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Abstract—The Golden space-time trellis coded modulation
(GST-TCM) scheme was proposed in [1] for a high rate 2 × 2
multiple-input multiple-output (MIMO) system over slow fading
channels. In this letter, we present the performance analysis of
GST-TCM over block fading channels, where the channel matrix
is constant over a fraction of the codeword length and varies
from one fraction to another, independently. In practice, it is
not useful to design such codes for specific block fading channel
parameters and a robust solution is preferable. We then show
both analytically and by simulation that the GST-TCM designed
for slow fading channels are indeed robust to all block fading
channel conditions.

Index Terms—Golden code, Golden space-time trellis coded
modulation, union bound, block fading.

I. INTRODUCTION

THE Golden code was proposed in [2] as a full rate and
full diversity code for 2×2 multiple-input multiple-output

(MIMO) systems with non-vanishing minimum determinant
(NVD). It was shown in [3] how this property guarantees to
achieve the diversity-multiplexing gain trade-off. In order to
enhance the coding gain, a first attempt to concatenate the
Golden code with an outer trellis code was made in [4].
However, the resulting ad hoc scheme suffered from a high
trellis complexity.

In [1], a Golden space-time trellis coded modulation (GST-
TCM) scheme was designed for slow fading channels. The
NVD property of the inner Golden code is essential for a
TCM scheme. This property guarantees that the code will not
suffer from a reduction of the minimum determinant, when a
constellation expansion is required [2]. The systematic design
proposed in [1], is based on set partitioning of the Golden
code in order to increase the minimum determinant. An outer
trellis code is then used to increase the Hamming distance
between the codewords. The Viterbi algorithm is applied for
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trellis decoding, where the branch metrics are computed with
a lattice sphere decoder [7, 8] for the inner Golden code.

In this letter, we analyze performance of the GST-TCM
scheme in block fading channels [5]. The block fading chan-
nel is a simple and powerful model to describe a variety
of wireless fading channels ranging from fast to slow. For
example, in OFDM based systems over frequency selective
fading channels it can model various channel delay profiles.
In particular, low delay spread channels correspond to small
frequency selectivity, i.e., many adjacent subcarriers experi-
ence similar fading coefficients. On the contrary, channels with
long delays profiles correspond to large frequency selectivity,
i.e., the fading coefficients vary significantly among adjacent
subcarriers.

In practice, it is not useful to design a GST-TCM for
specific block fading channel parameters and a robust solution
is preferable. We therefore analyze the performance of known
GST-TCM, designed for slow fading, over arbitrary block
fading channels. The impact of the block fading channel on the
code performance is estimated analytically using a two-term
truncated union bound (UB). We finally show both analytically
and by simulation that the GST-TCM designed for slow fading
channels are indeed robust to various block fading channel
conditions.

The rest of the letter is organized as follows. Section II
introduces the system model for block fading channels. Sec-
tion III presents an analytic performance estimation of linear
STBCs over block fading channels. In Section IV we spe-
cialize the result for GST-TCM designed for slow fading.
Section V shows simulation results. Conclusions are drawn
in Section VI.

Notations: Let T denote transpose and † denote Hermitian
transpose. Let Z, C and Z[i] denote the ring of rational inte-
gers, the field of complex numbers, and the ring of Gaussian
integers, respectively, where i2 = −1. Let �x� denote the
smallest integer greater or equal to x. The operator (̄·) denotes
the algebraic conjugation in a quadratic algebraic number field
[2].

II. SYSTEM MODEL

Let us first consider a 2×2 MIMO system (nT = 2 transmit
and nR = 2 receive antennas) over a slow fading channel
using the Golden code G. A 2×2 Golden codeword X ∈ G is
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transmitted over two channel uses, where the channel matrix
H is constant and

Y = HX + Z (1)

is received, where Z is a complex white Gaussian noise 2×2
matrix. The Golden codeword X ∈ G is defined as [2]

X � 1√
5

[
α (a + bθ) α (c + dθ)
iᾱ

(
c + dθ̄

)
ᾱ

(
a + bθ̄

) ]
(2)

where a, b, c, d ∈ Z[i] are the information symbols, θ �
1− θ̄ = 1+

√
5

2 , α � 1+ iθ̄, ᾱ � 1+ iθ, and the factor 1/
√

5 is
used to normalize energy [2]. As information symbols, Q-
QAM constellations are used, where Q = 2η. The QAM
constellation is assumed to be scaled to match Z[i]+(1+i)/2.

In this letter we will consider linear codes of length L over
an alphabet G in a block fading channel, i.e., the transmit-
ted codewords are given by X = (X1, . . . , Xt, . . . , XL) ∈
C2×2L:

• if the elements Xt ∈ G are selected independently, we
have the uncoded Golden code;

• if a trellis outer code is used to constrain the Xt’s, we
have a GST-TCM [1].

Let Z = (Z1, . . . , Zt, . . . , ZL) ∈ C2×2L denote a complex
white Gaussian noise matrix with i.i.d. samples distributed as
NC(0, N0), where Zt are the complex white Gaussian noise
2×2 matrices. At the receiver, we have the following received
signal matrix

Y = (Y1, . . . , Yt, . . . , YL) ∈ C
2×2L

where Yt is given by

Yt = HtXt + Zt t = 1, . . . , L (3)

where Ht are assumed to be i.i.d. circularly symmetric Gaus-
sian random variables ∼ NC(0, 1).

In a block fading channel, the matrices Ht ∈ C2×2 are
assumed to be constant in a block of N consecutive alphabet
symbols in G (i.e., 2N channel uses) and vary independently
from one block to another, i.e.,

HkN+1 = · · · = H(k+1)N for k = 0, . . . , L/N − 1

where we assume for convenience that N divides L. This
implies that the number of blocks within a codeword experi-
encing independent fading is B = L/N . For N = L (B = 1)
we have a slow fading channel and for N = 1 (B = L) a fast
fading channel. In this letter, we assume that the channel is
known at the receiver but not at the transmitter.

III. PERFORMANCE OF LINEAR STBC OVER BLOCK

FADING CHANNELS

In this section we analyze performance of linear STBC
over block fading channels. In the following we will make
the analysis specific to the GST-TCM.

Assuming that a codeword X is transmitted over a slow
fading channel (N = L), the maximum-likelihood receiver
might decide erroneously in favor of another codeword X̂,
resulting in a pairwise error event. Let r denote the rank of
the codeword difference matrix X − X̂. Let λj , j = 1, . . . , r,
be the non-zero eigenvalues of the codeword distance matrix

A = (X−X̂)(X−X̂)†. The pairwise error probability (PEP)
depends on the determinant det(A) for full rank codes (r = 2)
[6].

The UB gives an upper bound to the performance of the
STBC, while a truncated UB gives an asymptotic approxima-
tion [9]. The dominant term in the UB is the PEP that depends
on the minimum determinant of the codeword distance matrix

Δ(s)
min = min

X�=X̂
det (A)

where the superscript s denotes the slow fading case. The
traditional code design criterion for space-time codes in [6] is
based on the minimization of the dominant term in the UB,
which in turn depends on the diversity gain nT nR and the

coding gain
(
Δ(s)

min

) 1
nT .

In this letter, we will consider the truncated UB with two
terms

P (e) ≈ Ns1P1 + Ns2P2 (4)

where the Pi, i = 1, 2, are the two largest PEPs of the two
dominating events depending on and Nsi the corresponding
multiplicities. We assume that P1 depends on Δ1 = Δ(s)

min and
P2 depends on Δ2 the second smallest value of det (A).

Since we focus on full rank (i.e., r = nT = 2 for all A)
and linear (i.e., the sum of any two codewords is a codeword)
codes, we can simply consider the PEP from the all-zero
transmitted codeword matrix.

Let us now consider a block fading channel, where Ht is
constant for 2N channel uses and changes independently in
the B = L/N blocks. For a given codeword X, we define the
matrices

F� �
�N∑

t=(�−1)N+1

XtX
†
t � = 1, . . . , B (5)

Following [6], it can be easily shown that the dominanting
term in the UB will be driven by the quantity

Δ(b)
min � min

det(F�) �=0

B∏
�=1

det(F�) (6)

where the superscript b denotes the block fading case. The
above performance metric Δ(b)

min could hard to exploit, due to
the non-additive nature of the determinant metric in (6). Since
XtX

†
t are positive definite matrices, we resort to the following

determinant inequality [10]

det(F�) ≥
�N∑

t=(�−1)N+1

det
(
XtX

†
t

)
� a� (7)

and use the simpler lower bound:

Δ(b)
min ≥ min

a� �=0

B∏
�=1

a� � Δ(b)′

min (8)

We can see that the Δ(b)′

min is not only determined by the code
structure, but also by the block fading channel parameters B

and N . Note that Δ(b)′

min coincides with the Δ′
min defined in

[1], when B = 1 (slow fading).
Finally, we note that for a specific value of B and N the

design of a good linear STBC is clearly impractical and a
robust solution is preferable.
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Fig. 1. Enumeration of simple error events of a GST-TCM with S = 2 over a block fading channel with B = 4 and N = 4.

TABLE I
SEQUENCES OF DET(XtX

†
t ) FOR THE SIMPLE ERROR EVENTS OF THE

GST-TCMS IN FIGS. 2-5 (δ = 1/5).

S step 1 step 2 step 3 step 4
2 δ 2δ
3 2δ δ 2δ
3 4δ δ 2δ
4 4δ δ 2δ 4δ

TABLE II
SIMPLE ERROR EVENTS FOR 4, 16 STATES Z8/E8 GST-TCM, S = 2, 3
AND DIFFERENT BLOCK FADING CHANNELS (N = 1, 3, 5, 20, 40, 120).

St. N Ns1 Ns2 n1 n2 Δ
(b)′
1 Δ

(b)′
2

4 1 119 − 2 − 2δ2 −
4 3 80 39 1 2 3δ 2δ2

4 5 96 23 1 2 3δ 2δ2

4 20 114 5 1 2 3δ 2δ2

4 40 117 2 1 2 3δ 2δ2

4 120 119 − 1 − 3δ −
16 1 118 − 3 − 4δ3 −
16 3 40 78 1 2 5δ 2δ2 + 2δ
16 5 72 46 1 2 5δ 2δ2 + 2δ
16 20 108 10 1 2 5δ 2δ2 + 2δ
16 40 114 4 1 2 5δ 2δ2 + 2δ
16 120 118 − 1 − 5δ −

IV. PERFORMANCE ANALYSIS OF GST-TCM ON BLOCK

FADING CHANNELS

In this section we show the specific analysis concerning
GST-TCM [1]. The design of GST-TCM for slow fading (B =
1) was based on:

• the design of a trellis code that maximizes the number
of non-zero det(XtX

†
t ) in (7)

• the design of partitions of the Golden code with increas-
ing values of det(XtX

†
t )

In particular, the trellis design focused on the shortest simple
error event, i.e., a path diverging from the zero state and
remerging into the zero state in the trellis diagram. We will
show here how the length S of such event influences the
performance of the code over a block fading channel.

Lemma 1: A GST-TCM of length L ≥ S ≥ 2 can have
Ns = L − S + 1 shortest simple error events. �
Proof – The shortest simple error events with length S can
only start in a position {1, 2, . . . , L−S+1}, thereby we obtain
Ns = L − S + 1. �

Since the codeword spans B = L/N independent fading
blocks of length N , the simple error events will affect different
blocks depending on their starting position and length. We
obtain the following lemma.

Lemma 2: A shortest simple error event of lenght S is
either affecting

1) n1 = �S/N� consecutive blocks, or
2) n2 = n1 + 1 = �S/N� + 1 consecutive blocks. �

Proof – Depending on the starting position of the shortest
simple error event we have

• if S ≤ N then either n1 = 1, if it is fully within one
block, or n2 = 2.

• if S > N then it will either cross n1 = �S/N� or n2 =
n1 + 1 concecutive blocks.

For example, if S = 2 over a block fading channel where
B = 4 and N = 4, as shown in Fig. 1, we have some simple
error events (solid arrows), in n1 = 1 consecutive blocks and
others (dashed lines) in n2 = 2 consecutive block. �

Lemma 3: The corresponding numbers of simple error
events in Case 1 and Case 2 of the previous lemma are
respectively

Ns1 = B′ × � Ns2 = Ns − Ns1 (9)

where

B′ = B −
⌈

S

N

⌉
+ 1

� =
⌈

S

N

⌉
× N − S + 1

�
Proof – We first recall from Lemma 2 for Case 1, that a simple
error event occupies � S

N � consecutive blocks of length N .
Now, let us define a group as � S

N � consecutive blocks. Hence,
a group has length � S

N �×N and contains � =
⌈

S
N

⌉×N−S+1
distinct shortest simple error events. Since there are B′ =
B − � S

N � + 1 distict groups, we have Ns1 = B′ × � shortest
simple error events of Case 1. The other case directly derives
from the identity Ns = Ns1 + Ns2 . �

Using the same example illustrated in Fig. 1 with S = 2,
B = 4 and N = 4, it is shown that we have Ns1 = 12 simple
error events crossing n1 = 1 consecutive block (Case 1) and
Ns2 = 3 simple error events crossing n2 = 2 consecutive
blocks (Case 2).

In order to evaluate the two dominant terms in (4) we look
at the contribution of the simple error events in the trellis
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TABLE III
SIMPLE ERROR EVENTS FOR 16, 64 STATES Z8/L8 GST-TCM, S = 3, 4
AND DIFFERENT BLOCK FADING CHANNELS (N = 1, 3, 5, 20, 40, 120).

St. N Ns1 Ns2 n1 n2 Δ
(b)′
1 Δ

(b)′
2

16 1 118 − 3 − 8δ3 −
16 3 40 78 1 2 7δ 4δ2 + 2δ
16 5 72 46 1 2 7δ 4δ2 + 2δ
16 20 108 10 1 2 7δ 4δ2 + 2δ
16 40 114 4 1 2 7δ 4δ2 + 2δ
16 120 118 − 1 − 7δ −
64 1 117 − 4 − 32δ4 −
64 3 117 − 2 − 28δ2 , 40δ2 −
64 5 48 69 1 2 11δ 28δ2 , 40δ2

64 20 102 15 1 2 11δ 28δ2 , 40δ2

64 40 111 6 1 2 11δ 28δ2 , 40δ2

64 120 117 − 1 − 11δ −
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Fig. 2. Comparison of 4-state trellis codes using 16-QAM constellation at
the rate 7 bpcu form a three level partition Z8/E8 (S = 2).

together with their multiplicity. We get Ns1 terms with the
corresponding minimum determinant

Δ(b)′
1 = min

�

n1−1∏
n=0

a�+n (10)

and Ns2 terms with the corresponding minimum determinant

Δ(b)′
2 = min

�

n2−1∏
n=0

a�+n (11)

Depending on the length and structure of the simple error
events, the Δ(b)′

1 and Δ(b)′
2 , together with their multiplic-

ity Ns1 , Ns2 , will dominate the performance of the coding
scheme.

Even if we have Δ(b)′
2 smaller than Δ(b)′

1 its contribution
to the overall performance can be mitigated by the fact that
Ns1 
 Ns2 . We will see in the following section how the a�s
are affected by the trellis code structure.

V. SIMULATION RESULTS

In this section we show the performance of different GST-
TCM schemes over block fading channels. Signal-to-noise ra-
tio per bit is defined as SNRb = nT Eb/N0, where Eb = Es/q
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Fig. 3. Comparison of 16-state trellis codes using 16-QAM constellation at
the rate 7 bpcu form a three level partition Z8/E8 (S = 3).

4 6 8 10 12 14 16 18 20 22
10

−3

10
−2

10
−1

10
0

SNR
b

F
ra

m
e 

E
rr

or
 R

at
e

16 states TCM, N=1
16 states TCM, N=3
16 states TCM, N=5
16 states TCM, N=20
16 states TCM, N=40
16 states TCM, N=120

Fig. 4. Comparison of 16-state trellis codes using 16-QAM constellation at
the rate 6 bpcu form a three level partition Z8/L8 (S = 3).

is the energy per bit and q denotes the number of information
bits per QAM symbol of energy Es.

We consider two types of GST-TCM based on the two and
three level partitions Z

8/E8 and Z
8/L8 in [1]. For each case

we consider trellises with 4 or 16 states and 16 or 64 states,
respectively. The length of the simple error events is S =
2, 3, 4 for 4,16 and 64 state trellises, respectively. We assume
the codeword length is L = 120 and the block fading channels
are characterized by N = 1, 3, 5, 20, 40, 120. The GST-TCM
were optimized in [1] for the slow fading channel, i.e., for
N = 120 (or B = 1).

In Figures 2-5 we can see that the best performance is
obtained in the slow fading case (N = 120), for which
the codes were explicitly optimized. The worst performance
appears in the fast fading case (N = 1), although the
difference is about 1.5-2dB at FER of 10−2 and only about
1dB at FER of 10−3. Note that the slow and fast fading curves
will eventually cross, since the fast fading exhibits a higher
diversity order. The intermediate cases of block fading exhibit
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Fig. 5. Comparison of 64-state trellis codes using 16-QAM constellation at
the rate 6 bpcu form a three level partition Z8/L8 (S = 4).

a performance between the fast and slow, which degrades as
N decreases.

Let us analyze these simulation results using the truncated
UB (4). The sequences of values of det(XtX̂t) in the shortest
simple error events of the GST-TCMs in Figs. 2 to 5 are given
in Table I, where δ = 1/5 is the minimum determinant of the
Golden code.

Tables II-III show all the code parameters. When N = 1 or
N = 120, the term Δ(b)′

1 and its multiplicity Ns1 dominate
the performance. We see that Δ(b)′

1 for N = 120 is always
greater than that for N = 1, provided δ = 1/5 and a fixed
Ns1 . This results in a better performance when N = 120. The
same observation can be found for 64-state GST-TCM when
N = 3.

For the remaining cases, we note that Δ(b)′

2 is always
smaller than Δ(b)′

1 since δ = 1/5. As N increases the
multiplicity Ns2 of the Δ(b)′

2 term decreases, while Ns1 of
the Δ(b)′

1 term increases, which results in a better performance.

This analysis qualitatively agrees with the actual performance
of the codes.

VI. CONCLUSIONS

In this letter, we analyzed the impact of a block fading
channel on the performance of GST-TCM by using a truncated
UB technique. The analysis shows that the performance of the
GST-TCM designed for slow fading channel varies slightly if
the channel condition varies from slow to fast. It is further
demonstrated by simulation that the performance degrades at
most 1 dB at the FER of 10−3, when block fading varies from
slow to fast. This robust coding scheme can be particularly
beneficial for high rate transmission in WLANs using OFDM
to combat widely variable multipath fading.
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