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Abstract

Folding is a technique to modify the decoder graph of polar codes based on successive cancellation decoding (SCD).
Folding was proposed in [1] and extended to multiple folding (κ times) in [2] as a technique to significantly reduce the
latency of the SCD of polar codes up to a factor of 2κ, without performance loss. The extension in [2] shows folding
only for κ ≤ 3 due to the rapidly increasing complexity. In this paper, we propose an alternative implementation of the
multiple-folding SC decoder, to significantly reduce its complexity. The complexity of the new algorithm is only slightly
higher than that of the original SCD for polar codes. As a result, the new algorithm enables to decode longer codes with
larger κs, which exhibit significant performance gains, in addition to the latency gain.

1. Introduction

Polar codes proposed by Arikan [3] are a recent breakthrough in coding theory, which stand out as the first provable
class of capacity achieving codes. From a practical point of view, Polar codes have an explicit construction and very low
complexity encoding and decoding.

The successive cancelation decoder (SCD) for polar codes plays an important role in proving the capacity theorems.
Additionally, the decoder has many attractive features for use in practical applications such as a highly regular structure and
a constant complexity of O(N logN), where N is the code-length. Although the decoder achieves the channel capacity
asymptotically in the code length, the SCD is observed to have worse performance when compared to the best available
LDPC codes at finite code lengths of practical interest. Additionally, the decoding suffers from large decoding latency
equal to (2N − 1) units, in its most parallel implementation [3].

A significant number of papers have attempted to improve the SCD both in latency and decoder performance [4–11].
Several algorithmic solutions [8–11] have been reported to improve latency up to 50% when compared to the standard SCD.
Folding is a technique proposed in [12] in the context of maximum-likelihood (ML) sphere decoding of polar codes. For
the first time, this technique has allowed polar codes to be optimally ML decoded up to code length of 256. Later in [1] the
folding technique was extended for use with SCD, saving 50% of decoding latency, but requiring a higher complexity. This
work has been generalized to multiple folding in [2], where the latency advantage is further reduced by a factor of 2κ, when
folded κ times. However, the increasing complexity by an exponential factor did not exhibit any performance gain, since
only short codes were analyzed. The current paper precisely addresses this issue of high complexity and demonstrates the
potential performance gains for longer codes.

A brief summary of the contributions of this paper is provided below:

1. We propose a low-complexity version of the multiple folding SCD in [2], with latency reduced by a factor of 2κ.

2. We show that the joint density processing proposed in [1, 2] can be replaced by (possibly parallel) processing of the
binary marginal densities.

3. We show that the gains with multiple folding can be significant for longer codes and higher rates.

2. System Model

Polar Coding — A polar code is completely specified by the tuple (N,K,F), where N is the code length in bits (or
block-length), K is the number of information bits encoded per codeword (or code dimension), and F is a subset of N −K
indices from {0, 1, . . . , N − 1} (frozen bit locations).
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Consider the following index notation: Given any subset of element indices (column indices) I from a vector x (or
a matrix A), we denote the corresponding sub-vector of x by xI (and the corresponding sub-matrix of A by AI). Using
this notation, we describe the encoding operation of a (N,K,F) polar code, given a vector of information bits u of length
K. Let n , log2(N) and G , F⊗n = F⊗ · · · ⊗ F be the n-fold Kronecker product of

F ,

[
1 1
0 1

]
Then, a codeword is generated as

x = GFc u, (1)

where Fc , {0, 1, . . . , N − 1}\F corresponds to the non-frozen bit indices. Alternatively,

x = G d = F⊗nd (2)

where d ∈ {0, 1}N such that dF = 0 and dFc = u. An efficient implementation of (2) proposed by Arikan, is shown in
Fig. 1.
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Figure 1: Arikan’s O(N log2N) complexity encoder graph implementing (2) for N = 8

Construction of Polar Codes – The choice of the set F is an important step in polar coding often referred to as polar
code construction. A significant amount of literature is devoted to this operation [3, 13–17]. For simplicity, we use the
original polar code construction algorithm from [13] with a good seed as in for e.g. [16].

Successive Cancellation Decoder (SCD) – The SCD algorithm [3] essentially follows the same encoder diagram as
in Fig.1. The likelihoods evolve in the reverse direction from right-to-left. A detailed description and a full implementation
may be found in [3, 18].

3. The Improved Multiple Folded Successive Cancellation Decoder

Single Folding — From Fig. 2 we observe that after the first stage of encoding of the input d, the first half and
second half of d see the same encoding circuit (dotted boxes) for the following stages. This suggests that we may process
in parallel the operations in two dotted boxes at both encoder and decoder. This is the basic idea of the folding operation,
which can be mathematically described as follows:

x = F⊗nd =

[
F⊗n−1 F⊗n−1

0 F⊗n−1

]
d (3)

=⇒

 x0 xN/2
...

x(N/2)−1 xN−1

 = Fn−1

 d′0 d
′
N/2

...
d′(N/2)−1 d

′
N−1

 , where d′j =

{
dj ⊕ dN/2+j , if 0 ≤ j < N/2

dj , if N/2 ≤ j < N
(4)

=⇒ x′ = F⊗n−1d′ (5)

We can interpret (5) as an encoding operation for a q-ary polar code as follows. Consider the pairs of bits quaternary
symbols from GF (4) (q = 4), taking values {00, 01, 10, 11}. The pairs of bits in the rows of the matrix d′ are formed from
d using (4). Alternatively, d′ can be viewed as vector of q-ary symbols, which is encoded by using a matrix of half the
dimension i.e. F⊗n−1. Similarly the coded bit vector x is transformed to the quaternary vector of half length x′. Note that
the matrix vector multiplication in (5) should be interpreted over GF (4).
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Figure 2: Folding technique illustrated at N = 8, folding length κ = 1, 2

During the decoding of a received vector y we similarly rearrange the elements to obtain y′, to start decoding on the
reduced encoding graph of q-ary symbols. We start doing so by forming the joint density functions of the q-ary alphabet
instead of the likelihoods of bits in x, and then following the density transformations in [1]. When we reach the left end of
the graph, the decision element performs an ML decoding of size equal to two bits, according to the transformation d to d′.
We can easily verify from the transformation equations in [1] that, the density transformations cause a complexity increase
by a factor of 8 but reduces the decoding graph size by a factor of 2, thus reducing the decoding latency by a factor of 2
i.e., from (2N − 1) to (N − 1).

Multiple Folding — The above concept of single folding can be extended κ times as proposed in [2], to produce a
graph of reduced dimensionN/2κ, where each symbol contains 2κ bits and hence the alphabet size increases to q = 22

κ

(see
Fig. 2). This enables parallel processing of 2κ bits at a time, which reduces latency by a factor of 2κ. However, the overall
complexity increases by a factor of 22

κ

2κ, even when an efficient implementation of the q-ary density transformations is
based on Hadamard transform. Note that the ML-decisions in the final decision stage introduce additional complexity and
latency, though marginal when κ is small.

In this paper note that this q-ary interpretation of the vectors is not necessary. Instead, we may decode the bits in
each q-ary symbol separately and parallely, which avoids the large complexity of joint density evolution with the q-ary
alphabets of size q = 22

κ

and makes it equal to that in a standard SCD. This is seen from the (4), where each column of bits
in q-ary vectors x′ and d′ can be processed separately. Since encoder has this clear separation, the decoding may exploit it
to implement parallel decoding. However, note that, both columns in (4) are indeed correlated at the last stage ML-decision
elements.

When repeated κ times, the overall likelihood evolution becomes equivalent to the evolution of likelihoods of 2κ bits
in parallel on the encoding graphs of shorter length N/2κ. This finally results in the latency gain by a factor 2κ. However,
the additional latency & complexity of the final stage ML decision elements still needs to be accounted for. The ML
decisions are also highly parallelizable and since they operate on very short blocks of 2κ bits they have a low complexity
for κ ≤ 3.

The overall complexity with the our new proposal becomes almost the same as that in standard SCD, and the latency
is reduced by almost a factor of 2κ compared to that in standard SCD, if we neglect the ML decision elements of the last
stage for small κs.

Note that the complexity of a short 2κ length ML-decision element is comparable to that of a 2κ length SCD which
was embedded in the last stage and is now replaced by an MLD. Hence we may expect a gain in latency, up to a factor of 2κ

and only a negligible increase in the overall complexity. We show our simulation results in the next section with this latest
proposed, improved multiple folding decoder model. The reduced complexity of our new proposed model enables usage of
the decoder for higher blocklengths, where we saw significant performance gains with our improved multiple folded SCD.

4. Simulations

We consider polar encoding of code length N = 8192 and rate R = 0.8. We consider Additive White Gaussian
Noise (AWGN) channel and BPSK modulation. We consider the polar code constructions from [13, 16].

Fig. 3 shows the gain in Frame Error Rate (FER), and the gain in Bit Error Rate (BER). As expected, the new multiple
folded decoder performs at least as good as the standard SCD. Further we see that the potential gain can be significant, in
addition to the gain in latency.
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Figure 3: Performance comparison in Frame Error Rate and Bit Error Rate, with various κ at N = 8192, R = 0.8
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