve the diversity of reception
[6]. With an unquantized receiver, it is known that lattice
codes based on algebraic rotations can achieve full modulation
diversity [7][10]. However, with quantized receivers, this is no
longer true.

In this paper we consider the case of 𝑛 = 2. Let the
information symbol vector be denoted by u = (𝑢1, 𝑢2)𝑇 ,
where 𝑢1 and 𝑢2 are restricted to 𝑀2-QAM, though a
generalization to non-square QAM is trivial. Let the set
𝒮𝑀 = {−(𝑀 − 1), . . . ,−1, 1, ⋅ ⋅ ⋅ , (𝑀 − 1)} denote the
𝑀 -PAM signal set. Then, 𝑀2-QAM is denoted by the set
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Fig. 4. Achieving modulation diversity by coding across 𝑛 different channel
realizations.

𝒮2𝑀 Δ
= {𝑤 + 𝑗𝑣 ∣ 𝑤, 𝑣 ∈ 𝒮𝑀}. The information symbols are

coded using a 2×2 rotation matrix G, resulting in the transmit
vector x = (𝑥1, 𝑥2)𝑇 = Gu, where

G =

[
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]
. (9)

Due to QAM symmetry, one can restrict the rotation angle in
(9) to [0, 𝜋/4). The set of transmitted vectors 𝒳 and the peak
component value 𝑋 are given by

𝒳 =

{
x ∣ x = Gu, 𝑢1, 𝑢2 ∈ 𝒮2𝑀

}
,

𝑋 = max
x∈𝒳

{
max
𝑖=1,2

[
max(∣𝑥𝐼

𝑖 ∣, ∣𝑥𝑄
𝑖 ∣)
]}

(10)

Also, let the channel gain during the transmission of 𝑥1 and
𝑥2 be denoted by ∣ℎ1∣ and ∣ℎ2∣, respectively. We assume ℎ1

and ℎ2 to be i.i.d. 𝒞𝒩 (0, 1). Let r = (𝑟1, 𝑟2)𝑇 denote the
quantized received vector, where 𝑟1 = 𝑟𝐼

1 + 𝑗𝑟𝑄
1 and 𝑟2 =

𝑟𝐼
2 + 𝑗𝑟𝑄

2 are the ADC outputs during the transmission of 𝑥1

and 𝑥2, respectively. From (4) and (8) it follows that

𝑟𝐼
𝑖 = 𝑄𝑏

(𝑥𝐼
𝑖

𝑋
+

𝑤𝐼
𝑖

∣ℎ𝑖∣𝑋
)
, 𝑟𝑄

𝑖 = 𝑄𝑏

(𝑥𝑄
𝑖

𝑋
+

𝑤𝑄
𝑖

∣ℎ𝑖∣𝑋
)
. (11)

With the above quantized receiver model, ML decoding is no
more given by the minimum distance decoder, and is rather
complex. Nevertheless, due to its lower decoding complexity,
we shall assume a minimum distance decoder taking r as its
input, and the output (detected information symbols) given by5

û = arg min
u∈𝒮2

𝑀×𝒮2
𝑀

∥∥∥diag(∣ℎ1∣, ∣ℎ2∣)
(
r− Gu

𝑋

)∥∥∥2
5 The assumed minimum distance detector is essentially the ML detector

for an unquantized receiver. With an unquantized receiver, the received
signal model would be same as (11), but without the 𝑄(.) operator. For
the unquantized receiver model, the conditional probability distribution of r

given x is 𝑝un(r∣x) =
∏2

𝑖=1
∣ℎ𝑖∣2𝑋2

𝜋𝜎2 𝑒
− ∣ℎ𝑖∣2𝑋2∣𝑟𝑖−

𝑥𝑖
𝑋

∣2
𝜎2 . The minimum

distance decoder that we use, is one which maximizes 𝑝un (r∣x) over all
x ∈ 𝒳 .

quantization boundaries

 xI / X Q
b
( xI/X)

 sI

 rI

X X X X

Fig. 5. Signal space at the quantizer input with 𝑏 = 2 (real component).
Rotated 4-QAM (𝜃 = 20∘) depicted with dark filled squares.

= arg min
u∈𝒮2

𝑀×𝒮2
𝑀

(
r−

(Gu

𝑋

))†
D𝜌

(
r−

(Gu

𝑋

))
,

D𝜌
Δ
= diag(1, 𝜌2) (12)

where 𝜌
Δ
= ∣ℎ2∣/∣ℎ1∣ is the channel gain ratio, and †, ∥.∥ denote

Hermitian transpose and Euclidean norm respectively. In the
subsequent sections III and IV, assuming perfect receiver
knowledge of 𝜌, we show that even with the suboptimal
minimum distance decoder in (12), we can avoid error floors
and also achieve full modulation diversity.

III. ROTATION CODING IN QUANTIZED RECEIVER

In this Section, we study the error performance of 2-
dimensional rotated constellations (as defined in (10)) with a
quantized receiver and minimum distance decoding, and derive
the conditions under which full modulation diversity can be
achieved. In case of a quantized receiver, the sample & hold
outputs (4), are quantized to the appropriate quantization box
containing it. As an example, Fig. 5 illustrates the rotated 4-
QAM constellation with 𝜃 = 20∘. The dark filled squares rep-
resent the 4 possible values taken by the real component of the
normalized transmit vector x𝐼/𝑋 = (𝑥𝐼

1/𝑋 , 𝑥𝐼
2/𝑋)𝑇 . The

projections of the 4 possible vectors onto the first component
(horizontal) are marked with a cross. A 𝑏 = 2-bit quantizer is
used along both codeword components. The dashed horizontal
and vertical lines represent the quantization boundaries along
the 2 components. As an example, in Fig. 5 the real component
of the sample & hold output vector s𝐼 = (𝑠𝐼

1, 𝑠
𝐼
2)𝑇 (marked

with a star), is therefore quantized to r𝐼 = (𝑟𝐼
1 , 𝑟

𝐼
2)𝑇 (Note

that there are totally 16 different quantized outputs marked
with empty circles). The quantization box corresponding to
the output r𝐼 is shown in the figure as a square with solid
lines.

As the noise variance 𝜎2 → 0, the sample & hold output s
is almost the same as the normalized transmitted vector x/𝑋 .
Therefore at sufficiently high SNR, if there exist two different
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transmit vectors x and y, such that Q𝑏(x/𝑋) and Q𝑏(y/𝑋)
are identical, then it is obvious that the error probability
performance would floor as SNR → ∞. This is because, at
high SNR the quantizer output would be the same irrespective
of whether x or y was transmitted, which makes it impossible
for the the receiver to distinguish between the two transmit
vectors leading to erroneous detection. More formally, two
transmit vectors x and y are said to be distinguishable if and
only if Q𝑏(x/𝑋) ∕= Q𝑏(y/𝑋). Therefore, in order to avoid
floors in the error probability performance, we propose the
first code design criterion.

Criterion I : A necessary and sufficient condition to avoid
error floors with a quantized receiver, is that any two transmit
vectors must be distinguishable.

To achieve full modulation diversity, it is required that even
under deep fading conditions in one component, any two
transmit vectors x and y must still be distinguishable in the
other component. This, therefore, implies that the projections
of all the transmit vectors onto any one component must be
distinguishable by the quantizer in that component. Therefore,
we have the second criterion.

Criterion II : Given a 𝑏-bit quantized receiver, in order
to achieve full modulation diversity, a necessary condition on
the rotation angle 𝜃 is that, any two distinct transmit vectors
x and y satisfy

Q𝑏(𝑥𝑖/𝑋) ∕= Q𝑏(𝑦𝑖/𝑋), 𝑖 = 1, 2. (13)

With a rotated 𝑀2-QAM there are totally 𝑀2 distinct projec-
tions onto any component, and therefore in order to achieve
full modulation diversity, the minimum number of quantization
bits required for the transmit vectors to be distinguishable
along any component is at least ⌈2 log2(𝑀)⌉ 6 i.e.

𝑏 ≥ ⌈2 log2(𝑀)⌉. (14)

Subsequently, we assume that for a given 𝑀 , 𝑏 is fixed to
the lower bound value in (14). We further note that, with a
𝑏 = ⌈2 log2(𝑀)⌉-bit quantizer, Criterion II is not satisfied by
all rotation angles7.

With a 𝑏 = ⌈2 log2(𝑀)⌉-bit quantizer, the set of angles (be-
tween 0 and 𝜋/4) which result in distinguishable projections
along both the codeword components will be referred to as
the admissible angles (i.e., angles which satisfy Criterion II).
For example, with 4- and 16-QAM, the admissible angles lie
in the range (tan−1(1/5) , 𝜋/4) and (11.3∘ , 16.9∘), respec-
tively. With increasing 𝑀 , the interval of admissible angles
reduces. With 256-QAM, the range of admissible angles is
only (3.47∘ , 3.68∘). Another interesting fact is that, for 𝑀2-
QAM, 𝜃 = tan−1(1/𝑀) is always in the set of admissible
angles. Further, as 𝑀 increases, tan−1(1/𝑀)±𝜖 are observed
to be the only admissible angles.

Apart from the fact that the chosen angle must have
distinguishable projections, it can be analytically shown that
for 𝑀2-QAM, any rotation angle for which the rotated con-
stellation satisfies

Q𝑏(x/𝑋) = x/𝑋 , x ∈ 𝒳 (15)

6⌈𝑥⌉ denotes the smallest integer not smaller than 𝑥.
7For example, even though 𝜃 = 1/2 tan−1(2) guarantees a rotation code

having non-vanishing minimum product distance, with a 𝑏 = 4-bit uniform
quantizer and 𝑀2 = 16-QAM it does not satisfy Criterion II.

achieves a diversity order of 2 (i.e., full modulation diversity
since 𝑛 = 2), with a 𝑏 = ⌈2 log2(𝑀)⌉-bit quantized receiver
and minimum distance decoding given by (12) (See Appendix
A in [11]). Subsequently, a rotated constellation which satisfies
(15) shall be referred as being matched to the quantizer. It is
easy to see that a rotated 𝑀2-QAM constellation is matched
to a 𝑏 = 2⌈log2(𝑀)⌉-bit uniform quantizer, if and only if,
the projections of the transmit vectors are component-wise
equidistant and distinguishable.

Even with a mismatched rotated constellation having dis-
tinguishable projections (i.e., when the projections are not
equidistant), full modulation diversity may be achieved, but
then the error probability would be higher, since some transmit
vectors would be closer to the edge of their quantization boxes
(making it easier for noise to move the transmitted vector to
another quantization box when received) (illustrated through
Fig. 10 in Appendix A [11]). This therefore leads us to the
third code design criterion.

Criterion III : In order to minimize the error probability of
a rotated 𝑀2-QAM constellation with a 𝑏 = ⌈2 log2(𝑀)⌉-bit
quantized receiver, the rotation angle must be such that the
rotated 𝑀2-QAM constellation is matched to the quantizer.

IV. ROTATED CONSTELLATION DESIGN FOR QUANTIZED

RECEIVER

In this section, we construct rotated 𝑀2-QAM constella-
tions which satisfy Criterion III. We next show that a rotation
by 𝜃 = tan−1(1/𝑀), satisfies Criterion III8. Since G is
real-valued, it suffices to prove the equidistant projections
property for the real component only. The information symbols
𝑢𝐼
1 and 𝑢𝐼

2 take values from the 𝑀 -PAM signal set 𝒮𝑀 .
It is clear that the pair (𝑢𝐼

1, 𝑢
𝐼
2) can take any of the 𝑀2

values from the ordered sequence of values 𝒮1𝑀 = {(−𝑀 +
1,−𝑀+1), (−𝑀+1,−𝑀+3), . . .(−𝑀+1,𝑀−1), (−𝑀+
3,−𝑀+1), (−𝑀+3,−𝑀+3), . . .(−𝑀+3,𝑀−1), . . . (𝑀−
1,−𝑀 + 1), (𝑀 − 1,−𝑀 + 3), . . . (𝑀 − 1,𝑀 − 1)}. With
𝜃 = tan−1(1/𝑀), the two rows of G are (𝑀, 1) and (−1,𝑀)
scaled by 1/

√
𝑀2 + 1. From basic algebra, it now follows

that the value of the first component of the transmit vector
i.e., 𝑥𝐼

1, increases in steps of 2/
√
𝑀2 + 1 as (𝑢𝐼

1, 𝑢
𝐼
2) takes

values sequentially from the set 𝒮1𝑀 . This then proves that the
projections along the first component are indeed equidistant.
Also, since the values in the 𝑀 -PAM signal set are symmetric
around 0, it follows that the set of all 𝑀2 values which the first
component 𝑥𝐼

1 takes, is same as the set of the 𝑀2 values taken
by the second component 𝑥𝐼

2. Hence the projections along the
second component are also equidistant.

For 𝑀2-QAM with 𝜃 = tan−1(1/𝑀), it can be shown that
the minimum product distance of the code is 4𝑀/(𝑀2 + 1)
(≈ 4/𝑀 for 𝑀 ≫ 1) [6]. On the other hand, a rotation angle
of 𝜃 = 1/2 tan−1(2) is known to have a minimum product
distance of at least 4/

√
5 irrespective of the QAM size [6],

[10]. Also, for any rotation angle the error performance with
a quantized receiver is inferior to that with an unquantized
receiver. Hence, with increasing 𝑀 , the error performance of

8 We would like to make a note of the fact that, in [12], for a totally
different system setting, the optimal rotation angle for 𝑀2-QAM has been
mentioned to be 𝜃 = tan−1(1/𝑀).
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a quantized receiver with 𝜃 = tan−1(1/𝑀) is expected to be
increasingly less power efficient than that of an unquantized
receiver with 𝜃 = 1/2 tan−1(2). With increasing 𝑀 , the set
of admissible angles appeared to be only tan−1(1/𝑀) ± 𝜖
and therefore, it can be argued that, the best possible error
performance with a 𝑏 = ⌈2 log2(𝑀)⌉-bit quantized receiver
would have a loss in power efficiency when compared to an
unquantized receiver. However, this appears to be the cost to
achieve full modulation diversity in quantized receivers with
limited precision.

V. IMPERFECT RECEIVER KNOWLEDGE OF 𝜌

In the previous sections, in order to achieve full modu-
lation diversity, minimum distance decoding at the receiver
assumed perfect knowledge of 𝜌. In this section, we relax
this assumption and present novel techniques to estimate 𝜌
accurately. It is expected that the error performance would
degrade with imperfect estimate of 𝜌. Interestingly, in section
V-A we propose an optimality criterion, which if satisfied
by the estimate of 𝜌, would guarantee no loss in the error
probability performance of the minimum distance decoder
with estimated 𝜌 when compared to the error performance with
perfect knowledge of 𝜌. Such an estimate would be referred
to as an optimal estimate of 𝜌. We estimate 𝜌 based on the
quantized receiver outputs for a known transmitted sequence.
We refer to this sequence as the 𝜌-training sequence. Any 𝜌-
training sequence which results in an optimal estimate of 𝜌 is
referred to as an optimal 𝜌-training sequence. In section V-B
we present receiver control techniques required to estimate 𝜌.
ML estimation of 𝜌 based on the quantized receiver outputs of
the 𝜌-training sequence is discussed in section V-C. Finally,
in section V-D, for 𝑀 = 2 (rotated 4-QAM) we present
an optimal 𝜌-training sequence which satisfies the optimality
criterion introduced in section V-A.

For 𝑀 > 2, the length of 𝜌-training sequences which satisfy
the optimality criterion is expected to be large resulting in too
much training overhead and hence loss in effective through-
put. Therefore, a novel design of short 𝜌-training sequences
(referred to as ‘good’ 𝜌-training sequences) is proposed, which
can achieve an error probability performance close to that
achieved with optimal 𝜌-training sequences. Also throughout
this section, it is assumed that i) with rotated 𝑀2-QAM, a
𝑏 = ⌈2 log2(𝑀)⌉-bit uniform quantizer is employed, ii) a
minimum distance decoder is used for detection, and iii) the
rotated constellation satisfies Criterion III.

A. Criterion for the optimal 𝜌 estimate

In this Section, we are interested in studying the conditions
under which the error probability performance with 𝜌 (i.e.,
estimated 𝜌) is exactly the same as the error probability
performance assuming perfect receiver knowledge of 𝜌. Any
estimate of 𝜌, which satisfies these conditions would be an
optimal estimate in terms of achieving an error probability
performance same as that achieved with perfect receiver
knowledge of 𝜌. The minimum distance decoder with the
estimated 𝜌, is also given by (12), but with 𝜌 replaced by
its estimate 𝜌. Further, since G is real-valued, it suffices to
consider the error probability for only the real component of

the transmitted information symbols. To simplify notations,
for any received vector r, information symbol vectors u and
v and any real 𝜁 > 0, we define

𝑚(𝜁, r𝐼 ,u𝐼)
Δ
=

(
r𝐼 −

(Gu𝐼

𝑋

))𝑇

D𝜁

(
r𝐼 −

(Gu𝐼

𝑋

))
(16)

𝐷𝐸(𝜁, r𝐼 ,u𝐼 ,v𝐼)
Δ
=

(
𝑚(𝜁, r𝐼 ,u𝐼)−𝑚(𝜁, r𝐼 ,v𝐼)

)
. (17)

The detected information symbols with perfect knowledge of
𝜌 can therefore be stated in terms of 𝑚(.) as

û𝐼 = arg min
u𝐼∈𝒮2

𝑀

𝑚(𝜌, r𝐼 ,u𝐼). (18)

This then implies that, for any information symbol vector v

𝐷𝐸(𝜌, r𝐼 , û𝐼 ,v𝐼) ≤ 0 (19)

With an estimated 𝜌, if for all information symbol vectors
v ∈ 𝒮2𝑀

𝐷𝐸(𝜌, r𝐼 , û𝐼 ,v𝐼) ≤ 0 (20)

then it is obvious that the output of the minimum distance
decoder with estimated 𝜌 is the same as the output of the
minimum distance decoder with perfect knowledge of 𝜌. If
(20) holds for all information symbol vectors v ∈ 𝒮2𝑀 , then
along with (19), it follows that

𝐷𝐸(𝜌, r𝐼 , û𝐼 ,v𝐼)𝐷𝐸(𝜌, r𝐼 , û𝐼 ,v𝐼) ≥ 0 (21)

for all information symbol vectors v ∈ 𝒮2𝑀 . Since û𝐼 could
be any information symbol vector in 𝒮2𝑀 , it is easy to see that
the output of the minimum distance decoder with estimated 𝜌
would be the same as that with perfect knowledge of 𝜌 if

𝐷𝐸(𝜌, r𝐼 ,u𝐼 ,v𝐼)𝐷𝐸(𝜌, r𝐼 ,u𝐼 ,v𝐼) ≥ 0 (22)

for all possible received vector r (finitely many due to receiver
quantization) and all possible information symbol vectors u
and v. We formally prove this observation in the following
theorem.

Theorem 5.1: For a given realization of 𝜌, and estimated
𝜌, if (22) is satisfied for all possible received vector r and all
possible information symbol vectors u and v, then 𝜌 is an
optimal estimate of 𝜌.

Proof: See Appendix C in [11]. ■
We now analyze the condition set-forth in Theorem 5.1

regarding the optimal estimate of 𝜌. With each information
symbol belonging to 𝑀2-QAM, and 𝑏 = ⌈2 log2(𝑀)⌉ we
make the following definitions

𝒟𝑀
Δ
=

{ (𝑎1 − 𝑎2)

2𝑏 − 1
∣ 𝑎1, 𝑎2 ∈ 𝒮𝑀2

}
,

𝒟2
𝑀

Δ
=

{
𝑎2 ∣ 𝑎 ∈ 𝒟𝑀

}
,

𝒬𝑀
Δ
=

{ (𝑎1 − 𝑎2)

(𝑎3 − 𝑎4)
∣ 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝒟2

𝑀 , 𝑎3 ∕= 𝑎4

}
,

𝒬+
𝑀

Δ
=

{
𝑎 ∣ 𝑎 ∈ 𝒬𝑀 , 𝑎 ≥ 0

}
(23)

where 𝒮𝑀2 is the 𝑀2-PAM signal set (see Section II for
PAM set definition). It is also noted that 𝒮𝑀2 is not the
same as 𝒮2𝑀 . As an example, with 𝑀 = 2 and 𝑏 =
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Fig. 6. The intervals induced by the set 𝒬+
𝑀 for 𝑀 = 2. ML intervals for

the proposed 𝜌-training and estimation schemes.

⌈2 log2(𝑀)⌉ = 2, 𝒮𝑀2 = {−3,−1, 1, 3} and 𝒟𝑀 =
{−2,−4/3,−2/3, 0, 2/3, 4/3, 2}.

Essentially, 𝒟𝑀 represents the difference set for the 𝑀2-
PAM signal set 𝒮𝑀2 , normalized by the maximum amplitude
𝑀2 − 1. 𝒟2

𝑀 contains the squared elements of 𝒟𝑀 . Due to
squaring, the elements in 𝒟2

𝑀 are no more equally spaced, and
are more densely distributed near the origin than farther away.
We then consider the difference set for 𝒟2

𝑀 . The quotient set
of this difference set is denoted by 𝒬𝑀 . 𝒬+

𝑀 is simply the
set of non-negative elements of 𝒬𝑀 . Since, the distribution
of elements in 𝒟2

𝑀 is denser near the origin, the quotient set
𝒬+

𝑀 is also denser near the origin. As we shall see later, this
property of the set 𝒬+

𝑀 will be exploited to design short length
𝜌-training sequences, which result in near-optimal estimates of
𝜌. An example of this set is shown in Fig. 6 for 𝑀 = 2. Based
on Theorem 5.1, the next theorem gives a useful sufficiency
condition for the optimality of an estimate of 𝜌.

Theorem 5.2: Consider a rotated 𝑀2-QAM constellation
matched to the quantizer. Let 𝜌 be an estimate of 𝜌 satisfying
the following condition

∀ 𝑙 ∈ 𝒬+
𝑀 : 𝜌2 ≤ 𝑙 ⇒ 𝜌2 ≤ 𝑙

∀ 𝑙 ∈ 𝒬+
𝑀 : 𝜌2 ≥ 𝑙 ⇒ 𝜌2 ≥ 𝑙 (24)

Then, 𝜌 is an optimal estimate of 𝜌.
Proof : See Appendix D in [11]. ■
Let 𝒬+

𝑀 = {0, 𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝐿𝑀 }, with 0 < 𝑞1 < 𝑞2 < ⋅ ⋅ ⋅ <
𝑞𝐿𝑀 . It is clear that the elements of the set 𝒬+

𝑀 partition the
positive real line [0,∞) into (𝐿𝑀 + 1) intervals with [0, 𝑞1)
and [𝑞𝐿𝑀 ,∞) being the first and the last interval respectively.
The 𝑘-th intermediate interval is given by [𝑞𝑘−1, 𝑞𝑘), 𝑘 =
2, 3, ⋅ ⋅ ⋅ , 𝐿𝑀 . For any finite set 𝒮 = {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛} with
0 ≤ 𝑠1 < 𝑠2 < ⋅ ⋅ ⋅ < 𝑠𝑛, let ℐ(𝒮) be the set of intervals
induced by the set 𝒮. That is

ℐ(𝒮) =
{

[𝑠1, 𝑠2) , [𝑠2, 𝑠3) , ⋅ ⋅ ⋅ , [𝑠𝑛,∞)
}

(25)

The sufficiency condition in (24) can now be understood in

terms of the (𝐿𝑀 +1) intervals of the positive real line induced
by the set 𝒬+

𝑀 . The sufficiency condition basically states that,
for an estimate of 𝜌 to be optimal, it must belong to the same
interval of ℐ(𝒬+

𝑀 ) in which 𝜌 lies. This therefore also implies
that, for an estimate 𝜌 to be optimal it is not necessary that 𝜌
be exactly equal to 𝜌.

B. Receiver control for estimating 𝜌

In this section, we discuss receiver control techniques
required for estimating 𝜌. In the proposed rotation coding
scheme, coding is performed across 𝑛 = 2 channel realiza-
tions. Using a 2-dimensional rotation matrix G, a pair of
information symbols is transformed into a pair of coded output
symbols. The first coded symbol in the pair is transmitted dur-
ing channel realization 1 (with channel gain ∣ℎ1∣), whereas the
second coded symbol is transmitted during channel realization
2 (with channel gain ∣ℎ2∣). For both channel realizations, the
preamble sequence used for tuning the VGA gain is the same
as discussed in Section II. However, for channel realization
2, even before transmitting this preamble sequence, a known
𝜌-training sequence is transmitted for estimating 𝜌. During
the transmission of the 𝜌-training sequence the analog gains
𝑔𝐴𝐹𝐸 and 𝑔𝑉 𝐺𝐴 are set to the values programmed during
the transmission of coded information symbols in channel
realization 1, and therefore

𝑔
𝑉 𝐺𝐴

𝑔
𝐴𝐹𝐸

=
1

∣ℎ1∣𝑋 . (26)

The 𝜌-training sequence is a sequence of 𝑙 distinct positive
valued symbols with each symbol being repeated multiple
times to average out the effect of receiver noise 9. Subse-
quently, we shall denote an arbitrary 𝜌-training sequence by 𝒯 .
Let the 𝑘-th training symbol be given by 𝑐𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙.
The 𝑙 corresponding inputs to the sample and hold circuit are
given by

𝑠𝑘 = 𝑔𝐴𝐹𝐸𝑔𝑉 𝐺𝐴 ∣ℎ2∣𝑐𝑘 , 𝑘 = 1, 2, ⋅ ⋅ ⋅ 𝑙 (27)

Using (26) in (27), the sample and hold, and quantizer outputs
during the transmission of the 𝜌-training sequence in channel
realization 2 are given by

𝑠𝑘 =
∣ℎ2∣𝑐𝑘

∣ℎ1∣𝑋 = 𝜌
𝑐𝑘

𝑋
,

𝑟𝑘 = 𝑄𝑏

(
𝑠𝑘

)
= 𝑄𝑏

(
𝜌
𝑐𝑘

𝑋

)
, 𝑘 = 1, 2, . . . 𝑙. (28)

In channel realization 2, after all the 𝜌-training symbols are
transmitted, the receiver estimates 𝜌 based on the 𝑙 observa-
tions {𝑟𝑘, 𝑘 = 1, 2 ⋅ ⋅ ⋅ , 𝑙}.

C. Estimation of 𝜌

The 𝑙 discrete outputs of the ADC ({𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙}) can be
used to estimate 𝜌 as follows. Given the 𝑙 discrete outputs, the
maximum likelihood estimate (MLE) of 𝜌 is given by

𝜌𝑀𝐿 = arg max
𝜌>0

𝑃 (𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙∣𝜌, {𝑐𝑘}, 𝑙) (29)

9At the receiver, depending upon the repetition factor of the 𝜌-training
symbols, the cut-off frequency of the LPF is appropriately reduced, which
helps in noise reduction.
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where 𝑃 (𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙∣𝜌, {𝑐𝑘}, 𝑙) is the probability that the 𝑙
outputs take the values {𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙} for a given channel gain
ratio 𝜌, and the 𝜌-training sequence {𝑐𝑘}. For the 𝑘-th training
symbol 𝑐𝑘, since 𝑟𝑘 = 𝑄𝑏(𝜌𝑐𝑘/𝑋), from (5) it must be true
that

𝑟𝑘 − 1
2𝑏−1

𝑐𝑘/𝑋
≤ 𝜌 <

𝑟𝑘 + 1
2𝑏−1

𝑐𝑘/𝑋
, if 𝑟𝑘 < 1 (30)

1− 1
2𝑏−1

𝑐𝑘/𝑋
≤ 𝜌 <∞ , if 𝑟𝑘 = 1

The inequality in (30) defines an interval of the positive real
line, which we shall denote by ℒ𝑘 , 𝑘 = 1, 2, . . . , 𝑙. Therefore
the 𝑙 outputs would be {𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙} if and only if 𝜌 ∈ ℒ,

where ℒ Δ
= ∩𝑙

𝑘=1ℒ𝑘. Further, we would call ℒ as the “ML
interval” corresponding to the training sequence {𝑐𝑘} and the 𝑙
outputs {𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙}. Also, given the 𝑙 outputs, all the values

of 𝜌 in the interval ℒ are equally probable. Let ℒ𝑠𝑢𝑝
Δ
= supℒ,

and ℒ𝑖𝑛𝑓
Δ
= infℒ, denote the supremum and infimum of the

interval ℒ. One possible ML estimate of 𝜌, that we propose,
is then given by

𝜌 =

{ ℒ𝑠𝑢𝑝+ℒ𝑖𝑛𝑓

2 ℒ𝑠𝑢𝑝 <∞
ℒ𝑖𝑛𝑓 otherwise.

(31)

For a given 𝜌-training sequence 𝒯 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑙}, and
a set of corresponding outputs ℛ = {𝑟1, 𝑟2, ⋅ ⋅ ⋅ 𝑟𝑙}, let
ℒ(𝒯 ,ℛ) ⊂ ℝ

+ denote the ML interval.
As an example, let us consider a 𝑏=2-bit quantizer, and

a training sequence {𝑐𝑘} = {𝑋/4, 𝑋/2, 𝑋, 2𝑋, 4𝑋}. Let the
𝑙 = 5 corresponding output symbols of the quantizer be {𝑟1 =
1/3, 𝑟2 = 1/3, 𝑟3 = 1, 𝑟4 = 1, 𝑟5 = 1}. The intervals ℒ𝑘

corresponding to these 5 outputs are

ℒ1 : 0 ≤ 𝜌

4
<

2

3
, ℒ2 : 0 ≤ 𝜌

2
<

2

3
, ℒ3 :

2

3
≤ 𝜌 <∞ ,

ℒ4 :
2

3
≤ 2𝜌 <∞ , ℒ5 :

2

3
≤ 4𝜌 <∞. (32)

The ML interval ℒ({𝑋/4, 𝑋/2, 𝑋, 2𝑋, 4𝑋},
{1/3, 1/3, 1, 1, 1}) = [2/3 , 4/3) and hence 𝜌 = 1.

For a 𝑏-bit quantizer and some fixed 𝜌-training sequence
𝒯 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑙} of 𝑙 training symbols, it is clear that
for each value of 𝜌 ∈ [0,∞), there is a corresponding output
sequence ℛ(𝜌, 𝒯 ) = {𝑟𝑘 = 𝑄𝑏(𝜌

𝑐𝑘
𝑋 ) , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙}. We

shall refer to each such possible output sequence as a feasible
output sequence for the given training sequence. Note that
even though the range of values of 𝜌 is infinite, the number
of distinct feasible output sequences is finite due to the finite
length of the 𝜌-training sequence and the finite number (2𝑏)
of quantizer levels for a 𝑏-bit uniform quantizer. Further, for
each feasible output sequence ℛ′, there exists an ML interval
ℒ(𝒯 ,ℛ′) 10.

Given a fixed 𝜌-training sequence 𝒯 , since 𝜌 is always
between the supremum and the infimum of the interval
ℒ(𝒯 ,ℛ(𝜌, 𝒯 )), it follows that both 𝜌 and the proposed ML
estimate 𝜌 lie in the ML interval ℒ(𝒯 ,ℛ(𝜌, 𝒯 )). In addition to
this, if the ML interval corresponding to each feasible output
sequence is a subset of some interval induced by the set 𝒬+

𝑀 ,

10For more interesting properties of ML intervals please refer to Section
V in [11].

then for any 𝑙 ∈ 𝒬+
𝑀 it follows that if 𝑙 is greater than 𝜌

then it is also greater than 𝜌, and similarly if 𝑙 is smaller
than 𝜌 then it is also smaller than 𝜌. However this is precisely
the sufficiency condition in Theorem 5.2. We can therefore
conclude that with the proposed 𝜌 estimation technique (see
(31)), a training sequence 𝒯 results in an optimal estimate of
𝜌, if 𝒯 satisfies the following conditions.

∀ 0 ≤ 𝜌 <∞ : ℒ(𝒯 ,ℛ(𝜌, 𝒯 )) ⊆ 𝐼 , for some 𝐼 ∈ ℐ(𝒬+
𝑀 ).

(33)

We next design optimal and near-optimal 𝜌-training sequences
based on the criterion in (33).

D. Design of 𝜌-training sequence for estimating 𝜌

We first show that with 𝑀 = 2 and a 𝑏 = 2-bit uniform
quantizer it is possible to design a 𝜌-training sequence which
satisfies (33) and is therefore optimal.

Theorem 5.3: Consider a rotated constellation matched
to the quantizer. Let 𝑀 = 2, 𝑏 = 2 and 𝒬+

𝑀 =
{0, 𝑞1, 𝑞2, ⋅ ⋅ ⋅ 𝑞𝐿𝑀 }, 0 < 𝑞1 < 𝑞2 < ⋅ ⋅ ⋅ < 𝑞𝐿𝑀 . The following
𝜌-training sequence {𝑐𝑘} of length 𝐿𝑀 with the proposed ML
estimator (Section V-C) results in an optimal estimate of 𝜌.

𝑐𝑘 =
2

3

𝑋

𝑞
𝐿
𝑀

−𝑘+1

, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿𝑀 . (34)

Proof: See Appendix E in [11]. ■
For a general 𝑀 > 2, it is challenging to design an optimal

𝜌-training sequence which satisfies the sufficiency condition
in Theorem 5.2. Further, we conjecture that, just as with
𝑀 = 2, for any 𝑀 > 2 also, the length of optimal 𝜌-training
sequences based on Theorem 5.2 would be proportional to
𝐿𝑀 = ∣𝒬+

𝑀 ∣. However, the cardinality of 𝒬+
𝑀 is a rapidly

increasing function of 𝑀 (e.g., ∣𝒬+
2 ∣ = 29, and ∣𝒬+

4 ∣ = 3939),
which then implies that with increasing 𝑀 a significant
amount of communication bandwidth would be used up in the
transmission of the 𝜌-training sequence, resulting in reduced
overall throughput. Therefore, it is of practical interest to
design 𝜌-training sequences which are short in length and
which can still achieve an error performance comparable to
that achieved with optimal 𝜌-training sequences.

Towards designing such practical sequences, we observe
that the average error performance would be sensitive to the
amount of overlap between the ML intervals induced11 by
the 𝜌-training sequence and the intervals induced by 𝒬+

𝑀 .
With short 𝜌-training sequences, the ML intervals induced by
the 𝜌-training sequence would not coincide exactly with the
intervals induced by 𝒬+

𝑀 . Nevertheless, it may be possible to
design short 𝜌-training sequences for which some of the ML
intervals belong to ℐ(𝒬+

𝑀 ). With short 𝜌-training sequences,
any interval in ℐ(𝒬+

𝑀 ), which is exactly the same as some ML
interval induced by the 𝜌-training sequence, shall be referred
to as “covered” by that 𝜌-training sequence.

From Fig. 6, we try to gain more insights into the problem
of designing shorter length 𝜌-training sequences for 𝑀 = 2.
We observe that the density of the intervals induced by 𝒬+

𝑀

(depicted with cross ‘X’ marks on the horizontal axis) is

11These are basically the ML intervals corresponding to all feasible output
sequences for the given 𝜌-training sequence.
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much higher near the origin than farther away. Furthermore,
from the p.d.f. of 𝜌 = ∣ℎ2∣/∣ℎ1∣, we observe that most of
the probability mass is distributed near the origin12. Based on
these observations and the sufficiency conditions in Theorem
5.2, it can be argued that, to have an error performance
comparable to that of an optimal 𝜌-training sequence, any
short 𝜌-training sequence should aim to “cover” the intervals
of ℐ(𝒬+

𝑀 ) which are closer to the origin. This reasoning is
supported by two facts. Firstly, with i.i.d. channels gains ∣ℎ1∣
and ∣ℎ2∣, the probability of 𝜌 taking large values is small,
and hence the estimation error (𝜌 − 𝜌) for large values of
𝜌 is expected to have less contribution to the average error
probability than smaller values of 𝜌. Secondly, when 𝜌 ≫ 1,
any error in the estimation of 𝜌 is likely to have a lesser
impact on the error performance compared to when 𝜌 < 1.
To see this, we note that for 𝜌≫ 1, the ML estimate for any
𝜌-training sequence would be the infimum value of the ML
interval corresponding to the all ones output sequence which
would also be large i.e., 𝜌≫ 1. Therefore for any two transmit
vectors x = (𝑥1, 𝑥2)𝑇 = Gu and y = (𝑦1, 𝑦2)𝑇 = Gv,
𝐷𝐸(𝜌, r𝐼 ,u𝐼 ,v𝐼)𝐷𝐸(𝜌, r𝐼 ,u𝐼 ,v𝐼) ≈ 𝜌2𝜌2𝑑22 > 0, where
𝑑2 = (𝑟𝐼

2 − 𝑥𝐼
2/𝑋)2 − (𝑟𝐼

2 − 𝑦𝐼
2/𝑋)2. Using Theorem 5.1,

this then implies that, with high probability, the output of the
minimum distance decoder with estimated 𝜌 is the same as its
output with perfect knowledge of 𝜌.

Therefore, any short 𝜌-training sequence should aim to
“cover” the intervals of ℐ(𝒬+

𝑀 ) which are closer to the
origin. With 𝑀 = 2, in Fig. 6 a short 𝜌-training sequence
of length 𝑙 < 𝐿𝑀 is designed in a way to “cover” only
the intervals of ℐ(𝒬+

𝑀 ) which are closer to origin. This is
done by non-uniformly sampling13 out 𝑙 distinct elements
of the set 𝒬+

𝑀 , such that the intervals induced by these 𝑙
elements coincide with most of the intervals of ℐ(𝒬+

𝑀 ) which
are near to origin. Let us denote this set of 𝑙 elements as
𝒬+

(𝑀,𝑙). The corresponding short 𝜌-training sequence which
has ML intervals coinciding exactly with the intervals induced
by 𝒬+

(𝑀,𝑙) is then given by (34), where the set 𝒬+
𝑀 is replaced

by the set 𝒬+
(𝑀,𝑙) and 𝐿𝑀 is replaced by 𝑙. In Fig. 6, for

𝑙 = 9, the elements of one such 𝒬+
(𝑀,𝑙) are depicted through

‘triangles’. Short 𝜌-training sequences which achieve an error
performance close to that achieved with optimal 𝜌-training
sequences, would be subsequently referred to as ‘good’ 𝜌-
training sequences.

Even though ‘non-uniform’ sampling of 𝒬+
𝑀 is one pos-

sible method for designing ‘good’ 𝜌-training sequences, with
increasing 𝑀 , the number of ways in which ‘non-uniform’
sampling can be done, would also increase rapidly, thereby
increasing the complexity of finding ‘good’ 𝜌-training se-
quences. Therefore for large 𝑀 , a simpler strategy is required
to search for ‘good’ 𝜌-training sequences. We next present
a very simple and parameterizable short 𝜌-training sequence
design, which has been observed to result in ‘good’ 𝜌-
training sequences. The 𝑘-th symbol of the proposed 𝜌-training

12In fact, for any other fading distribution also, it can be shown that 𝑃 (𝜌 <
1) = 𝑃 (𝜌 > 1) = 1/2.

13We use the word “non-uniform” since the sampling is biased towards
choosing more elements which are closer to the origin.
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Rotated 16−QAM

Fig. 7. BER vs. SNR for a quantized receiver. 𝑏 = 4, 16-QAM and perfect
channel state information at receiver.

sequence is given by

𝑐𝑘 = 𝑋𝑑(𝑘−
𝑙+1
2 ) , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 (35)

where 𝑙 is the length of the training sequence, and 𝑑 > 1 is
the ratio between the consecutive 𝜌-training symbols. Let us
denote this 𝜌-training sequence by 𝒯𝑑. This design is based on
the observation that for many ‘non-uniformly’ sampled subsets
𝒬+

(𝑀,𝑙) ⊂ 𝒬+
𝑀 , it is possible to find a value of 𝑑, such that

a 𝜌-training sequence designed using (35), would have ML
intervals “almost” same as the ML intervals of the 𝜌-training
sequence designed using the ‘non-uniformly’ sampled subset.
That is, for many non-uniformly sampled subsets 𝒬+

(𝑀,𝑙), for
any 𝜌 > 0, there exists some 𝑑 > 1 and some 𝜖 close to zero,
such that

∣ℒ(𝒯𝑑,ℛ(𝜌, 𝒯𝑑)) ∩ ℒ(𝒯 ′,ℛ(𝜌,𝒯 ′))𝑐∣ ≤ 𝜖∣ℒ(𝒯 ′,ℛ(𝜌, 𝒯 ′))∣
(36)

where 𝒯 ′ refers to the 𝜌-training sequence designed using
𝒬+

(𝑀,𝑙) ⊂ 𝒬+
𝑀 .14’15

VI. SIMULATION RESULTS

All error probabilities reported in this section have been
averaged over the Rayleigh flat fading statistics of the channel.

14For any real interval 𝐼 , ∣𝐼∣ Δ
= (sup 𝐼 − inf 𝐼) refers to the length of the

interval and 𝐼𝑐 refers to the complementary set ℝ− 𝐼 (i.e., all real numbers
which do not belong to 𝐼).

15 For 𝑀 = 2, this fact is illustrated through Fig. 6, where for the given
‘non-uniformly’ sampled subset of 𝒬+

𝑀 , i.e., 𝒬+
(𝑀,𝑙)

(shown with triangles), a
𝜌-training sequence designed using (35) has ML intervals (shown with circles)
almost coinciding with the intervals induced by 𝒬+

(𝑀,𝑙)
. For a given 𝑀 and

𝑙, the optimal 𝑑 can be found at reasonable complexity, by minimizing the
average error probability (as a function of 𝑑) using Monte-Carlo techniques.
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Fig. 8. BER comparison between quantized and unquantized receivers. 4-
,16-,64-QAM. Perfect channel state information at receiver.

In Fig. 7, we plot the average bit error rate/probability (BER),
for rotated 16-QAM constellation (𝑀 = 4) and a 𝑏 = 4-bit
quantized receiver with perfect channel state information. The
following four important observations can be made in Fig. 7:
i) with 𝜃 = 1/2 tan−1(2) (which is known to achieve full
modulation diversity in an unquantized receiver, but does not
satisfy Criterion II), the BER performance with a quantized
receiver fails to achieve full diversity (note the difference in
slope at high SNR), which validates Criterion II, ii) with
𝜃 = tan−1(1/4), which results in equidistant projections,
the quantized receiver achieves full modulation diversity with
𝑏 = 4. Further, the quantized receiver performs only 1 dB
away from an ideal unquantized receiver at a BER of 10−4,
iii) with a quantized receiver a rotation angle of 𝜃 = 16∘

also appears to achieve full modulation diversity, but performs
poor when compared to a matched rotated constellation with
𝜃 = tan−1(1/4). This supports Criterion III, and iv) it is
also observed that with 16-QAM rotated constellation (𝜃 =
tan−1(1/4)), the error performance floors with 𝑏 = 3 < 4
quantization bits, which validates Criterion I.

It was discussed in Section IV, that with increasing QAM
size, a quantized receiver would be increasingly less power
efficient when compared to an unquantized receiver. This
fact is illustrated in Fig. 8, where the BER performance
of both unquantized receiver with 𝜃 = 1/2 tan−1(2) and
quantized receiver with 𝜃 = tan−1(1/𝑀) are plotted for
𝑀2 = 4−, 16− and 64-QAM, 𝑏 = ⌈2 log2(𝑀)⌉ and perfect
channel knowledge at the receiver. To achieve a fixed BER of
2 × 10−4, with increasing QAM size, the increase in signal
power required by a quantized receiver is more than that for
an unquantized receiver.

In Fig. 9, the BER performance with minimum distance
decoding and imperfect receiver knowledge of 𝜌, is plotted as
a function of 𝛾 for 𝑀 = 2, 𝜃 = tan−1(1/2) and 𝑏 = 2. Firstly
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[2] :  ρ estimate = 1
[3] :  ρ estimate − MLE, Optimal { c

k
 } Thm. 5.3 

[4] :  ρ estimate − MLE, Non Uniformly sampled { q
k
 }

[5] :  ρ estimate − MLE, Uniformly sampled { q
k
 }

[6] :  ρ estimate − MLE, c
k
/X = d(k − (l+1)/2),  d = 1.57

Rayleigh Fading,  4−QAM  b=2
θ = tan−1(1/2)
[4],[5],[6] : ρ−training sequence
length, l = 9

[1],[3],[4] and ;[6]
have similar BER performance.

Fig. 9. BER performance with a quantized receiver (𝑏 = 2) and imperfect
receiver knowledge of 𝜌. Rotated 4-QAM (𝑀 = 2).

we note that, for a matched rotated constellation, the error
probability performance with 𝜌 being any arbitrary positive
valued estimate of 𝜌, does not have error floors. This is
because, in the absence of noise (i.e., 𝛾 = ∞), when a
certain information symbol vector v is transmitted and r is
the quantized output, the detection metric of some information
symbol vector u (i.e., 𝑚(𝜌, r𝐼 ,u𝐼) and 𝑚(𝜌, r𝑄,u𝑄) ) is
equal to zero only for u = v, and is positive for all other
possible information symbol vectors. Therefore, the detector
output û is the same as the transmitted vector v, resulting in
zero probability of error. This argument is supported by the
fact that in Fig. 9, a fixed estimate of 𝜌 = 1, has no floors in
its BER performance.

In Fig. 9 we also observe that the BER performance
of the optimal 𝜌-training sequence designed using Theo-
rem 5.3 is same as the BER achieved with perfect knowl-
edge of 𝜌. Further, a short (𝑙 = 9) ‘non-uniform’ sam-
pling based 𝜌-training sequence designed with 𝒬+

(𝑀,𝑙) =

{1/9, 1/5, 1/4, 4/9, 5/8, 1, 5/3, 8/3, 4} ⊂ 𝒬+
𝑀 achieves a

BER close to that achieved by the optimal 𝜌-training se-
quence designed using Theorem 5.3 (compare curves 3
and 4). Also, the BER performance of a ‘uniform’ sam-
pling based 𝜌-training sequence design with 𝒬+

(𝑀,𝑙) =

{1/9, 8/9, 8/5, 9/4, 3, 4, 5, 8, 9} (the induced intervals are al-
most uniformly distributed) is inferior to the BER performance
achieved by the ‘non-uniform’ sampling based design (com-
pare curves 4 and 5). Finally, it is observed that, the BER
achieved with the 𝜌-training sequence designed using (35)
(with 𝑑 = 1.57, 𝑙 = 9) is similar to the BER achieved with
perfect knowledge of 𝜌 (compare curves 1 and 6).

For higher order rotated 𝑀2-QAM, we proposed ‘good’
𝜌-training sequences which are short and have near-optimal
performance. We support this fact through Fig. 10, where we
plot the BER performance for a rotated 16-QAM constellation
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[3] : Quant. Receiver b=4, ρ estimate = 1

[4] : Quant. Receiver b=4, ML ρ estimate
        with training seq. c

k
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Rayleigh fading, 16−QAM (M = 4),

θ = tan−1(1/4)

[2] and [4] have similar BER performance.

Fig. 10. BER performance with a quantized receiver (𝑏 = 4) and imperfect
receiver knowledge of 𝜌. Rotated 16-QAM (𝑀 = 4).

(𝜃 = tan−1(1/4)), with a quantized receiver (𝑏 = 4) and
minimum distance decoding at the receiver with imperfect
knowledge of 𝜌. An estimate of 𝜌 is computed based on the
proposed ML estimation scheme discussed in Section V-C.
The 𝜌-training sequence used for estimation is the same 𝜌-
training sequence used in simulation curve 6 of Fig. 9. From
curve 4 in Fig. 10, it is observed that with a short 𝜌-training
sequence of only 9 symbols, it is possible to achieve a BER
performance comparable to the BER performance achieved
with perfect knowledge of 𝜌 (curve 2). This is interesting since
the same 𝜌-training sequence was also observed to be near-
optimal with 𝑀 = 2, 𝑏 = 2 in Fig. 9. It therefore appears
that the length of near-optimal/‘good’ 𝜌-training sequences
does not increase significantly with increasing QAM size. One
possible reason for this could be that with increasing QAM
size, the quantizer resolution 𝑏 also increases, which makes
the estimate of 𝜌 more reliable.

VII. CONCLUSIONS

In this paper, we addressed the problem of achieving full
modulation diversity in fading channels with quantized re-
ceiver. For 2-dimensional modulation coding, through analysis
we showed that in quantized receivers with perfect channel
knowledge, algebraic rotations with equidistant projections
can achieve full modulation diversity even with a low com-
plexity minimum distance decoder. We then relaxed the perfect
channel knowledge assumption, and proposed novel channel
training/estimation, which were shown to achieve an error
probability performance similar to that achieved with perfect
channel knowledge.
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