
Simple algorithms and guarantees for low rank
matrix completion over F2

James Saunderson
Dept. of Electrical Engineering

University of Washington
Email: jamesfs@uw.edu

Maryam Fazel
Dept. of Electrical Engineering

University of Washington
Email: mfazel@uw.edu

Babak Hassibi
Dept. of Electrical Engineering

California Institute of Technology
Email: hassibi@caltech.edu

Abstract—Let X? be a n1 × n2 matrix with entries in F2 and
rank r < min(n1, n2) (often r � min(n1, n2)). We consider the
problem of reconstructing X? given only a subset of its entries.
This problem has recently found numerous applications, most
notably in network and index coding, where finding optimal
linear codes (over some field Fq) can be reduced to finding the
minimum rank completion of a matrix with a subset of revealed
entries. The problem of matrix completion over reals also
has many applications and in recent years several polynomial-
time algorithms with provable recovery guarantees have been
developed. However, to date, such algorithms do not exist in
the finite-field case. We propose a linear algebraic algorithm,
based on inferring low-weight relations among the rows and
columns of X?, to attempt to complete X? given a random subset
of its entries. We establish conditions on the row and column
spaces of X? under which the algorithm runs in polynomial
time (in the size of X?) and can successfully complete X? with
high probability from a vanishing fraction of its entries. We
then propose a linear programming-based extension of our basic
algorithm, and evaluate it empirically.

I. INTRODUCTION

Let X? be a n1 × n2 matrix with entries in the binary
field F2 and rank r (often r � min(n1, n2)). The problem
of reconstructing X? given only a subset of its entries is
referred to as low rank matrix completion. When the matrix
under consideration is real (or complex), the problem has
an extensive literature, with many applications and several
polynomial time (convex and non-convex) algorithms with
provable recovery guarantees (see, e.g., [1] and the references
therein). In the finite-field case the problem has recently
found important applications in network and index coding,
where finding optimal linear codes can be reduced to finding
the minimum rank completion of a matrix with a subset of
revealed entries [2], [3], [4], [5]. There are also applications
involving decoding rank codes in the presence of erasures [6].

Despite these applications, there is very little in the way
of efficient algorithms that guarantee provable recovery in the
finite field case. [7] studies complexity issues and shows that
the problem is generally NP hard. [8] studies a related problem
where, instead of entries, random linear combinations of the
entries are observed and gives various information-theoretic
bounds on the number of measurements necessary for low
rank matrix recovery. [9] uses ideas from graph coloring to

This is based on work supported by the NSF under grant CCF-1409836.

obtain efficient algorithms and [10] works with matrices from
finite fields but with multiplication over integers. Our work is
partially inspired by the work of Feldman [11] who was the
first to relax the problem of decoding binary LDPC codes to
a linear program over the reals.

We propose a linear algebraic algorithm, based on inferring
low-weight relations among the rows and columns of X?,
to attempt to complete X? given a random subset of its
entries. (We focus on a random model of revealed entries
primarily for simplicity.) We establish conditions on the row
and column spaces of X? under which the algorithm runs
in polynomial time (in the size of X?) and can successfully
complete X? with high probability (in the choice of the
random subset) from a vanishing fraction of its entries. This
is done in Section IV. Motivated by this, in Section V, we
propose a practical, yet more effective (because it can deal
globally and simultaneously with column and row relations)
linear programming-based extension of our basic algorithm.
While we currently do not have a complete analysis of this
linear program (LP), we do evaluate it empirically in Section
VI. Note that the number of n × n rank r matrices over
F2 is given by Nn,r =

∏r−1
k=0

(2n−2k)2

(2r−2k)
, and that therefore

identifying any such matrix requires log2Nn,r bits. Viewing
each revealed entry of X? as a bit implies that we need to
observe at least log2Nn,r entries of X? to recover it. Our
simulations suggest the LP can complete n×n random rank r
matrices (for n ≤ 100 and r ≤ 10) given at most 3 log2Nn,r

random entries.

II. NOTATION AND PRELIMINARIES

Let [n] = {1, 2, . . . , n} and let 2[n] denote the collection
of all subsets of [n]. If p ∈ [0, 1] and T is a finite set we
write S ∼ B(T, p) if S is the random subset of T obtained by
choosing each element of T independently with probability p.

Let Fn1×n2
2 denote the space of n1 × n2 matrices over F2.

The rank of X ∈ Fn1×n2
2 is the smallest positive integer r

such that X = U1U
T
2 for U1 ∈ Fn1×r

2 and U2 ∈ Fn2×r
2 . If

x ∈ Fn
2 the Hamming weight, denoted wt(x), is the number

of non-zero entries of x. If S ⊆ [n] let eS ∈ Fn
2 be the vector

supported on S, i.e. [eS]i = 1 if and only if i ∈ S.
If C ⊆ Fn

2 is a subspace let C⊥ = {x ∈ Fn
2 : xT y = 0, ∀y ∈

C} be its dual subspace; let d(C) = minx∈C\{0} wt(x) be the

minimum distance of C; let [C]≤s = span{x ∈ C : wt(x) ≤ s}
be the span of the elements of C with weight at most s.

If C1 ⊆ Fn1
2 and C2 ⊆ Fn2

2 are subspaces let C1 ⊗ C2 ⊆
Fn1×n2

2 be the subspace of matrices with column space con-
tained in C1 and row space contained in C2.

If S = {i1, . . . , i|S|} ⊂ [n] let PS : Fn
2 → F|S|2 be

the coordinate projection defined by [PS(x)]` = xi` for
` = 1, 2, . . . , |S|. When Ω ⊆ [n1] × [n2] this definition
naturally extends to PΩ : Fn1×n2

2 → F|Ω|2 . Finally, we record
the following simple result because we use it repeatedly.

Lemma 1. Let C ⊆ Fn
2 be a subspace. If S ∼ B([n], p) then

Pr[PS(x) = 0 for some x ∈ C \ {0}] ≤ 2dim(C)e−pd(C).

Proof. For fixed x ∈ C \ {0}, Pr[PS(x) = 0] = (1 − p)wt(x).
Let r = dim(C). By taking a union bound we see that

Pr[PS(x) = 0 for some x ∈ C \ {0}]

≤
∑

x∈C\{0}

(1− p)wt(x) ≤ (2r − 1)(1− p)d(C) ≤ 2re−pd(C)

where we have used the inequalities d(C) ≤ wt(x) for all
x ∈ C \ {0} and (1 − p)d(C) ≤ e−pd(C) (which follows from
log(1− p) ≤ −p for 0 ≤ p < 1).

III. BASIC STRATEGY

Our basic approach to devising algorithms for low rank ma-
trix completion over F2 is to infer, from the partial information
PΩ(X?), linear relations among the rows and columns of X?.
More formally we aim to find collections H1 ⊆ 2[n1] and
H2 ⊆ 2[n2] of sets (or parity checks) such that

eTS1
X? = 0 ∀S1 ∈ H1, and X?eS2

= 0 ∀S2 ∈ H2.

A. Meta-algorithm for low rank completion
The algorithms we propose for matrix completion are all of

the following form for different choices of H1 and H2.
1) Construct H1 ⊆ 2[n1] and H2 ⊆ 2[n2].
2) For i = 1, 2 construct Ui ∈ Fni×ki

2 with columns that
are a basis for span{eSi

: Si ∈ Hi}⊥.
3) Return U1X̃U

T
2 for all X̃ ∈ Fk1×k2

2 satisfying

PΩ(U1X̃U
T
2) = PΩ(X?). (1)

The following definition is central to our subsequent discus-
sion. It allows us to refer succinctly to the situation in which
H1 and H2 are such that the meta-algorithm outputs X? as
the unique completion given PΩ(X?) and Ω.

Definition 1. Let Hi ⊆ 2[ni] (for i = 1, 2) and let PΩ(X?) ∈
F|Ω|2 . We say that H1 and H2 are consistent with PΩ(X?) if{

X ∈ Fn1×n2
2 : PΩ(X) = PΩ(X?),

eTS1
X = 0 ∀S1 ∈ H1, XeS2

= 0 ∀S2 ∈ H2

}
6= ∅ (2)

If, in addition, (2) consists of a single point we say that H1

and H2 are uniquely consistent with PΩ(X?).

Note that (2) is exactly the set of solutions to (1), expressed
differently. Clearly, if H1 and H2 are uniquely consistent with
PΩ(X?) then X? is the unique output of the meta-algorithm.

B. Complexity

The complexity of the meta-algorithm depends on
1) constructingH1 andH2 (which depends on the subsets);
2) computing U1 and U2 (at worst O(|Hi|2ni), by perform-

ing row operations on an |Hi| × ni matrix and reading
off a basis for the dual space); and

3) finding solutions to (1) (at worst O(k2
1k

2
2|Ω|) again by

performing row operations on a k1k2 × |Ω| matrix).
Since |Ω| ≤ n1n2 and k1 ≤ n1 and k2 ≤ n2, the total
complexity is polynomial in n1 and n2 provided H1 and H2

can be constructed in polynomial time.

IV. LINEAR-ALGEBRAIC ALGORITHMS WITH GUARANTEES

In this section we describe a simple way to choose collec-
tions of parity checks H1 ⊆ 2[n1] and H2 ⊂ 2[n2] for which
we can describe conditions on X? and Ω such that the meta-
algorithm of Section III-A successfully completes X? from
PΩ(X?). Importantly we can construct H1 and H2 via simple
algorithms that run in time polynomial in n1 and n2, giving
algorithms and guarantees for matrix completion over F2.

The following describes those subsets S1 of rows (resp.
columns) that can be completed so that they sum to zero.

Definition 2. Let S1 ⊆ [n1] and S2 ⊆ [n2] and let PΩ(X?) ∈
F|Ω|2 . We say that S1 is apparently consistent with PΩ(X?) if

{X ∈ Fn1×n2
2 : PΩ(X) = PΩ(X?), eTS1

X = 0} 6= ∅

and that S2 is apparently consistent with PΩ(X?) if

{X ∈ Fn1×n2
2 : PΩ(X) = PΩ(X?), XeS2

= 0} 6= ∅.

A. Choice of H1 and H2

We now define a collection of checks H1 and H2 for use in
the meta-algorithm of Section III-A. Fix PΩ(X?) ∈ F|Ω|2 and
choose positive integers s1 and s2. Define, for i = 1, 2,

Hi,si := {Si ⊆ [ni] : |Si| ≤ si,
Si apparently consistent with PΩ(X?)} . (3)

We can construct H1,s1 via Algorithm 1. An obvious analogue
of Algorithm 1 allows us to construct H2,s2 in a similar
way. The following result summarizes the size of Hi,si , and
complexity of constructing these sets, for i = 1, 2.

Algorithm 1 Constructing H1,s1

Input: Ω ⊆ [n1]× [n2], PΩ(X?), positive integer s1

1: H1,s1 ← ∅
2: for S1 ⊆ [n1], |S1| ≤ s1 do
3: T1 ←

⋂
i∈S1
{j ∈ [n2] : (i, j) ∈ Ω}

4: if
∑

i∈S1
Xij = 0 for all j ∈ T1 then

5: H1,s1 ← H1,s1 ∪ {S1}
6: end if
7: end for

Lemma 2. For i = 1, 2 we have |Hi| ≤ nsii . Algorithm 1, for
constructing H1, has complexity O(s1n

s1
1 n2). Similarly H2

can be constructed in O(s2n
s2
2 n1) operations.

If the s1 and s2 are constants (w.r.t. n1 and n2) then the
meta-algorithm of Section III-A runs in polynomial time.

B. Analysis

We next establish conditions on X?, Ω, and choices of s1

and s2, such that the meta-algorithm of Section III-A with
H1,s1 and H2,s2 completes X? with desired probability.

The basic issue with our choice of Hi,si for i = 1, 2 is that
there is no mechanism to ensure that these collections of parity
checks are actually consistent with PΩ(X?). Nevertheless, if
Ω is large enough, we might hope that span{eS1 : H1,s1} =
[C⊥col]≤s1 and span{eS2 : H2,s2} = [C⊥row]≤s2 . If both of these
occur then H1,s1 and H2,s2 are consistent with PΩ(X?).

Lemma 3. Let X? ∈ Fn1×n2
2 have rank r and row and

column spaces Crow and Ccol. If Ω ∼ B([n1] × [n2], p) and
p ≥ max{p1, p2} where

p1 :=

(
r log(2) + s1 log(n1) + log(1/ε)

d(Crow)

)1/s1

and (4)

p2 :=

(
r log(2) + s2 log(n2) + log(1/ε)

d(Ccol)

)1/s2

(5)

then with probability at least 1−2ε, span{eS1
: S1 ∈ H1,s1} =

[C⊥col]≤s1 and span{eS2
: S2 ∈ H2,s2} = [C⊥row]≤s2 .

Proof. If we fix S1 ⊆ [n1] then (in Algorithm 1) T1 ∼
B([n2], p|S1|) since any j ∈ T1 if and only if (i, j) ∈ Ω for
all i ∈ S1. Let x = eTS1

X? ∈ Crow. Suppose PT1
(x) = 0,

or equivalently that S1 ∈ H1,s1 . Then the probability that
eS1 /∈ [C⊥col]≤s1 (i.e. x 6= 0) is bounded above by

Pr[PT1
(x) = 0 for some x ∈ Crow \ {0}] ≤ 2re−p

|S1|d(Crow).

Taking a union bound over all S1 ⊆ [n1] with |S1| ≤ s1, the
probability that span{eS1 : S1 ∈ H1,s1} 6= [C⊥col]≤s1 is at most

s1∑
k=1

(
n1

k

)
2re−p

kd(Crow) ≤ ns11 2re−p
s1d(Crow) ≤ ε.

Similarly, span{eS2
: S2 ∈ H2,s2} 6= [C⊥row]≤s2 with

probability at most ε. A union bound over the two error events
completes the proof.

Combining this with an estimate of the probability that
H1,s1 and H2,s2 are uniquely consistent with PΩ(X?), gives
our main technical result.

Theorem 1. Let X? ∈ Fn1×n2
2 have rank r and row and

column spaces Crow and Ccol. let C1 = [C⊥col]
⊥
≤s1and C2 =

[C⊥col]
⊥
≤s2 .If Ω ∼ B([n1] × [n2], p) and p ≥ max{p0, p1, p2}

(where p1 and p2 are defined in (4) and (5)) and

p0 =
dim(C1) dim(C2) log(2) + log(1/ε)

d(C1)d(C2)

then H1,s1 and H2,s2 are uniquely consistent with PΩ(X?)
with probability at least 1− 3ε.

Proof. Since p ≥ max{p1, p2} we know from Lemma 3
that with probability at least 1 − 2ε, we have span{eS1 :

S1 ∈ H1,s1} = C⊥1 and span{eS2
: S2 ∈ H2,s2} = C⊥2 .

(Hence H1,s1 and H2,s2 are consistent with PΩ(X?).) Since
C1 ⊗ C2 has dimension dim(C1) dim(C2) and minimum dis-
tance d(C1)d(C2) (see, e.g., [6]), if p ≥ p0 then (by Lemma 1)

{X ∈ Fn1×n2
2 : X ∈ C1 ⊗ C2, PΩ(X) = PΩ(X?)}

has one element with probability at least 1− ε.

We now simplify Theorem 1 to the setting where s1 and s2

are large enough that [C⊥col]s1 = C⊥col and [C⊥row]s2 = C⊥col.

Corollary 1. Let X? ∈ Fn1×n2
2 have rank r and row and

column spaces Crow and Ccol. Suppose s1 and s2 are such that
C⊥col = [Ccol]≤s1 and C⊥row = [Crow]≤s2 . If Ω ∼ B([n1]× [n2], p)
and p ≥ max{p1, p2} (where p1 and p2 are defined in (4)
and (5)) then H1,s1 and H2,s2 are uniquely consistent with
PΩ(X?) with probability at least 1− 3ε.

Proof. We first apply Theorem 1 with C1 = Ccol and C2 =
Crow. In this case p0 = (r2 log(2) + log(1/ε))/(drowdcol). If
max{p1, p2} ≥ 1 the conclusion follows. Otherwise,

1 ≥ max{p1, p2} ≥ ps1/(s1+s2)
1 p

s2/(s1+s2)
2 ≥ ps11 p

s2
2 ≥ p0

where the last inequality is straightforward to verify.

C. Applications of Corollary 1

We now illustrate the use of Corollary 1. First we consider
completing general rank r matrices from a random subset of
entries. Then we consider completing large (n > 2r) rank
r matrices with 2r distinct rows and columns. Finally we
specialize our results to random rank r matrices.

1) General rank r matrices: The following result tells us
that for a general rank r matrix, C⊥col and C⊥row are spanned by
elements of weight at most r + 1.

Lemma 4. Let C ⊆ Fn
2 be a subspace of dimension 0 ≤ r ≤

n− 1. Then C⊥ = [C⊥]≤r+1.

Sketch of proof. Up to permutation, C⊥ is spanned by the
rows of H =

[
−Z In−r

]
for some Z ∈ Fn−r×r

2 .

By combining Corollary 1 with Lemma 4 and our ob-
servations about the complexity of the meta-algorithm in
Section III-B, we obtain the following result.

Theorem 2. Let X? ∈ Fn×n
2 have rank r and row and column

spaces Crow and Ccol. If Ω ∼ B([n]× [n], p) with

p ≥
(
r log(2) + (r + 1) log(n) + log(1/ε)

min{d(Crow), d(Ccol)}

)1/(r+1)

then the meta-algorithm with Hi = Hi,r+1 for i = 1, 2
recovers X? with probability at least 1−3ε in time O(n2r+3).

2) Rank r matrices with 2r distinct rows and columns: If
X? is a rank r matrix with 2r distinct rows and columns then
every element of its row space appears as a row of X? (and
similarly for every element of the column space). In this case
C⊥col and C⊥row are spanned by elements of weight at most 3.

Lemma 5. If X? has rank r and 2r distinct rows then
C⊥col = [C⊥col]≤3. If, in addition, X? has 2r distinct columns
then C⊥row = [C⊥row]≤3.

Sketch of proof. The sum of any pair of rows (resp. columns)
of X? is another row (resp. column) of X?. Hence any element
of C⊥col (resp. C⊥row) of weight k is the sum of an element of
weight three and an element of weight at most k − 1. The
result follows by induction.

By combining Corollary 1 with Lemma 5 and our ob-
servations about the complexity of the meta-algorithm in
Section III-B, we obtain the following result.

Theorem 3. Let X? ∈ Fn×n
2 have rank r, row and column

spaces Crow and Ccol, and 2r distinct rows and 2r distinct
columns. If Ω ∼ B([n]× [n], p) with

p ≥
(
r log(2) + 3 log(n) + log(1/ε)

min{d(Crow), d(Ccol)}

)1/3

then the meta-algorithm with Hi = Hi,3 for i = 1, 2 recovers
X? with probability at least 1− 3ε in time O(n7).

3) Random rank r matrices: The results of the previous two
sections are most interesting in the case where X? = U1U

T
2

where U1, U2 ∈ Fn×r
2 are indepdent random matrices with

i.i.d. Bernoulli entries, and r is fixed and n is growing. In this
setting, with high probability d(Ccol) ≥ δn and d(Crow) ≥ δn
for some constant δ (see, e.g., [12]). In this setting Theorem 2
shows that as long as the number of random revealed entries
is about n2p ≥ Ω̃(n2− 1

r+1) (ignoring logarithmic factors and
quantities independent of n), a vanishing fraction of the total
number of entries, we can recover X? with high probability
(inverse polynomial in n) in time O(n2r+3).

We now consider the case n > log(2)r2r in which it is very
likely that X? = U1U

T
2 has 2r distinct rows and colunms.

Lemma 6. Let U1, U2 ∈ Fn×r
2 be independent with i.i.d.

Bernoulli entries. If n ≥ log(2)r2r + log(ε−1)2r then U1U
T
2

has 2r distinct rows and 2r distinct columns with probability
at least 1− 2ε.

Proof. It is enough that U1 (resp. U2) has 2r distinct rows
(resp. columns) with probability at least 1 − ε. Each row of
U1 is independent and takes on 2r different values each with
equal probability, so we estimate the probability that n is at
least the stopping time for the coupon collector problem with
2r coupons via a standard tail bound [13, Proposition 2.4].

It follows from Theorem 3 that as long as n > cr2r (for
some constant c) and the number of random revealed entries
is about n2p ≥ Ω̃(n2−1/3) we can recover X? with high
probability in time polynomial in n.

V. LINEAR PROGRAMMING-BASED ALGORITHMS

Let H1 ⊆ 2[n1] and H2 ⊆ 2[n2] be collections of par-
ity checks. For instance, we could take H1 = H1,s1 and
H2 = H2,s2 from Section IV. In this section we describe
one way to select large subsets of H1 and H2 such that the

selected subsets are consistent with PΩ(X?). By removing
enough elements from H1 and H2, we can always make
them consistent with PΩ(X?), but removing too many makes
it unlikely they will be uniquely consistent. We formulate
this subset selection problem as a combinatorial optimization
problem and then relax it to an LP.

Our combinatorial formulation has decision variables X ∈
{0, 1}n1×n2 (intended to represent a completion of PΩ(X?)),
and YS1

∈ {0, 1} for S1 ∈ H1 and ZS2
∈ {0, 1} for S2 ∈ H2

that indicate which elements of H1 and H2 remain in our
consistent set. The objective aims to maximize the number
of parity checks we keep. The normalization factors Ni,j :=
|{S : S ∈ Hi, |S| = j}| correct for the fact that low-weight
checks can combine to form higher weight checks so their
inclusion should be penalized more. The formulation then is

max
X,Y,Z

n1∑
j=1

∑
S∈H1:|S|=j

YS
N1,j

+

n2∑
j=1

∑
S∈H2:|S|=j

ZS

N2,j
(6)

s.t. Xij = X?
ij ∀(i, j) ∈ Ω, Xij ∈ {0, 1} ∀(i, j) /∈ Ω

YS ∈ {0, 1} for S ∈ H1, ZS ∈ {0, 1} for S ∈ H2

YS = 1 =⇒
∑

i∈SXij = 0 (mod 2) for j ∈ [n2] (7)
ZS = 1 =⇒

∑
j∈SXij = 0 (mod 2) for i ∈ [n1]. (8)

A. Linear programming relaxation
We now describe a simple LP relaxation of this combina-

torial optimization problem. We relax Xij , YS , ZS ∈ {0, 1}
to Xij , YS , ZS ∈ [0, 1]. If S = {i1, i2, . . . , is} ⊆ [n1] we
relax (7) to

(YS , Xi1j , . . . , Xisj) ∈ P̃s := conv{integer solutions of (7)}.

Similarly, if S = {j1, j2, . . . , js} ⊆ [n2] we relax (8) to

(ZS , Xij1 , . . . , Xijs) ∈ P̃s := conv{integer solutions of (8)}.

These constraints generalize those used for LP decoding of
binary linear codes [11]. Here the additional variables YS
and ZS can turn ‘on’ and ‘off’ the constraint for a given
parity check. The polytopes P̃s have compact linear inequality
descriptions. For s = 1, 2, 3 these are

P̃1 = {(t, x) ∈ [0, 1]2 : x ≤ 1− t}
P̃2 = {(t, x, y) ∈ [0, 1]3 : t− 1 ≤ x− y ≤ 1− t}
P̃3 =

{
(t, x, y, z) ∈ [0, 1]2 : x+ y + z ≤ 3− t,

x− y − z ≤ 1− t, y − x− z ≤ 1− t, z − x− y ≤ 1− t} .

Overall our LP relaxation is as follows:

max
X,Y,Z

∑
j

∑
S∈H1:|S|=j

YS
N1,j

∑
j

∑
S∈H2:|S|=j

ZS

N2,j
(9)

s.t. Xij = X?
ij ∀(i, j) ∈ Ω, Xij ∈ [0, 1] ∀(i, j) /∈ Ω

YS ∈ [0, 1] ∀S ∈ H1, ZS ∈ [0, 1] ∀S ∈ H2

for all S = {i1, . . . , is} ∈ H1 and all j ∈ [n2]

(YS , Xi1j , . . . , Xis,j) ∈ P̃s

for all S = {j1, . . . , js} ∈ H2 and i ∈ [n1]

(ZS , Xij1 , . . . , Xijs) ∈ P̃s.

This relaxation is quite weak, keeping only a small set of
linear inequalities valid for the integer program. Nevertheless,
it seems to perform well in the numerical experiments reported
in Section VI.

B. Modifications for implementation

To reduce the computational effort required, for our exper-
iments we actually solve three LPs in sequence to construct
the sets H1 and H2 that we will pass to the meta-algorithm.
We now briefly sketch this sequence of LPs.

First we solve (9) with H1 = H1,1 (i.e. s1 = 1) and H2 =
H2,1 (i.e. s2 = 1). If Y{i} = 1 (resp. Z{j} = 1) then PΩ(X?)
has a completion with row i (resp. column j) being zero.

We then assume these are correct relations for X? and
restrict to the n′1 × n′2 submatrix X?′ corresponding to the
non-zero rows and columns (and accordingly restrict Ω to the
appropriate Ω′ ⊆ [n′1] × [n′2]). We now seek the weight two
relations among the rows and columns that are consistent with
PΩ′(X?′). To do this we solve (9) for this smaller problem
with H1 = H1,2 and H2 = H2,2. If Y{i1,i2} = 1 (resp.
Z{j1,j2} = 1) then PΩ′(X?′) has a completion with rows i1
and i2 (resp. columns j1 and j2) being identical.

As before we assume these are correct relations for X?

and restrict to an n′′1 × n′′2 submatrix X?′′ of X?′ indexed
by taking one copy of each repeated row (resp. column). The
corresponding set of revealed entries Ω′′ is obtained by taking
(i, j) ∈ Ω′′ if and only if (k, `) ∈ Ω′ for k indexing a row
identical to i, and ` indexing a row identical to j. We now seek
weight three relations among the rows and columns that are
consistent with PΩ′′(X?′′). To do this we solve (9) with H1 =
H1,3 and H2 = H2,3. If Y{i1,i2,i3} = 1 (resp. Z{j1,j2,j3} = 1)
then PΩ′′(X?′′) has a completion with rows i1, i2 and i3 (resp.
columns j1, j2 and j3) summing to zero.

From these three stages (after appropriate re-indexing) we
have constructed (in polynomial time) a collection H1 of row
parity checks and H2 of column parity checks. We pass these
to the meta-algorithm of Section III-A.

VI. NUMERICAL EXPERIMENTS

We conclude by describing two experiments to evaluate
the LP-based method from Section V-B. Each investigates for
which p we can recover a random n×n matrix of rank r from
a random observed set of entries Ω ∼ B([n]× [n], p).

A. Fixed n, varying r

For fixed n = 100, each r = 3, 4, . . . , 10, and each κ =
1.5, 1.75, . . . , 3.5 we carried out the following 15 times:

1) Let U1, U2 ∈ Fn×r
2 be independent with i.i.d. Bernoulli

entries and let X? = U1U
T
2 .

2) Sample Ω ∼ B([n]× [n], κr(2n− r)/n2).
3) Run the algorithm from Section V-B and record whether

or not it successfully completes X? from PΩ(X?).
The results of this experiment are shown on the left in Figure 1.
In particular it appears that as long as κ ≥ 3 (i.e. we
observe about 3r(200− r) entries) then the LP-based method
is typically successful.

Fig. 1. Phase-transition plots for the success of the method of Section V-B
for completing n × n binary matrices of rank r given entries revealed
independently with probability p = κr(2n−r)/n2. The pixel corresponding
to (r, κ) is black if the method failed on all attempts and white if it succeeded
on all attempts. The grayscale intensity indicates the proportion of successful
trials. On the left is the result of 15 trials with n = 100 and r = 3, 4, . . . , 10.
On the right is the result of 10 trials with r = 5 and n = 25, 30, . . . , 100.

B. Fixed r, varying n

For fixed r = 5, each n = 25, 30, . . . , 100, and each
κ = 1.5, 1.75, . . . , 3.5 we carried out, 10 times, the three
steps of Section VI-A. The results of this experiment are
shown on the right in Figure 1. It appears that as long
as κ grows mildly, perhaps logarithmically, with n (i.e. we
observe about 5c log(n)(2n − 5) entries for some constant
c), then the LP-based method is typically successful. Since
log2(Nn,r) ≥ r(2n−r) [8] our results suggest that (for r ≤ 10
and n ≤ 100) our LP-based method is close to optimal.

REFERENCES

[1] E. J. Candés and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 4, pp. 717–772, 2012.

[2] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in Proc. 17th Joint Conf. IEEE Computer and
Comm. Societies (INFOCOM’98), vol. 3. IEEE, 1998, pp. 1257–1264.

[3] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with
side information,” IEEE Trans. Information Theory, vol. 57, no. 3, pp.
1479–1494, 2011.

[4] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Trans. Information Theory, vol. 56, no. 7, pp. 3187–3195, 2010.

[5] H. Esfahanizadeh, F. Lahouti, and B. Hassibi, “A matrix completion
approach to linear index coding problem,” arXiv:1408.3046, 2014.

[6] F. R. Kschischang, “Product codes,” Encyclopedia of Telecommunica-
tions, 2003.

[7] N. Harvey, D. Karger, and S. Yekhanin, “The complexity of matrix
completion,” Proc. 17th ACM-SIAM Symp. Discrete Algorithms (SODA),
pp. 1103–1111, 2006.

[8] V. Y. F. Tan, L. Balzano, and S. C. Draper, “Rank minimization over
finite fields: Fundamental limits and coding-theoretic interpretations,”
IEEE Trans. Information Theory, vol. 58, no. 4, pp. 2018–2039, 2012.

[9] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Graph theory versus
minimum rank for index coding,” in Proc. Intl. Symp. Information
Theory (ISIT 2014). IEEE, 2014, pp. 291–295.

[10] S. Vishwanath, “Information theoretic bounds for low-rank matrix com-
pletion,” in Proc. Intl. Symp. Information Thoery (ISIT 2010). IEEE,
2010, pp. 1508–1512.

[11] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, MIT, 2003.

[12] A. Barg and G. D. Forney, “Random codes: minimum distances and
error exponents,” IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2568–
2573, 2002.

[13] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. American Math. Soc., 2009.

