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Abstract— Identifying a subspace containing signals of inter-
est in additive noise is a basic system identification problem.
Under natural assumptions, this problem is known as the Frisch
scheme and can be cast as decomposing an n × n positive
definite matrix as the sum of an unknown diagonal matrix
(the noise covariance) and an unknown low-rank matrix (the
signal covariance). Our focus in this paper is a natural class of
random instances, where the low-rank matrix has a uniformly
distributed random column space.

In this setting we analyze the behavior of a well-known
convex optimization-based heuristic for diagonal and low-rank
decomposition called minimum trace factor analysis (MTFA).
Conditions for the success of MTFA have an appealing geomet-
ric reformulation as finding a (convex) ellipsoid that exactly
interpolates a given set of n points. Under the random model,
the points are chosen according to a Gaussian distribution.

Numerical experiments suggest a remarkable threshold phe-
nomenon: if the (random) column space of the n × n low-
rank matrix has codimension as small as 2

√
n then with high

probability MTFA successfully performs the decomposition
task, otherwise it fails with high probability. In this work we
provide numerical evidence and prove partial results in this
direction, showing that with high probability MTFA recovers
such random low-rank matrices of corank at least cnβ for
β ∈ (5/6, 1) and some constant c.

I. INTRODUCTION

Structured matrix decomposition and recovery problems
have received a much attention recently in the context
of system identification. Often the system to be identified
is represented by a structured matrix (in the linear time-
invariant case this may be a Hankel matrix or operator) the
rank of which is a natural measure of system complexity
(such as Macmillan degree), e.g., [2], [3], [4]. Common
problem formulations are to recover a low-rank matrix from a
small number of linear measurements [5], [6] or decompose
a matrix as the sum of a low-rank part and a structured
disturbance (of possibly large magnitude) [7].

A typical approach is to formulate the problem of interest
as a rank minimization problem and then convexify the
problem by replacing the rank function in the objective
with the nuclear norm [5], [8]. A key intuition that has
developed from this line of work is that the nuclear norm
heuristic works well for ‘typical’ problem instances in high
dimensions. This can be formalized by putting a natural
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measure on problem instances and showing that the method
works well on a set of large measure. Stated another way we
can consider a natural random ensemble of problem instances
(indexed by dimension) and ask that the heuristic work well
with ‘high probability’.

A. The Frisch scheme and matrix decompositions

In this paper we take this approach to a classical identi-
fication problem known as the Frisch scheme [9] or, in the
statistics literature, factor analysis [10].

Suppose U ⊂ Rn is a subspace (the signal subspace), u
(the signal) is a zero-mean random variable taking values
in U , and w (the noise) is a zero-mean random variable
independent of u. Consider observing x = u+w and assume
we have access to the covariance X := E[xxT ] of x.

In general we cannot hope to identify U (the signal
subspace) from X without additional assumptions on w and
u. In the Frisch scheme [9] we assume w has diagonal
covariance D := E[wwT ] (or that we know a basis in which
it is diagonal). Since u takes values in U , L := E[uuT ]
has column space U and so is rank deficient. Identifying
a subspace in noise under the Frisch scheme assumption
can be cast as finding a decomposition X = L + D of the
covariance X of x as the sum of a diagonal matrix D and a
rank-deficient matrix L. In particular, we are often interested
in finding such a decomposition with the minimum rank
of L, corresponding to identifying the lowest dimensional
subspace consistent with the data X and our assumptions.

B. Minimum trace factor analysis

A natural tractable convex optimization-based method to
recover D and L from their sum X is minimum trace factor
analysis (MTFA):

min
D,L

tr(L) s.t. X = D + L, L � 0, D diagonal.

This heuristic dates to the work of Ledermann in 1940 [11],
and is a natural precursor to the modern nuclear norm-based
approach to developing convex optimization-based methods
for rank minimization problems [8].

We investigate how well MTFA performs diagonal and
low-rank decompositions on problem instances where the
column space of L is uniformly distributed (i.e., with respect
to Haar measure) on codimension k subspaces of Rn. This
leads us to the central problem considered in this paper.

Problem 1: Let X = D+L where the column space of L
is uniformly distributed on codimension k subspaces of Rn.
For which pairs (n, k) does MTFA correctly decompose X
with high probability?



We would like to emphasize that we have stated the problem
in terms of the codimension of the column space of L (or
equivalently the corank of L). In particular, for a fixed n,
we are interested in the smallest k such that MTFA correctly
decomposes ‘most’ matrices that are the sum of a diagonal
matrix and a corank k positive semidefinite matrix.

In Problem 1 and throughout the paper, we often refer to
statements indexed by n and k (with n ≥ k) holding ‘with
high probability’ (abbreviated as w.h.p. in the sequel). By
this we mean that there are positive constants c1, c2 and β
such that for large enough n and k the statement holds with
probability at least 1− c1e−c2k

β

.

C. Geometric interpretations

The diagonal and low-rank decomposition problem is
particularly interesting because it is closely related to an
interpolation problem with an appealing geometric interpre-
tation. Given a k×k symmetric positive semidefinite matrix
Y , we call the level sets {x ∈ Rk : xTY x = 1} ellipsoids.
Note that these ellipsoids are always centered at the origin,
and may be ‘degenerate’. The geometric interpretation of
Problem 1 turns out to be the following problem of fitting
an ellipsoid to random Gaussian points.

Problem 2: Let v1, v2, . . . , vn be independent standard
(zero mean, identity covariance) Gaussian vectors in Rk.
For which pairs (n, k) is there an ellipsoid passing exactly
through all of the points vi w.h.p.?
If we fix the number of points n, it is easier to fit an ellipsoid
to n points in a larger dimensional space. As such we are
interested in the smallest k such that we can fit an ellipsoid
to n standard Gaussian points in Rk with high probability.

D. Numerical evidence and a conjecture

Numerical simulations (detailed in Section IV) strongly
suggest there is a very nice answer to the equivalent Prob-
lems 1 and 2. Based on the evidence in Figure 1 we make
the following (equivalent) conjectures.

Conjecture 1 (Random diagonal/low-rank decomposition):
With high probability MTFA successfully decomposes the
sum of a diagonal matrix and a matrix with column space
uniformly distributed on codimension k subspaces of Rn as
long as n . k2/4.

Conjecture 2 (Random ellipsoid fitting): With high prob-
ability there is an ellipsoid passing through n standard
Gaussian points in Rk as long as n . k2/4.
(Here we use the notation n . f(k) to mean that n ≤
f(k) + g(k) where limn,k→∞ g(k)/n = 0.)

To gain intuition for how strong these conjectured results
are, it is instructive to substitute values for n and k into the
statement of the conjectures. Putting n = 1000, and k = 65
we see that MTFA can correctly recover ‘most’ matrices of
rank up to n − k = 935 (hardly just low rank matrices).
Furthermore, we can fit an ellipsoid, with high probability
to up to 1000 Gaussian points in R65.

An easy dimension counting argument (see Section II-B)
shows that the probability of being able to fit any quadratic
surface, not necessarily an ellipsoid, to n >

(
k+1
2

)
∼ k2/2

points in Rk is zero. Similarly if n >
(
k+1
2

)
the diagonal

and low-rank decomposition problem is not even generically
locally identifiable [12]. Yet if we decrease n, the number of
points, from k2/2 to k2/4, we can fit an ellipsoid to them
with high probability. Similarly, if we increase the corank k
of the low-rank matrix from

√
2n to

√
4n we can correctly

perform diagonal and low-rank matrix decompositions using
a tractable convex program with high probability.

E. Our results

At present we are not able to establish Conjectures 1 and 2.
Nevertheless in Section V of this paper we outline a proof
of the following weaker results (which are equivalent).

Theorem 1: Fix α ∈ (0, 1/6). There are absolute positive
constants C, c̄, c̃ such that for sufficiently large n and k
satisfying n ≤ Ck

6
5 (1−α) MTFA correctly decomposes the

sum of a diagonal matrix and a low-rank matrix with column
space uniformly distributed on codimension k subspaces of
Rn with probability at least 1− c̄ne−c̃k3α (i.e. w.h.p.).

Theorem 2: Fix α ∈ (0, 1/6). There are absolute positive
constants C, c̄, c̃ such that for sufficiently large n and k
satisfying n ≤ Ck

6
5 (1−α), there is an ellipsoid passing

through n standard Gaussian vectors in Rk with probability
at least 1− c̄ne−c̃k3α (i.e. w.h.p.).

In previous work we have given simple deterministic
conditions for the ellipsoid fitting problem [13] based on
a notion of the coherence of a subspace (see Section V-A).
These conditions can only be satisfied if n ≤ 2k, i.e., the
number of points is at most twice the dimension k of the
space in which they live. By comparison, the above results
establish much stronger scaling—we can have a number of
points in Rk that grows superlinearly with k and still fit an
ellipsoid with high probability.

F. Outline

In Section II we recall the relationships from [13] between
the analysis of MTFA and the ellipsoid fitting problem. From
that point on we focus on the ellipsoid fitting problem. We
discuss different methods for constructing ellipsoids (and
hence obtaining sufficient conditions for the problems of in-
terest) in Section III followed by our numerical experiments
in Section IV. Section V follows with an outline of our proof
of Theorem 2.

II. RELATING MTFA AND ELLIPSOID FITTING

A. Notions of ‘success’ for MTFA

We now fix some terminology related to when MTFA
is successful in performing diagonal and low-rank decom-
positions. We are interested in understanding when MTFA
correctly decomposes a matrix X made up as the sum of
a diagonal matrix D and a low-rank positive semidefinite
matrix L, and hence correctly identifies the column space
of the low-rank matrix. It is a straightforward consequence
of the optimality conditions for MTFA [14] that whether
MTFA correctly decomposes X = D + L depends only on
the column space of L, motivating the following definition.



Definition 1: A subspace U is recoverable by MTFA if for
any diagonal matrix D and any positive semidefinite matrix
L with column space U , the optimum of MTFA with input
X = D + L is (D,L).
When considering random problem instances, we are inter-
ested in whether ‘most’ codimension k subspaces of Rn are
recoverable by MTFA, a notion formalized as follows.

Definition 2: A pair (n, k) is recoverable by MTFA with
high probability if a uniformly distributed codimension k
subspace of Rn is recoverable by MTFA w.h.p.

B. Ellipsoid fitting

Consider the following elementary geometric problem.
Problem 3 (Ellipsoid fitting): Given a collection of points

v1, v2, . . . , vn ∈ Rk, does there exist an ellipsoid passing
exactly through them?

Note that the property of a collection of points having
an interpolating ellipsoid is invariant under invertible linear
transformations of Rk. As such, whether we can fit an
ellipsoid to v1, v2, . . . , vn ∈ Rk depends only on a subspace
associated with the points. This subspace is the column space
of the n × k matrix V with rows given by the vi. This
motivates the following definition (from [13]).

Definition 3: A subspace V of Rn has the ellipsoid fitting
property if whenever V is an n×k matrix with columns that
are a basis for V there is an ellipsoid in Rk passing through
the rows of V (thought of as points in Rk).
In the random setting, we are interested in the pairs (n, k)
such that ‘most’ dimension k subspaces of Rn have the
ellipsoid fitting property, for which we use the following
terminology.

Definition 4: A pair (n, k) has the ellipsoid fitting prop-
erty with high probability if a uniformly distributed dimen-
sion k subspace of Rn has the ellipsoid fitting property w.h.p.
Because the subspace corresponding to n Gaussian points
in Rk is uniformly distributed, the random ellipsoid fitting
problem (Problem 2) exactly corresponds to determining
which pairs (n, k) have the ellipsoid fitting property w.h.p.

There is a simple upper bound on the number n of random
points v1, . . . , vn to which we can fit an ellipsoid in Rk.
In order to fit an ellipsoid it is necessary that there is a
symmetric matrix Y (not necessary positive semidefinite)
satisfying vTi Y vi = 1 for all i. This imposes n independent
(for random, hence suitably generic, points) linear equations
on Y which can only be satisfied if n ≤

(
k+1
2

)
.

C. Relating ellipsoid fitting and MTFA

In previous work [13] we established the following link
between the recovery properties of MTFA and the ellipsoid
fitting problem.

Proposition 1: A subspace U is recoverable by MTFA if
and only if U⊥ has the ellipsoid fitting property. A pair
(n, k) is recoverable by MTFA w.h.p. if and only if it has
the ellipsoid fitting property w.h.p.
The proof of the first statement follows from the optimality
conditions for MTFA. The second statement follows from
the definitions and the observation that if U is uniformly

distributed on k codimensional subspaces of Rn then its
orthogonal complement U⊥ is uniformly distributed on k
dimensional subspaces of Rn.

From now on, rather than discussing both MTFA and
ellipsoid fitting in parallel, we focus only on the ellipsoid
fitting formulation of the problem.

III. CONSTRUCTING ELLIPSOIDS

We can determine if there is an ellipsoid passing through
the points v1, v2, . . . , vn ∈ Rk by solving a semidefinite fea-
sibility problem. In this section we present that semidefinite
program and a simple projection-based method to solve it.
We also explain some simpler least-squares based techniques
for fitting ellipsoids that give sufficient conditions for a
collection of points to have an interpolating ellipsoid.

A. The semidefinite feasibility problem

Deciding whether there is an ellipsoid passing through the
points v1, v2, . . . , vn ∈ Rk is clearly equivalent to deciding
whether there exists

Y � 0 such that vTi Y vi = 1 for i = 1, 2, . . . , n. (1)

Geometrically, this is equivalent to deciding whether the
positive semidefinite cone and an affine subspace L of k×k
symmetric matrices have non-empty intersection.

A simple way to solve such decision problems is by alter-
nating projection. Starting from an initial symmetric k × k
matrix Y0, define a sequence Yt by alternately performing
the Euclidean projection onto L and the Euclidean projection
onto the positive semidefinite cone. It is well known that this
sequence converges if and only if the two sets intersect and,
moreover, converges to a point in their intersection.

The projection onto the positive semidefinite cone is
Πpsd(Y ) =

∑n
i=1(λi)+viv

T
i where Y =

∑n
i=1 λiuiu

T
i is

an eigendecomposition of Y and (t)+ = max{t, 0}.
To concisely describe the projection onto L, observe that

L = {Y ∈ Sk : A(Y ) = 1} where we define the linear map

A : Sk → Rn by [A(Y )]i = vTi Y vi. (2)

The adjoint A∗ : Rn → Sk of the map A is A∗(x) =∑n
i=1 xiviv

T
i , and its pseudoinverse is A† = A∗(AA∗)−1.

The Euclidean projection onto L is then

ΠL(Y ) = A†(1) + (Y −A†A(Y )). (3)

B. Least-squares based constructions

If we seek only sufficient conditions on a set of points that
ensure there is an ellipsoid passing through them, we need
not directly solve the semidefinite feasibility problem (1). A
simpler alternative is to start with a symmetric matrix Y0
which is certainly positive definite (and satisfies vTi Y0vi ≈ 1
for all i) and project it onto the subspace L of symmetric
matrices Y that do satisfy vTi Y vi = 1 exactly for all i. If we
are lucky and the projection does not change Y0 too much,
the resulting symmetric matrix is still positive semidefinite,
and we have constructed an ellipsoid passing through the
points. If this method fails, we do not know whether there is
an ellipsoid passing through the points. This idea is behind



many of the dual certificate construction methods in the
sparse recovery literature.

We now formalize this construction. Given a set of points,
v1, v2, . . . , vn ∈ Rk, let A : Sk → Rn be defined as in (2). If
Y0 is our initial ‘guess’ then the corresponding least squares
construction is simply Y = ΠL(Y0). If Y � 0 then we have
found an ellipsoid passing through the points.

We typically take Y0 = A∗(η1) = η
∑n
i=1 viv

T
i for some

positive scalar η (chosen so that Y0 approximately fits the
points). This is clearly positive definite and is well adapted
to the position of the points. Then from (3) the least squares
construction is

Y = A†(1).

This construction is not invariant in the sense that it depends
on the choice of points, not just on the subspace corre-
sponding to the points. To obtain an invariant construction,
we can first put the points in isotropic position, i.e. change
coordinates so that

∑n
i=1 viv

T
i = I . We call the least squares

construction based on this choice of points the isotropic
construction.

IV. NUMERICAL EXPERIMENTS

In this section we describe our numerical experiments.
These have two primary aims. The first is to determine,
experimentally, which pairs (n, k) have the ellipsoid fitting
property w.h.p., giving support for Conjecture 2. The second
is to determine for which pairs (n, k) we can find an ellipsoid
using the simple least squares-based methods described in
Section III-B, providing evidence that the least squares
construction is a useful proof technique.

For each n = 100, 101, . . . , 1000 and each k =
b2
√
nc, . . . , n we repeated the following procedure 10 times:

1) Sample an n×k matrix V with i.i.d. standard Gaussian
entries and let Q be an n×k matrix with columns that
are an orthonormal basis for the column space of V .

2) Try to fit an ellipsoid in three ways
• by solving the semidefinite feasibility problem (1)

using alternating projections (see Section III-A)
• by the least squares construction applied to

– the rows of Q (the isotropic construction)
– the rows of V .

We record the proportion of trials, for each pair (n, k),
where each method successfully fits an ellipsoid. Figure 1
shows the results. We see a clear phase transition between
being able and unable to fit an ellipsoid to random Gaussian
points. Furthermore, superimposed on the phase transition
plot for the feasibility problem is the curve n = k2/4,
providing supporting evidence for the random ellipsoid fitting
conjecture (Conjecture 2).

As expected, directly solving the feasibility problem out-
performs both of the least squares constructions, with the
isotropic least squares construction outperforming the ver-
sion applied directly to the Gaussian points. Both seem to
successfully fit an ellipsoid to a number of points growing
superlinearly, and perhaps even quadratically, with the di-
mension.

Fig. 1. Phase transition plots for three methods of fitting an ellipsoid to
n standard Gaussian vectors in Rk . The top plot corresponds to solving
the semidefinite feasibility problem, showing the pairs (n, k) that have the
ellipsoid fitting property w.h.p. For the middle plot and bottom plots we
use the isotropic and Gaussian least squares constructions, respectively. In
each case the cell corresponding to (n, k) is white or dark gray respectively
if we found an ellipsoid for all or no trials respectively with intermediate
shading proportional to the number of successful trials (lighter is better). A
cell is black if we did not run the experiment for the corresponding (n, k)
pair. The red line on the top plot is the graph of function n = k2/4.
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V. ANALYSIS OF RANDOM ELLIPSOID FITTING

In this section we analyze the random ellipsoid fitting
problem (Problem 2). We first recall a known sufficient con-
dition for ellipsoid fitting, and show how it is not powerful
enough to establish results as strong as our main ellipsoid
fitting result (Theorem 2), let alone our stronger conjecture
(Conjecture 2).

A. Limitations of coherence-based results

Define the coherence of a subspace U of Rn as

µ(U) = max
i
‖ΠUei‖22.

Coherence measures how well a subspace aligns with the
coordinate axes and satisfies the basic inequality

dim(U)/n ≤ µ(U) ≤ 1. (4)

The main result of [13] gives the following coherence-
threshold type sufficient condition for ellipsoid fitting.

Theorem 3: If µ(V⊥) < 1/2 then V has the ellipsoid
fitting property. Furthermore for any ε > 0 there is a
subspace V with µ(V⊥) = 1/2 + ε that does not have the
ellipsoid fitting property.
This sufficient condition is never satisfied for subspaces V
of Rn with dim(V) < n/2, because, by (4) such a subspace
has µ(V⊥) > 1/2. Yet our experiments, and our conjecture
indicate that many subspaces of dimension much smaller
than half the ambient dimension have the ellipsoid fitting
property. The basic problem is that coherence can only ‘see’
the ratio of the dimension of the subspace and the ambient
dimension, whereas our experiments, our main result, and
our conjecture indicate that the scaling depends on more
than this ratio. To establish our main result we require a
new approach, which we outline in the sequel.

B. Analysis of random ellipsoid fitting

In this section we give an outline of the proof of Theo-
rem 2. We first give a deterministic condition on a set of
points that ensures they have the ellipsoid fitting property,
and then show that it is satisfied w.h.p. under the assumptions
of Theorem 2.

We briefly review some notation used in this section. For
a symmetric matrix the spectral norm ‖ · ‖sp is the largest
singular value. For an element of Rn, ‖ · ‖2 is the Euclidean
norm, and ‖ ·‖∞ the maximum absolute value of the entries.
For a map B we denote by ‖B‖a→b for the induced norm
sup‖x‖a≤1 ‖B(x)‖b. To simplify notation, instead of writing
‖B‖2→2 we simply write ‖B‖.

1) A deterministic condition: Let A be defined as in (2)
with respect to a collection of points v1, v2, . . . , vn ∈ Rk.
Our aim is to establish conditions under which the following
procedure yields an ellipsoid passing through these points.

Take the ‘nominal ellipsoid’ Y0 = A∗(η1) where η is a
positive constant to be chosen later so that vTi Y0vi ≈ 1 for all
i. Project it onto the subspace L to obtain the least squares
construction A†(1) = A∗(AA∗)−1(1). If A†(1) � 0 we
have succeeded (see Section III-B).

It is useful to think of A†(1) as a perturbation of the
nominal ellipsoid Y0. Then to establish that A†(1) � 0 it
suffices to show that Y0 is sufficiently positive definite and
control the following difference in spectral norm:

A†(1)− Y0 = A†(1−AA∗(η1)). (5)

Note that the ith entry of 1−AA∗(η1) is just 1− vTi Y0vi,
i.e., how close our ‘nominal’ ellipsoid is to fitting the ith
point. Equation (5) then suggests that we need to control
‖A†‖∞→sp. This controls the sensitivity of the least squares
system with respect to the norms relevant to us.

Let us now summarize the above discussion.
Proposition 2: Let v1, v2, . . . , vn ∈ Rk and let A : Sk →

Rn be defined by [A(X)]i = vTi Xvi. If η > 0 satisfies

λmin(A∗(η1)) > ‖A†‖∞→sp‖1−AA∗(η1)‖∞ (6)

then A†(1) � 0 and so there is an ellipsoid passing through
v1, v2, . . . , vn.

Proof: From (5), A†(1) = A∗(η1)+A†(1−AA∗(η1)).
Hence under the stated assumption

A†(1) � (λmin(A∗(η1))− ‖A†‖∞→sp‖1−AA∗(η1)‖∞)I

and the right-hand side is positive definite.
2) Outline of the proof of Theorem 2: We now turn to

the random setting. Let v1, v2, . . . , vn be standard Gaussian
vectors in Rk. We define A (and hence the least squares
construction) directly using the Gaussian vectors, rather than
using the corresponding isotropic version, because the addi-
tional dependencies introduced by passing to the isotropic
construction seem to complicate some things considerably.

To prove Theorem 2 our task is to choose η in
Proposition 2, and show that the three relevant quantities
λmin(A∗(η1)), ‖A†‖∞→sp and ‖1−AA∗(η1)‖∞ satisfy (6)
under the assumptions of Theorem 2. From here on we make
the choice η = 1/k(n + k − 1) so that the expectation of
1−AA∗(η1) is zero.

Controlling the smallest eigenvalue of the nominal el-
lipsoid, and how well it fits the points, are both fairly
straightforward. The relevant results are summarized in the
following two lemmas. The first is standard [15, Lemma 36
and Corollary 35], the second is proved in [1, Section 3.9.3].

Lemma 1 (Smallest eigenvalue of the nominal ellipsoid):
If k = o(n) then there are positive constants c̃1 and c1 such
that with probability at least 1− 2e−c̃1n,

λmin(A∗(1)) = λmin
(∑n

i=1viv
T
i

)
≥ nc1.

Lemma 2 (How well the nominal ellipsoid fits the points):
If 0 < α < 1/6 there are positive constants c̃2, c2 and c̄2
such that if η = 1/k(n + k − 1) then with probability at
least 1− c̄2ne−c̃2k

3α

‖1−AA∗(η1)‖∞ ≤ c2nk1/2+3α/2.
Controlling the sensitivity of the least squares system, i.e.,

‖A†‖∞→sp is more involved. To do this we expand A† as a
series about a natural nominal point M := E[AA∗], establish
validity of the expansion, and bound the first term and tail
of the series separately. We expand A† as

A† = A∗
(
M−1 +

∑∞
i=1(M−1∆)iM−1

)
(7)



where ∆ = M − AA∗. The series expansion is clearly
valid if ‖M−1∆‖ < 1. Straightforward calculations show
that M = (k2 − k)I + k11T and that ‖M−1‖ ≤ 2/k2 and
‖M−1‖∞→∞ ≤ 6/k2. The next lemma, the proof of which
involves computing the first few moments of ∆, controls
‖∆‖ and hence convergence of the series.

Lemma 3: If k ≥
√
n there are positive constants c̃4, c4

and c̄4 such that with probability at least 1− c̄4ne−c̃4
√
n

‖∆‖ ≤ c4kn3/4.
We omit the proof, referring the reader to [1, Section 3.9.4].
The series expansion is valid if ‖M−1‖‖∆‖ < 1, which
occurs w.h.p. as long as n3/4/k = o(1). Taking (7), applying
the triangle inequality and ‖X‖∞→2 ≤

√
n‖X‖ (valid for

n× n matrices) gives

‖A†‖∞→sp ≤ ‖A∗‖∞→sp‖M−1‖∞→∞+

√
n‖A∗‖2→sp

‖M−1‖‖∆‖
1− ‖M−1‖‖∆‖

‖M−1‖

≤ 6

k2
‖A∗‖∞→sp +

2
√
n

k2
‖A∗‖2→sp

2k−2‖∆‖
1− 2k−2‖∆‖

. (8)

Note that we used the infinity norm for the first term in the
series, and the Euclidean norm for the tail, (paying a price
of
√
n for doing so), as ‖∆‖∞→∞ is not small enough to

control the tail of the series.
Finally to bound ‖A†‖∞→sp we need to bound ‖A∗‖∞→sp

and ‖A∗‖2→sp. The following lemmas give such bounds. The
first is quite straightforward, essentially using the fact that
A∗ maps the positive orthant into the positive semidefinite
cone. The second is more involved. Proofs are in [1, Sections
3.9.1 and 3.9.2].

Lemma 4: If k = o(n), there are positive constants c̃1
and c′1 such that ‖A∗‖∞→sp ≤ c′1n with probability at least
1− 2e−c̃1n.

Lemma 5: With probability at least 1 − 2e−
1
2 (k+

√
n),

‖A∗‖2→sp ≤ 8(k +
√
n).

By combining (8) with Lemmas 4 and 5, and keeping track
of the dominant terms, we finally obtain the desired control
on ‖A‖∞→sp.

Proposition 3: If k = o(n) and n3/4/k = o(1), there
are positive constants c3, c̄3 and c̃3 such that ‖A†‖∞→sp ≤
c3n

5/4k−2 with probability at least 1− c̄3ne−c̃3
√
n.

To obtain a proof of Theorem 2 we combine Proposition 3
with Lemmas 1 and 2, to show that the deterministic condi-
tion of Proposition 2 is satisfied w.h.p. under the assumptions
of Theorem 2. Indeed assume that 0 < α < 1/6 is fixed and
n = Ck

6
5 (1−α) where C < (c1/(c2c3))

4/5 (here c1, c2, c3 are
as defined in Lemmas 1 and 2 and Proposition 3). Observe
that this choice satisfies n3/4/k = o(1) and k = o(n) as
required by Proposition 3 and Lemma 1. Combining the
previous probability estimates, there are positive constants
c̄ and c̃ such that with probability at least 1− c̄ne−c̃k3α

λmin(A∗(η1))− ‖A†‖∞→sp‖1−AA∗(η1)‖∞
> c1n− c3n5/4k−2 · c2nk1/2+3α/2

= nc1

(
1− c2c3

c1
n5/4k−3/2(1−α)

)
.

The right hand side is positive if n5/4 <
(

c1
c2c3

)
k3/2(1−α)

which holds given our choice of n above.
For fixed k, the probability of fitting an ellipsoid to n

Gaussian points in Rk is monotonically decreasing in n, so
establishing the result for n = Ck

6
5 (1−α) is sufficient to

establish it for all n ≤ Ck 6
5 (1−α).

VI. CONCLUSION

In this paper we considered two equivalent problems:
analyzing the behaviour of a convex optimization method
(MTFA) for random instances of diagonal and low-rank
matrix decompositions, and determining when it is possible
w.h.p. to fit an ellipsoid to random Gaussian points. We
established that it is possible to fit w.h.p. an ellipsoid
to superlinearly (in k) many Gaussian points in Rk, and
presented linear evidence of much stronger scaling. We are
hopeful that our main conjecture has a conceptual proof, and
that the techniques required to establish it will prove useful
for the analysis of recovery problems with structured but not
isotropic measurement ensembles.
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