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Abstract—We analyze an estimator based on the Bregman
divergence for recovery of structured models from additive noise.
The estimator can be seen as a regularized maximum likelihood
estimator for an exponential family where the natural parameter
is assumed to be structured. For all such Bregman denoising
estimators, we provide an error bound for a natural associated
error measure. Our error bound makes it possible to analyze a
wide range of estimators, such as those in proximal denoising
and inverse covariance matrix estimation, in a unified manner.
In the case of proximal denoising, we exactly recover the existing
tight normalized mean squared error bounds. In sparse precision
matrix estimation, our bounds provide optimal scaling with
interpretable constants in terms of the associated error measure.

I. INTRODUCTION

Denoising is the pursuit of removing noise from an observed
signal. Physical properties of a measurement mechanism may
result in different distributional properties for measurement
noise. For instance, in optical devices based on photon count-
ing, the measurement noise is usually Poisson (shot noise). In
statistical model selection, one can think of ‘noise’ as coming
from finite sample approximations of population statistics [1].
Many such noise distributions can be treated in a uniform way
using the formalism of exponential families.

On the other hand, having side information about the
underlying signal usually allows for improved estimation.
Different techniques have been developed for making use of
such side information, or structure. In this work, we focus on
estimation through optimization with penalty functions whose
minimization tend to favor structured signals. Examples of
such approaches are now prevalent in the literature [1], [2].

A. Proximal Denoising

The best understood case of structured signal denoising is
when the noise has independent normally distributed entries
with mean zero and known variance, namely y = x0 + σz
where z ∼ N (0, I). In this case, the regularized maximum
likelihood estimator is the proximal mapping given as

x̂(y) = argmin
x

1

2
∥x− y∥22 +σf(x) (1)

where f is a convex, structure-inducing function. Authors in
[3] studied this estimator for general norms f and provided

upper bounds on the normalized mean squared error (NMSE)
as

1

σ2
Ez∥x̂(x0 + σz)− x0∥22 ≤ Ez dist

2
ℓ2(z, ∂f(x0)) (2)

where ∂f(x0) denotes the subdifferential of f at x0 (see
Definition 5 in Section II) and

disth(z,A) = inf
a∈A

h(z − a) .

By making use of Theorem 4.3 of [4] and other arguments,
they showed that the above upper bound is achieved as σ → 0.

The right hand side in (2) is nicely interpretable in the
Gaussian case z ∼ N (0, I). Namely, in common structured
learning problems such as those with sparse vectors, low-rank
matrices or row-sparse matrices, if the respective structure-
inducing norm f is appropriately scaled [3], then the right hand
side of (2) is scaling with the number of degrees of freedom in
the model [4]. This quantity also arises as the required number
of samples in time-data tradeoffs in denoising [1].

B. Bregman Denoising

The proximal mapping can be generalized by replacing the
squared Euclidean distance with a more general divergence
function; e.g., [5]–[8]. In this work, we consider Bregman
divergences [9] (see Section II-A for background) and consider
the following convex optimization program for denoising

θ̂(x̄) = P (x̄; Ψ, f) := argmin
θ

DΨ(θ,∇ϕ(x̄)) + f(θ) (3)

where, DΨ is the Bregman divergence associated with Ψ, f(·)
is a convex function which encodes the prior information
on θ, and ϕ is the convex conjugate of Ψ. From now
on, we will refer to the above formulation as the Bregman
proximal denoiser, Bregman denoiser for short. It allows for
measurements (denoted by x̄ = x0 + z) to be taken in one
domain and structure to be imposed in another (specifically on
θ0 := ∇ϕ(x0)). We will discuss different interpretations of this
estimation method in Section III. Most importantly, Bregman
denoising can be seen as f -regularized maximum likelihood
(ML) estimation when x̄ = 1

n

∑n
i=1 xi and x1, . . . , xn are

i.i.d. samples from the corresponding canonical exponential
family (see Section II-B for background). Such regularized ML
estimation has been previously studied for different examples
of exponential families; e.g., see [10]–[14]. We discuss our
contribution in the next section.



C. Our Contribution

In this work, we show that a natural error measure for
Bregman denoising can be bounded by the same structure-
dependent quantity that controls the mean-squared error in
proximal denoising. The error measure is defined by the
symmetrized Bregman divergence and is closely related to the
Fisher risk [10] (see also Definition 4 in Section II-B). For
example, see [15] for similar measures.

Proposition 1 (Upper Bound on Error): For the estimator
in (3), and for θ̂ = P (x0 + z; Ψ, f) and θ0 = ∇ϕ(x0),

DΨ(θ̂, θ0) + DΨ(θ0, θ̂)

∥θ̂ − θ0∥2
≤ distℓ2(z, ∂f(θ0)). (4)

The proof of Proposition 1 is given in Section V. At this
stage, we briefly comment on the statement of Proposition 1.
Observe that the left-hand side of (4) is always nonnegative
and symmetric, and is equal to zero only if θ̂ and θ0 are equal.
Moreover, it reduces to the Euclidean distance when squared
Euclidean norm is used for Ψ and, after squaring both sides,
recovers NMSE and the bound in (2) exactly.

When considering the expected value of error over a noise
distribution, the numerator in LHS of (4) can be thought of as
the Fisher risk plus cubic and higher order terms in θ̂ − θ0:

DΨ(θ̂, θ0) + DΨ(θ0, θ̂) = ∥θ̂ − θ0∥2F0
+O(∥θ̂ − θ0∥3) (5)

where F0 is the Fisher information matrix at θ0; see (10).
Using ∥·∥F0 and ∥·∥F−1

0
as a pair of dual norms instead of

the Euclidean norms in (4), gives the following more intrinsic
alternative.

Corollary 2: For the estimator in (3), and for θ0 = ∇ϕ(x0)
and θ̂ = P (x0 + z; Ψ, f), we have

DΨ(θ̂, θ0) + DΨ(θ0, θ̂)

∥θ̂ − θ0∥F0

≤ distF−1
0

(z, ∂f(θ0)) (6)

= inf
g∈∂f(θ0)

√
(z − g)F−1

0 (z − g)

where F0 = Fθ0 is the Fisher information matrix at θ0.
Combining (5) and (6) we get the following bound

∥θ̂ − θ0∥F0 ≤ distF−1
0

(z, ∂f(θ0)) +O(∥θ̂ − θ0∥2)

for the distance between θ̂ and θ0 in Fisher norm (at θ0); see
[10] for related discussions.

II. BACKGROUND

A. Bregman Divergence

Definition 3 (Bregman divergence [16]): Let Ψ : Θ → R be
a strictly convex function defined on a convex set Θ ⊆ Rp such
that Ψ is differentiable on the relative interior of Θ, denoted
by riΘ and assumed to be nonempty. The Bregman divergence
DΨ : Θ× riΘ 7→ [0,∞) is defined as

DΨ(θ1, θ2) := Ψ(θ1)−Ψ(θ2)− ⟨∇Ψ(θ2), θ1 − θ2⟩ (7)

where ∇Ψ(θ) is the gradient vector of Ψ evaluated at θ.

The squared Euclidean distance, Mahalanobis distance, KL
divergence, and logistic loss are all Bregman divergences.

Bregman divergences are nonnegative, convex in their first
argument, and linear in the underlying convex function (Ψ in
the above). Moreover, they enjoy a useful duality relationship.
Denote by ϕ(µ) := supθ∈Θ ⟨µ, θ⟩−Ψ(θ) the convex conjugate
of Ψ. Then, ∇Ψ and ∇ϕ are inverse maps, and the following
duality relationship holds:

Dϕ(µ1, µ2) = DΨ(∇ϕ(µ2),∇ϕ(µ1)). (8)

B. Exponential Families

In this section we provide a brief review of exponential
families. We will mainly follow the presentation in [16,
Section 4.1]. Consider a measure space (Ω,B, P0), and a
measurable mapping t(ω) from Ω to Rp with dP0(ω) =
p0(t(ω))dt(ω), where t(ω) does not satisfy any linear con-
straints with probability 1 (for the representation to be min-
imal). Let Θ (natural parameter space) be the (convex) set
of θ ∈ Rp such that

∫
ω∈Ω

exp(⟨θ, t(ω)⟩)dP0(ω) < ∞ and
define the log-partition function Ψ : Θ → R by Ψ(θ) =
log

(∫
ω∈Ω

exp(⟨θ, t(ω)⟩) dP0(ω)
)

. A family of probability
distributions parametrized by θ ∈ Θ, such that the probability
density functions with respect to the measure dt(ω) can be
written as

p(ω; θ) = exp(⟨θ, t(ω)⟩ −Ψ(θ))p0(t(ω)),

is called an exponential family with natural statistic t(ω),
natural parameter θ, and natural parameter space Θ. We
assume Θ is open, hence the exponential family is regular.

By the change of variables x = t(ω), a regular exponential
family in its canonical form can be equivalently expressed as

p(Ψ,θ)(x) = exp (⟨x, θ⟩ −Ψ(θ)) p0(x) (9)

where x is a minimal sufficient statistic for the family. For ev-
ery regular exponential family, there exists a unique Bregman
divergence associated to it such that (9) can be expressed via

⟨x, θ⟩ −Ψ(θ) = (⟨∇Ψ(θ), θ⟩ −Ψ(θ)) + ⟨x−∇Ψ(θ), θ⟩
= ϕ(∇Ψ(θ)) + ⟨x−∇Ψ(θ), θ⟩
= −Dϕ(x,∇Ψ(θ)) + ϕ(x)

= −DΨ(θ,∇ϕ(x)) + ϕ(x)

where ϕ is the convex conjugate of Ψ and we used (8).
The Fisher information associated with an exponential fam-

ily is defined as the following positive semidefinite matrix,

Fθ := −Eθ∇2 log p(Ψ,θ)(x) .

In a canonical exponential family model, ∇2 log p(Ψ,θ)(x) =
−∇2Ψ(θ) is a constant, which gives

Fθ = ∇2Ψ(θ). (10)

Definition 4: The induced Fisher risk at θ0 ∈ riΘ is defined
as ∥θ − θ0∥2F0

= (θ − θ0)
TF0(θ − θ0) where F0 = Fθ0 .

This is a norm because Ψ is strictly convex, so its Hessian is
invertible on the relative interior of its domain. The dual to
the norm ∥θ − θ0∥F0 is then given by ∥θ − θ0∥F−1

0
.



C. Regularization for Structured Learning

Definition 5 (subdifferential): For any proper, convex func-
tion f and any x ∈ domf , the subdifferential of f at x is

∂f(θ) = {g : f(θ′) ≥ f(θ) + ⟨g, θ′ − θ⟩ ∀θ′} .

The expected squared distance to the subdifferential for Gaus-
sian noise, i.e. Ezdist

2(z, ∂f(x0)) where z ∼ N (0, I), comes
up frequently in the structured learning literature. It is tightly
connected to the notions of statistical dimension [4] and Gaus-
sian width [17]. For example, the statistical dimension of the
tangent cone to f at x is equal to Ezdist

2(z, cone(∂f(x0))),
where cone is the operation of taking the conic hull. This
quantity, in the case of Gaussian noise, is in turn close to
Ezdist

2(z, λ∂f(x0)) for an appropriate λ [4]. For example,
in the case of f(·) = λ∥·∥1, for λ ≥

√
2 log p ≥ Ez[∥z∥∞],

the statistical dimension is the number of nonzeros in x.

III. INTERPRETATIONS OF BREGMAN DENOISER

A. Regularized Maximum Likelihood Estimator

Using the connection between exponential families and
Bregman divergences (see Section II-B), the optimization
problem in (3) can be seen as a f -regularized ML estimator for
the natural parameter of an exponential family given i.i.d. sam-
ples. More specifically, given n samples, x1, x2, . . . , xn, drawn
from the distribution p(Ψ,θ0), and defining x̄ = 1

n

∑n
i=1 xi, the

ML estimate, θ̂ML, for θ0 is

argmax
θ

1

n

n∑
i=1

log ℓ(xi | θ) = argmax
θ

1

n

n∑
i=1

⟨xi, θ⟩ −Ψ(θ)

= argmin
θ

Dϕ(x̄,∇Ψ(θ))

= argmin
θ

DΨ(θ,∇ϕ(x̄)) (11)

where the last equality holds by (8). Notice that (11) is
a convex optimization problem. Regularizing (11) with a
structure-inducing function f gives the Bregman denoiser.

Our main results (stated in Section I-C) bound the error
between θ̂ML and θ0, in terms the deviation between the true
sufficient statistics ∇Ψ(θ0) and x̄.

B. Regularized Loss Minimization

While (3) is designed for denoising a model contaminated
with noise drawn from the corresponding exponential family
(as discussed in Section III-A), the performance guarantee
of Proposition 1, in (4), is valid for any z. Therefore, (3)
can be seen as a regularized loss minimization estimator for
denoising a structured model with arbitrary noise. While we
lose the maximum likelihood interpretation, the bounds still
hold and are useful for understanding the performance of such
an estimator. A similar approach has been proposed in [10].

C. Mean Estimation with Composite Regularization

The Bregman denoiser in (3) can be equivalently stated as

x̂ = argmin
x

Dϕ(x̄, x) + f(∇ϕ(x)) (12)

and can be thought of as a different (possibly nonconvex)
regularized loss minimization, where f(θ) = f(∇ϕ(x)) is a
composite penalty [18] and imposes the structure encoded by
f to a transformation of x.

For example, when Ψ is a strictly convex quadratic function,
namely Ψ(θ) = 1

2θ
TAθ for a positive definite matrix A, (3)

and (12) can be equivalently expressed as

θ̂ = argminθ
1
2 (θ − θ̄)TA(θ − θ̄) + f(θ) or (13)

x̂ = argminx
1
2 (x− x̄)TA−1(x− x̄) + f(A−1x) (14)

through θ̄ = A−1x̄ and θ̂ = A−1x̂. As an instance, one might
think of the analysis-based problem in the compressive sensing
literature [19] this way. While both estimators in the above are
convex (in θ and x respectively), in general, (12) is not convex.
However, in some cases, (see, e.g., [20]) we may still retain
convexity over parts of the space. This may be desirable if we
want to impose additional convex structural constraints on x.

IV. EXAMPLE: SPARSE PRECISION MATRIX ESTIMATION

In this section, we illustrate our main result in the case
of ℓ1-regularized ML estimator for sparse inverse covariance
(precision) matrix estimation in Gaussian graphical models;
e.g., see [2] for statement of the problem. Our intention is to
show that this problem can be analyzed in a straightforward
way using our general error bound for Bregman denoising.

Let y1, . . . , yn ∼ N (0,Σ0) be i.i.d. samples from a p-
dimensional Gaussian distribution. Since the population mean
is assumed to be zero, the sample sufficient statistic is given
by Sn := 1

n

∑n
i=1 yiy

T
i and is distributed as a scaled Wishart

matrix with n degrees of freedom and scale matrix Σ0, namely
nSn ∼ W(n,Σ0). Since the distribution W(n,Σ0) has mean
nΣ0, we have that Sn = Σ0 +

1
nZ where Z ∼ W(n,Σ0) has

a centered Wishart distribution.
The ℓ1-regularized ML estimator for the precision J is

Ĵn = argmaxJ log det(J)− ⟨J, Sn⟩ − λ√
n
∥J∥1, (15)

which is exactly the Bregman denoiser in (3) for f(·) =
λ√
n
∥·∥1 and Ψ(·) = − log det(·). Applying Proposition 1 gives

the following result. The proof is in Appendix A.
Proposition 6: The estimator in (15) satisfies

⟨Ĵn − Σ−1
0 ,−Ĵ−1

n +Σ0⟩
∥Ĵn − Σ−1

0 ∥F
≤ 1

n
dist(Z, λ

√
n∂∥Σ−1

0 ∥1) . (16)

Denote by k the number of nonzero entries of Σ−1
0 . If p ≥ 9,

C > 0, λ ≥ 20∥Σ0∥∞
√

(2C + 4) log p, and n > (2C +
4) log p, then with probability at least 1− 2p−C ,

⟨Ĵn − Σ−1
0 ,−Ĵ−1

n +Σ0⟩
∥Ĵn − Σ−1

0 ∥F
≤ 2λ

√
k

n
. (17)

For ∆ := Ĵn − Σ−1
0 , observe that

LHS of (17) = ⟨∆,Σ0∆Ĵ−1
n ⟩/∥∆∥F

= ⟨vec(∆), (Ĵ−1
n ⊗ Σ0)vec(∆)⟩/∥∆∥F

≥ σmin(Σ0)

σmax(Ĵn)
∥Ĵn − Σ−1

0 ∥F .



V. PROOF OF MAIN RESULT

Before analyzing the estimator in (3), and presenting the
proof of Proposition 1, let us discuss three main ingredients.

a) Operator notation: After expanding the definition of
Bregman divergence above, and by optimality, we get 0 ∈
∇Ψ(θ̂)−∇Ψ(∇ϕ(x̄)) + ∂f(θ̂) which implies

θ̂ = (∂f +∇Ψ)−1(x̄) . (18)

For example, see Proposition 3.22 of [21].
b) Exactly Denoisable Perturbations (EDP): Here we

define the set of perturbations to a given point x0 which will
be mapped back to the corresponding natural parameter for x0

by P (·; Ψ, f). Define,

EDP(x0; Ψ, f) := {w : P (x0 + w) = ∇ϕ(x0)}
= {w : (∂f +∇Ψ)−1(x0 + w) = (∇Ψ)−1(x0)}
= {w : ∃u s.t. x0 + w ∈ ∂f(u) +∇Ψ(u) , x0 = ∇Ψ(u)}
= ∂f((∇Ψ)−1(x0)) = ∂f(∇ϕ(x0))

where the last equality can be established by showing that
each side is included in the other.

c) (∇Ψ)-Firm Nonexpansiveness: For θ1 = P (y1) and
θ2 = P (y2) we have

⟨y1 − y2, θ1 − θ2⟩ ≥ ⟨∇Ψ(θ1)−∇Ψ(θ2), θ1 − θ2⟩ . (19)

The definition and proof can be found in Definition 3.4 and
Proposition 3.22 of [21], where we additionally use the fact
that ∇Ψ(∇ϕ(y)) = y.

We are now ready to prove Proposition 1 and provide an
upper bound on the error of the estimator in (3).
Proof. [of Proposition 1] Consider any w ∈ EDP(x0) and

θ0 := ∇ϕ(x0) = P (x0 + w) , θ̂ = P (x0 + z).

Then, from the (∇Ψ)-firm nonexpansiveness property with
y1 = x0 + z, y2 = x0 + w, θ1 = θ̂ and θ2 = θ0, we have

⟨z − w, θ̂ − θ0⟩ ≥ ⟨∇Ψ(θ̂)−∇Ψ(θ0), θ̂ − θ0⟩. (20)

Using the Cauchy-Schwarz inequality, and taking the infimum
over all possible w ∈ EDP(x0), we get

⟨∇Ψ(θ̂)−∇Ψ(θ0), θ̂ − θ0⟩
∥θ̂ − θ0∥2

≤ dist(z, ∂f(θ0)).

The inner product in the numerator can be written as

⟨∇Ψ(θ̂)−∇Ψ(θ0), θ̂ − θ0⟩ = DΨ(θ̂, θ0) + DΨ(θ0, θ̂) ,

giving the claimed bound.

The two terms in the inner product on the LHS of (20)
can be separated in many different ways, each leading to a
different final bound. We choose to use the Cauchy-Schwarz
inequality here. Moreover, one can use the four-point property
of Bregman divergence or the Fenchel inequality (for pairs of
conjugate functions) to express the inner product on the LHS
of (20), leading to different bounds.
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Fig. 1. Simulation results for (a) sparse mean estimation, and for (b) sparse
precision matrix estimation in Section VI.

Corollary 7: For the estimator in (3), and for θ0 = ∇ϕ(x0)
and θ̂ = P (x0 + z; Ψ, f), and dual norms h(·) and hd(·),

DΨ(θ̂, θ0) + DΨ(θ0, θ̂)

h(θ̂ − θ0)
≤ disthd(z, ∂f(θ0)) . (21)

We briefly discuss two interesting choices for norm h. One is
to use f itself. Then, as every subgradient have dual norm at
most equal to 1, we can use the triangle inequality to get

DΨ(θ̂, θ0) + DΨ(θ0, θ̂) ≤ (1 + fd(z))f(θ̂ − θ0) . (22)

The other choice is to use the norm associated to the Fisher
risk which provides us with the bound in Corollary 2.

VI. NUMERICAL EXPERIMENTS

We present two numerical experiments. First, we consider
structured mean estimation for a family of multivariate nor-
mal distributions with a given covariance matrix Σ. Given
x1, . . . , xn ∼ N (x0,Σ), we would like to estimate x0 ∈ Rp

using the prior information that θ0 = Σ−1x0 is sparse. The
corresponding regularized log-likelihood estimator, where θ̄ :=
Σ−1x̄ and x̄ := 1

n

∑n
i=1 xi is given as θ̂n = argminθ

1
2 (θ −

θ̄)TΣ(θ − θ̄) + λ√
n
∥θ∥1, and corresponds to a Bregman

denoiser with Ψ(θ) = 1
2θ

TΣθ and f(θ) = λ√
n
∥θ∥1. Note

that x̄ ∼ N (x0,
1
nΣ) and can be expressed as x̄ = x0 +

1√
n
z

where z ∼ N (x0,Σ). Using our bound in Corollary 2 we get

(θ̂n − θ0)
TΣ(θ̂n − θ0) ≤ inf

g∈∂∥θ0∥1

(z − g)TΣ−1(z − g). (23)

Figure 1a plots the left and right hand side of (23), averaged
over 100 instances of z, for different values of n. In our
experiment, p = 100, card(x0) = 10, and λ =

√
2 log p∥Σ∥op.

For the second experiment, we consider sparse precision
matrix estimation described in Section IV, where p = 50 and
Σ−1

0 has 590 nonzero entries corresponding to the edges of
a graph constructed as in Example 1 of [22]. We solve (15)
using QUIC software [23], for 100 random trials. Figure 1b
shows the left and right hand sides of (16) (scaled by

√
n) for

different numbers of samples n = 20, 30, 40 (overlayed) and
different values of λ.

The experiment suggests that the proposed error measure
and our upper bound closely track each other across a wide
range of λ. Note that, as λ → 0, the error measure (LHS)
remains bounded. One can see this from the experiment, or
from (16) noting that the RHS approaches 1

n∥Z∥F in the limit.
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APPENDIX

A. Details: Sparse Precision Matrix Estimation in Section IV

Proof. [of Proposition 6] Define J0 := Σ−1
0 , S := supp(Σ−1

0 )
and k := card(Σ−1

0 ) = |S|. For G ∈ ∂∥J∥1⊂ [−1, 1]p×p,{
Gij = sign(Jij) if Jij ̸= 0

Gij ∈ [−1, 1] if Jij = 0 .

Define λ′ := λ
√
n. For a given Z, if λ′ ≥ ∥Z∥∞ then

dist2(Z, λ′∂∥J0∥1) = inf
G∈λ′∂∥J0∥1

∥Z −G∥2F

= inf
G∈λ′∂∥J0∥1

∑
(i,j)∈S

(Zij − λ′sign((J0)ij))
2 +

∑
(i,j)̸∈S

(Zij −Gij)
2

=
∑

(i,j)∈S

(Zij − λ′sign((J0)ij))
2

≤ k(∥ZS∥∞+λ′)2 ≤ 4k(λ′)2 = 4kλ2n.

To conclude the proof, we apply Lemma 8, establishing a high
probability bound on ∥Z∥∞, when Z ∼ W(n,Σ0), under the
stated assumptions on n and p and C.

Lemma 8: Let Z ∼ W(n,Σ0) be a p × p matrix with
centered Wishart distribution. If p ≥ 9, C > 0, and n >
(2C + 4) log p then

Pr
[
∥Z∥∞ ≥ 20∥Σ0∥∞

√
(2C + 4) log p

√
n
]
≤ 2p−C .

Proof. For a p× p matrix X , let X{i,j} denote the principal
submatrix indexed by rows i and j and columns i and j. Then
Z{i,j} ∼ W(n, (Σ0){i,j}). Observe that

∥Z∥∞ = max
1≤i,j≤p

∥Z{i,j}∥∞ ≤ max
1≤i,j≤p

∥Z{i,j}∥op

≤ max
1≤i,j≤p

∥(Σ0){i,j}∥op max
1≤i,j≤p

∥W{i,j} − nI2×2∥op

where W ∼ W(n, I2×2) is a standard 2 × 2 Wishart matrix.
The following tail bound for the extreme eigenvalues of
Wishart matrices is from [24, Lemma A.1]:

Pr
[
∥W{i,j} − nI2×2∥op≥ 2nϵδ,n

]
≤ δ

where ϵδ,n = 4
√
ν + ν, ν =

2 log 9+log( 2
δ )

n . By a union bound,

Pr
[
max1≤i,j≤p∥W{i,j} − nI2×2∥op ≥ 2nϵδ,n

]
≤ p2δ.

Putting δ = 2p−C−2 we observe that if p ≥ 9 then 2/δ > 81
so that 2 log 9+ log(2/δ) < 2 log(2/δ) = 2(C +2) log p < n.
Hence ϵδ,n < 5

√
(2C + 4)(log p)/n. Since each (Σ0){i,j} is

positive semidefinite,

∥(Σ0){i,j}∥op≤ tr(Σ0){i,j} ≤ 2∥(Σ0){i,j}∥∞

and so max1≤i,j≤p∥(Σ0){i,j}∥op ≤ 2∥Σ0∥∞. Putting these
observations together gives the stated result.


