
IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 3, NO. 5, OCTOBER 2014 545

Multiple Folding for Successive Cancelation Decoding of Polar Codes
Sinan Kahraman, Emanuele Viterbo, and Mehmet E. Çelebi

Abstract—Polar coding is known as the first provably capacity-
achieving coding scheme under low-complexity suboptimal suc-
cessive cancelation decoding (SCD). The large error-correction
capability of finite-length polar codes is mostly achieved with
relatively long codes. SCD is the conventional decoder for polar
codes and exhibits a quasi-linear complexity in terms of the code
length. Practical decoder schemes with low latency are important
for high-speed polar coding applications. In this letter, we propose
a nonbinary multiple folded SCD scheme to reduce the decoding
latency of standard binary polar codes. Multiple foldings were
first proposed to improve the efficiency of folded tree maximum-
likelihood decoder for Kronecker product-based codes. By suc-
cessively applying the folding operation κ times on the SCD,
for a code length N , the latency is reduced from 2N − 1 to
(N/2κ−1) − 1 time slots, assuming full parallelization. We show
that multiple folded SCD can be effectively implemented for up to
κ = 3 foldings due to memory limitations. This decoder achieves
exactly the same performance of the original SCD with signifi-
cantly reduced latency.

Index Terms—Polar codes, SC decoder, folding operation.

I. INTRODUCTION

SHANNON’s channel coding theorem proves the existence
of capacity-achieving codes without providing an explicit

construction [2]. The channel polarization phenomenon intro-
duced in [1] makes the polar codes the first provable capacity-
achieving coding scheme under a low complexity successive
cancelation decoding (SCD) method, which exhibits a quasi-
linear complexity in terms of the code length. It is interesting
to note that the polar codes achieve capacity, as the length
grows to infinity, even though SCD is a sub-optimal decoder,
(i.e., not maximum likelihood). At finite lengths, the good error
correction capability becomes significant only for relatively
long polar codes where the implementation of SCD can become
challenging due to complexity and latency. On the other hand,
industrial predictions that are based on a well-known obser-
vation naming Moore’s law show that transistor densities and
counts in microprocessors double approximately every two or
three years. Then it can be accepted that the latency is more

Manuscript received May 6, 2014; accepted July 21, 2014. Date of publi-
cation July 30, 2014; date of current version October 9, 2014. The work of S.
Kahraman was supported by the Scientific and Technological Research Council
of Turkey (TUBITAK) under Grant 1059B141200235. The work of E. Viterbo
was supported by the National Priorities Research Program (NPRP) under
Grant NPRP5-597-2-241 from the Qatar National Research Fund (a member of
Qatar Foundation). The associate editor coordinating the review of this paper
and approving it for publication was M. Xiao.

S. Kahraman was with the Software Defined Telecommunications Labora-
tory, Monash University, Melbourne, VIC. 3800, Australia. He is now with
Istanbul Technical University, Istanbul 34469, Turkey (e-mail: kahraman@
ieee.org).

E. Viterbo is with Monash University, Melbourne, VIC. 3800, Australia
(e-mail: emanuele.viterbo@monash.edu).

M. E. Çelebi is with Istanbul Technical University, Istanbul 34469, Turkey
(e-mail: mecelebi@itu.edu.tr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LWC.2014.2343970

critical issue than the space complexity issues. In this case, we
consider an advanced scheme to reduce decoding latency using
a new design achieving high parallelism at the cost of higher
complexity and power consumption.

To overcome these limitations of polar coding, two different
research directions have been undertaken. The first direction
focuses on SCD implementations with a reduced complexity to
extend the code length without major impact on performance.
In [3]–[5] specific methods to speed up SCD in hardware have
been proposed. In [3], a specific scheduling in the butterfly
structure of SCD was presented to reduce complexity by the
use of resource sharing. A semi-parallel decoder was proposed
in [4] as a simple architecture for resource sharing with a
small increase in latency. In [5], a decoding schedule of pre-
computation look-ahead technique was introduced to reduce the
latency of SCD by half.

In the second direction of research, higher complexity de-
coders have been proposed to improve the error performance
of relatively shorter polar codes. For example, the sub-optimal
performance of the SCD was improved by the list decoder in
[6], the belief propagation in [7] and [8] and the stack algo-
rithms in [9]. Moreover, optimal maximum-likelihood (ML)
decoders have been studied in [10]–[12] for polar codes. In [11],
the binary sphere decoding based ML decoder was proposed
for short polar codes with code lengths up to 64. Recently, the
folding operation applied to the ML tree search was used in
[12] to design an efficient ML decoder based on a non-binary
tree search strategy for longer Kronecker product based codes,
such as polar and Reed–Muller codes of lengths up to 256.

In this letter, we apply the multiple folding operation to SCD
to design a new low latency non-binary SCD for binary polar
codes. We will refer to this as multiple or κ folded SCD. The
butterfly structure is still preserved in the multiple folded SCD
and hence the proposed method can be combined with the
scheduling methods in [3]. We focus on decoding a standard
polar code with frozen bits chosen according to the channel po-
larization. The proposed multiple folded SCD can also be used
for Reed–Muller codes. Since it is known that Reed–Muller
codes with SCD is very far from that of polar codes in terms
of the error correction capability, we will not consider them
in this letter. We show that using κ folding operations, the
conventional SCD can be re-designed as a q-ary code SCD with
q = 22

κ
and length N/2κ. The likelihood ratios used in the

(1 + log2 N) steps of the conventional SCD architecture, are
replaced by the conditional probabilities of the q-ary symbols
grouping 2κ bit using only (1 + log2(N/2κ)) steps in the mul-
tiple folded SCD. This provides a significant reduction of the
decoder latency to (N/2κ−1)− 1 time slots from 2N − 1 time
slots under fully parallel decoder implementation for a code
length N . A single folded SCD (i.e. for κ = 1) was presented
as a preliminary result in [13] and the dependence of the error
performance on the alternative foldings was investigated. Here,
we investigate the complexity of the proposed method in terms
of the computational and memory requirements. Simulation
results show that the proposed decoders can provide the same
error performance as in the conventional SCD.

2162-2337 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

546 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 3, NO. 5, OCTOBER 2014

II. SYSTEM MODEL

In this section, we consider the system model of polar codes
in additive white Gaussian noise (AWGN) channel. Any given
binary polar code with length N is uniquely defined by the
number K of information bits and by the set of N −K frozen
bit indices F ⊆ {0, 1, . . . , N − 1}. A codeword is denoted
by x = (x0, . . . , xN−1)

T and can be generated as from the
information bits

x = F⊗nd, (1)

where the N dimensional vector d = (d0, . . . , dN−1)
T has

N −K frozen bits in positions F fixed to “0”. The remaining
K bits in vector d in the positions Fc = {0, 1, . . . , N − 1} \
F , are used to transmit the K information bits. The frozen
bit indices are selected as the least reliable bits after channel
polarization and are determined by the polar code construction
method, [1], [7]. The encoding matrix F⊗n is the n-fold it-

erated Kronecker product of the kernel matrix F =

[
1 1
0 1

]
.

The transmission rate of the code will be R = K/N which
approaches the channel capacity as the code length tends to
infinity.

We assume that the encoded bits xk are mapped to binary
antipodal modulation signals such that ‘1’ → +1, ‘0’ → −1
and the signal vector x̃ = (x̃0, . . . , x̃N−1)

T is transmitted over
AWGN channel. The received noisy observations are given by
the vector ỹ as

ỹ = x̃+ z, (2)

where z is the AWGN with zero mean and variance σ2 and, for
a given Eb/N0 in dB, then σ2 = 1/(2R10[Eb/N0]dB/10).

Let n = log2 N be the number of polarization steps and let d̂
be the estimated information bit vector. The conventional SCD
estimates bits in the order α(0), α(1), . . . , α(N − 1), which
depends on the bit-reversal operation of SCD architecture in
[1]. For example, for a code length N = 8 the order will be
α = {0, 4, 2, 6, 1, 5, 3, 7}. Let d̂(i)

∗ be a partial estimate of d
containing the partial decisions after the first i bit estimations.
The remaining (N − i) entries have not been determined yet
and, at the end of the decoding procedure, the SCD decision
will be d̂ = d̂N

∗ .
The conventional SCD algorithm in [1] is based on the

successive estimations of bits in the desired vector, (i.e. dα(i)
for i = 0, . . . , N − 1) using the received vector ỹ, the frozen
bits locations F , and the previously estimated bit vector d̂(i−1)

∗ .
The conditional probabilities for the α(i)-th bit are denoted

by W k
α(i)(ỹ, d̂

(i−1)
∗ |dα(i) = 0) and W k

α(i)(ỹ, d̂
(i−1)
∗ |dα(i) = 1)

at step k = 0, . . . , n, which are successively computed in (1 +
log2 N) steps k from 0 to n. If dα(i) is a non-frozen information
bit (i.e. α(i) �∈ F), then the estimate is given by

d̂α(i) =

⎧⎨
⎩ 0, if

Wn
α(i)

(
ỹ,d̂

(i−1)
∗ |0

)
Wn

α(i)

(
ỹ,d̂

(i−1)
∗ |1

) ≥ 1

1, otherwise.
(3)

The main cause of the sub-optimality of SCD is the error
propagation due to incorrect decisions.

III. MULTIPLE FOLDED SUCCESSIVE

CANCELATION DECODING

Let us first consider the encoding (1) and note that it can be
split into two N/2 dimensional equations in terms of F⊗(n−1),
i.e.,

x =

[
F⊗(n−1) F⊗(n−1)

0 F⊗(n−1)

] [
d′

d′′

]
, (4)

where the vector d is split into d′ = (d0, . . . , dN/2−1)
T and

d′′ = (dN/2, . . . , dN−1)
T . This property was first observed by

Dumer in [14] for Reed–Muller codes. Equivalently, consider-
ing the modulo-2 arithmetic, we have

x =

[
x′

x′′

]
=

[
F⊗(n−1)(d′ ⊕ d′′)

F⊗(n−1)d′′

]
. (5)

Hence, we can consider the two binary polar codes with the
code length N/2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

x0

x1
...

xN/2−1

⎤
⎥⎥⎦ = F⊗(n−1)

⎡
⎢⎢⎢⎣

d0 ⊕ dN/2

d1 ⊕ dN/2+1

...
dN/2−1 ⊕ dN−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xN/2

xN/2+1

...
xN−1

⎤
⎥⎥⎥⎦ = F⊗(n−1)

⎡
⎢⎢⎢⎣

dN/2

dN/2+1

...
dN−1

⎤
⎥⎥⎥⎦

(6)

where the first code encodes the information d′ ⊕ d′′ and the
second d′′. Here, the folding operation is based on considering
non-binary bit pairs from d′ ⊕ d′′ and d′′. It should be noted
that the folding operation does not need any modification on the
standard binary polar code nor its encoder and it only affects
the decoder. In general, it can be shown that the pairs of bit
indices which appear in (d′ ⊕ d′′) and d′′ have indices I� =
((N/2)− �,N − �) for � = 1, . . . , N/2.

Moreover, any given polar code can be folded in alter-
native way by using suitable permutation matrices πi, such
that F⊗n = πT

i F
⊗nπi for i = 1, . . . , n. In fact, the encoding

equation can be rewritten as x = πT
i F

⊗nπid and alternative
encoding equations are given by suitably permuted vectors πix
and πid such as πix = F⊗nπid, using the property π−1

i = πT
i .

In order to describe suitable permutations, we use the com-
mutation matrix K(m, r) =

∑m
i=1

∑r
j=1(Hi,j ⊗HT

i,j), where
Hi,j is a m× r matrix with a “1” in its (i, j)th position
and zeros elsewhere, [15]. Thanks to the permutation equiv-
alent property in [16, Th. 9, p.47] we have K(m, r)T (A⊗
B)K(m, r) = B⊗A, where A is m×m, B is r × r matri-
ces and K(m, r) is the mr ×mr commutation matrix. Then
we can write F⊗n = K(2n−i, 2i)

T
F⊗nK(2n−i, 2i), for i =

1, . . . , n. Hence, the permutations πi = K(2n−i, 2i) for i =
1, . . . n provide n alternative foldings.

Due to its fractal nature, F⊗(n−1) preserves the same
structure of F⊗n and the folding operation can be repeated
multiple times. In general, the folding operation can be
successively applied for 1 ≤ κ ≤ n− 1 times. The multiple
folding operation (κ ≥ 2) was first introduced in [12] to
implement the folded tree maximum-likelihood decoder for
polar codes. In this study, we construct a non-binary multiple

KAHRAMAN et al.: MULTIPLE FOLDING FOR SCD OF POLAR CODES 547

Fig. 1. Unit circuit for κ folded SCD for the 2κ-bit symbols ϕ.

folded SCD scheme with 1 + log2(N/2κ) steps, based on
F⊗(n−κ) sub-blocks of size N/2κ. In general, the set of indices
of the group of 2κ bits appearing in the �-th non-binary level is
given by I� = ((N/2κ)− �, (2N/2κ)− �, . . . , (2κN/2κ)− �)
for � = 1, . . . , N/2κ. A group of 2κ bits corresponds to a
q-ary symbol from the alphabet {0, 1, . . . , 22κ − 1} and will
be denoted by ϕ. In general, we write ϕ = F⊗κd(I�), where
d(I�) is the sub-vector of d corresponding to the indices I�. For
example, for κ = 2, four bits are grouped in ϕ = {(d(N/4)−�⊕
d(N/2)−�⊕ d(3N/4)−�⊕ dN−�), (d(N/2)−�⊕ dN−�), (d(3N/4)−�⊕
dN−�), (dN−�)}, where � = 1, . . . , N/4.

A. Multiple Folded SCD Architecture

The bit decision rule in (3) is transformed to a decision on a
group of 2κ bits ϕ in (7),

ϕ̂ = arg
ϕ

max
{
Wn−κ

α(i)

(
ỹ, d̂

(2κ·i)
∗ |ϕ

)}
(7)

where d̂
(2κ·i)
∗ is a binary vector containing previously (2κ · i)

estimated bits. It should be noted that W k
α(i)(ỹ, d̂

(2κ·i)
∗ |ϕ) is

computed for all possible q = 22
κ

candidates of ϕ in the k =
0, . . . , n− κ steps. Fig. 1 shows the folded unit circuit where
the conditional probabilities are successively computed from
step k to step k + 1 as ϕ : {0, 1, . . . , 22κ − 1}

W
k+1

(·|ϕ) =
∑
∀ψ

(
W

k
(·|ψ) ·W k(·|ψ ⊕ϕ)

)
, (8)

where the sum is over all vectors ψ of 2κ bits. Here, W and W
denote upper and lower branches of the unit circuit. The second
conditional probability is given by

W k+1(·|ϕ) = W
k
(·|ϕ⊕ ϕ̂) ·W k(·|ϕ), (9)

where ϕ̂ denotes a previously decided symbol of the upper
branch. In this case, the multiple folded-SC decoder only
requires (1 + log2(N/2κ)) steps to decide for all the N/2κ

non-binary symbols. The likelihood ratios cannot be used as
in the binary case and 22

κ
dimensional probability vectors need

to be stored.
We can now describe the proposed decoding algorithm. In

the initialization, κ is fixed to a number in the range 1 to
n− 1. Instead of N successive binary decisions, q-ary sym-
bol decisions are made successively for N/2κ folded partial
vectors ϕ. Then, for each decided candidate ϕ̂ at the last step
(k = n− κ), the actual information bits can be computed as
d(I�) = F⊗κϕ̂. The proposed pseudocode is given in Table I.

For each successive q-ary ϕ decision, we need to compute
the probabilities Wn−κ

α(i) (·|ϕ) for all ϕ non-binary candidate
symbols, as described in (8) and (9), by the use of all noisy ob-
servations ỹ, frozen bits in F and previously made decisions ϕ̂.

TABLE I
MULTIPLE FOLDED-SC DECODER ALGORITHM

TABLE II
LATENCY, MEMORY AND COMPLEXITY REQUIREMENTS

We should recall that some of the probabilities could be set
to zero due to the broadcasted information of frozen bits and
previous decisions. This process is accomplished by line-(3) in
Table I. Then, the decision on the most likely ϕ can be taken
by maximizing the computed probabilities as given by line-(5)
in Table I. Thereafter, using the decision ϕ̂ made at stage k =
n− κ, we can store the decision on the information bit values
in the vector d̂α(I�(i)) = F⊗κϕ̂ as given by line-(6) in Table I.
Hence, the current decisions can be passed to other levels in the
non-binary folded-SCD. One can notice that the well-known
butterfly structure of the SCD architecture is still preserved by
the non-binary folded-SC decoder for (1 + log2(N/2κ)) steps.
It should be noted that in the special case of κ = 0 the proposed
decoder is identical to the conventional SCD.

We now compare the decoding latency of the conventional
SCD in [1] to the latency of the κ folded SCD. In the construc-
tion of the conventional SCD, there are (N/2)(1 + log2 N)
binary unit circuits and each has 2 processing elements (PEs),
one for the upper and one for lower branches for the com-
putation of W and W based on (8) and (9), respectively. On
the other hand, the conventional SC decoding scheme can be
implemented in (1 + log2 N) steps by the use of the butterfly
structure and each i-th step has 2i−1 parallel PEs under the
best possible parallelization [1]. Hence, the decoding latency of
the conventional SCD is clearly given as

∑(1+log2 N)
i=1 2i−1 =

2N − 1.
With the κ folded SCD, only (N/2κ+1)(1 + log2(N/2κ))

unit circuits are used and each one has two PEs. Then the κ
folded SCD has only (1 + log2(N/2κ)) steps, and hence its

latency is given by
∑(1+log2(N/2κ))

i=1 2i−1 = (N/2κ−1)− 1.
The multiple folded SCD requires to store the total number of

conditional probabilities in the active branches in one time slot.
The maximum number of active branches is ((N/2κ−1)− 1) in
the worst case (i.e. with code rate 1). Each active branch needs
to store 22

κ
conditional probabilities that can be normalized

to store only 22
κ − 1 floats. Then the memory requirement is

((N/2κ−1)− 1)(22
κ − 1) floats. Table II shows the latency and

memory and computational complexity requirements.

548 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 3, NO. 5, OCTOBER 2014

IV. RESULTS AND DISCUSSION

In this section, we discuss complexity and error performance
of the proposed multiple folded-SCD scheme.

The complexity of the κ folded SCD algorithm is deter-
mined by the computational complexity of the unit circuits
and its memory requirements. It should be noticed that the
main contribution of the proposed decoder is the requirement
of a lower number of unit circuits with higher complexity, to
reduce the latency up to 87%. The conventional SC decoder
uses (N/2)(1 + log2 N) unit circuits with 4 multiplications to
update the log-likelihood ratios. The proposed method with κ
folding operations requires only (N/2κ+1)(1 + log2(N/2κ))
unit circuits and maximum N/2κ+1 unit circuits are active in
the same time slot with 22

κ+1
multiplications to update the

conditional probabilities of the q-ary symbols.
For κ = 2 and κ = 3 folding operations for SCD can be seen

as an efficient tool to decrease the latency of the polar decoding
at the cost of additional complexity and memory requirements.
It can be seen that the unit circuits for κ = 4 would need to
compute and store 22

4 − 1 = 65.535 conditional probabilities
for each 2κ-bit symbol ϕ in all active branches. The represen-
tation of conditional probabilities in a practical implementation
needs to be more accurate for the case of a large number of κ.
Hence, multiple folded SCD for κ ≥ 4 would not be efficient.

Let us now consider the error performance of multiple
folded SCD. In [13], it was shown that the choice of alternative
foldings for any given polar code may be crucial on the
decoding performance. In fact, some of the frozen information
bits in d can be hidden in the folded group ϕ of 2κ bits. For
example, for κ=2 the four bit groups are ϕ={(d(N/4)−�⊕
d(N/2)−�⊕d(3N/4)−�⊕dN−�), (d(N/2)−�⊕dN−�), (d(3N/4)−�⊕
dN−�), (dN−�)}, where � = 1, . . . , N/4. In some cases, frozen
bits in d(I�) can not affect the conditional probabilities of the
partial vector ϕ. For example, when d(3N/4)−1 is a frozen bit
and the others are information bits in the group, there is no
visible frozen bit in the group ϕ. It can be seen that the hidden
frozen bit, d(3N/4)−1, can only be taken into account at the last
step of the decoding scheme and it is not broadcasted to the
other steps. To avoid this problem, the best alternative folding
should be selected for a given polar code, so that all frozen bits
are visible in ϕ.

In the setup phase, we were able to test suitable alternative
foldings that are used to provide folded groups of bits, where
all frozen bits are visible (i.e. there are N −K “folded frozen”
bits in N/2κ groups with 2κ folded bits) for rate 1/2 polar codes
of lengths 256 and 512 that are optimized for Eb/N0 = 0 dB.
Simulation results in Fig. 2 show that bit error rate (BER)
performances are the same under the conventional binary SCD
and κ = 3 folded SCD. Same results are obtained for κ = 1, 2.

V. CONCLUSION

To reduce the decoding latency of polar codes, we propose
multiple folded SCD that is based on the folding operation of
the Kronecker product based codes. In this way, the conven-
tional SCD for a given polar code is re-designed with a non-
binary architecture. The proposed decoding scheme has only
(1 + log2(N/2κ)) steps when κ folding operations are applied.
Note that no modification is needed at the encoder side. The
decoding latency can be significantly reduced from 2N − 1 to
(N/2κ−1)− 1. By choosing the proper alternative folding, the
same performance of the conventional SCD can be obtained.

Fig. 2. BER vs. Eb/N0 for conventional SCD and multiple folded SCD.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948, 623–656.

[3] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for
successive cancellation decoding of polar codes,” in Proc. IEEE ICASSP,
2011, pp. 1665–1668.

[4] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[5] C. Zhang, B. Yuan, and K. Parhi, “Reduced-latency SC polar
decoder architectures,” in Proc. IEEE ICC, Ottowa, ON, Canada, 2012,
pp. 3471–3475.

[6] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE Int.
Symp. Inf. Theory, St. Petersburg, Russia, 2011, pp. 1–5.

[7] E. Arıkan, “A performance comparison of polar codes and Reed–Muller
codes,” IEEE Commun. Lett., vol. 12, no. 6, pp. 447–449, Jun. 2008.

[8] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in Proc. IEEE Int. Symp. Inf. Theory,
Seoul, Korea, 2009, pp. 1488–1492.

[9] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding
of polar codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3100–3107,
Aug. 2013.

[10] E. Arıkan, K. Haesik, M. Garik, Ö. Üstün, and E. Efecan, “Performance
of short polar codes under ML decoding,” in Proc. ICT Mobile Summit,
Santander, Spain, Jun. 10–12, 2009.

[11] S. Kahraman and M. E. Çelebi, “Code based efficient maximum-
likelihood decoding of short polar codes,” in Proc. IEEE Int. Symp. Inf.
Theory, Cambridge, MA, USA, 2012, pp. 1967–1971.

[12] S. Kahraman, E. Viterbo, and M. E. Çelebi, “Folded tree maximum-
likelihood decoder for Kronecker product-based codes,” in Proc.
Allerton Conf. Commun., Control, Comput., Monticello, IL, USA, 2013,
pp. 629–636.

[13] S. Kahraman, E. Viterbo, and M. E. Çelebi, “Folded successive can-
celation decoding for polar codes,” in Proc. AusCTW, Sydney, NSW,
Australia, 2014, pp. 57–61.

[14] I. Dumer and K. Shabunov, “Soft decision decoding of Reed–Muller
codes: Recursive lists,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1260–
1266, Mar. 2006.

[15] J. R. Magnus and H. Neudecker, “The commutation matrix: Some
properties and applications,” Ann. Statist., vol. 7, no. 2, pp. 381–394,
Mar. 1979.

[16] J. R. Magnus and H. Neudecker, Matrix Differential Calculus With Ap-
plications in Statistics and Econometrics. Hoboken, NJ, USA: Wiley,
1988.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

