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Abstract

Semidefinite optimization problems are an expressive family of convex optimization
problems that can be solved efficiently. We develop semidefinite optimization-based for-
mulations and approximations for a number of families of optimization problems, includ-
ing problems arising in spacecraft attitude estimation and in learning tree-structured
statistical models.

We construct explicit exact reformulations of two families of optimization problems
in terms of semidefinite optimization. The first family are linear optimization problems
over the derivative relaxations of spectrahedral cones. The second family are linear
optimization problems over rotation matrices, i.e. orthogonal matrices with unit de-
terminant. We use our semidefinite description of linear optimization problems over
rotation matrices to express a joint spin-rate and attitude estimation problem for a
spinning spacecraft exactly as a semidefinite optimization problem.

For families of optimization problems that are, in general, intractable, one cannot
hope for efficient semidefinite optimization-based formulations. Nevertheless, there are
natural ways to develop approximations for these problems called semidefinite relax-
ations. We analyze one such relaxation of a broad family of optimization problems with
multiple variables interacting pairwise, including, for instance, certain multivariate op-
timization problems over rotation matrices. We characterize the worst-case gap between
the optimal value of the original problem and a particular semidefinite relaxation, and
develop systematic methods to round solutions of the semidefinite relaxation to feasi-
ble points of the original problem. Our results establish a correspondence between the
analysis of rounding schemes for these problems and a natural geometric optimization
problem that we call the normalized maximum width problem.

We also develop semidefinite optimization-based methods for a statistical modeling
problem. The problem involves realizing a given multivariate Gaussian distribution as
the marginal distribution among a subset of variables in a Gaussian tree model. This
is desirable because Gaussian tree models enjoy certain conditional independence rela-
tions that allow for very efficient inference. We reparameterize this realization problem
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as a structured matrix decomposition problem and show how it can be approached us-
ing a semidefinite optimization formulation. We establish sufficient conditions on the
parameters and structure of an underlying Gaussian tree model so that our methods
can recover it from the marginal distribution on its leaf-indexed variables.
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Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Alan S. Willsky
Edwin Sibley Webster Professor of Electrical Engineering and
Computer Science
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Chapter 1

Introduction

Developing useful mathematical models of the behavior of natural and engineered sys-

tems is of fundamental importance in science and engineering. Probabilistic models, i.e.

models that describe quantities of interest in terms of random variables, are particularly

useful since they explicitly account for and describe uncertainty. When modeling, there

is a natural tension between finding a model that fits the observations, and a model

that is simple in the sense that it can be described succinctly.

Given a model, we typically use it to try to answer questions about a real system, by

translating them into mathematical problems that we can try to solve algorithmically.

For instance, we may want to determine the best possible prediction of the state of

a system in the future, given the noisy partial observations we currently have. It is

important that the answers to such inference queries can be computed or approximated

efficiently, otherwise all we have done is translate a hard problem about the real world,

into a computationally hard mathematical problem.

Many such inference queries can be phrased as optimization problems, or even fam-

ilies of related optimization problems where the particular instance may depend, e.g.,

on observed data. Optimization problems involve maximizing (or minimizing) some

objective function subject to constraints that the variables in the problem must satisfy.

Computationally, the most desirable optimization problems are those for which the

complexity of describing the problem and the computational complexity of globally

solving the problem, are similar. In these cases, ‘simple’ models lead directly to effi-

cient inference methods. These families of problems generally enjoy many good proper-

ties, such as convexity (to help us certify global optimality of solutions) and algebraic

structure (underlying the development of efficient algorithms for their solution with

guaranteed running times). More importantly, their good properties are transparent

from their description. One family of optimization problems with these good properties

are semidefinite optimization problems. These play a central role in this thesis.

Another situation that can occur is when the ‘natural’ formulation of a family of

optimization problem obscures its good properties. In these cases it may be possible

to reformulate the problems, describing them in a better way that immediately leads

11



12 CHAPTER 1. INTRODUCTION

to good algorithms for their global solution. Chapter 4 is about reformulating certain

families of ostensibly non-linear and non-convex optimization problems as instances of

the much nicer class of semidefinite optimization problems.

A third situation occurs when a family of optimization problems can be stated suc-

cinctly but is, in general, difficult to solve (in a sense that could be formalized using

ideas from computational complexity theory). In such cases there is a discrepancy be-

tween model complexity and the computational complexity of solving certain inference

problems. To deal with this, it is natural to try to approximate the family of problems

by problems that can be solved globally and efficiently, and to establish guarantees on

the quality of the approximation. It is typical to seek approximations with the ad-

ditional property that their optimal values always underestimate the objective value

for minimization problems (or overestimate the objective value for maximization prob-

lems). These approximations that keep track of additional global bounds are called

relaxations, and provide useful information that is not available to local optimization

methods. Chapter 5 is related to understanding the approximation quality of a semidef-

inite optimization-based relaxation for a family of hard optimization problems.

Returning to the probabilistic modeling context, similar considerations apply di-

rectly to probabilistic models themselves, not just to optimization problems that arise

in performing inference in such models. Indeed finding ‘good’ alternative descriptions

(or approximations) of probabilistic models with good computational properties is of

central importance. These alternative descriptions often arise by describing the given

model as the marginal distribution among a subset of variables in a more structured

latent model.

For example, one family of probabilistic models in which inference queries can be

carried out very efficiently are Gaussian tree models. These are the subject of Chapter 6.

One way to recognize these models is that the inverse of the covariance matrix is sparse,

with the sparsity pattern being that of a tree. If we are given only the covariance

among a subset of the variables of a Gaussian tree model (the other variables being

unobserved), the inverse of the given covariance typically has no interesting sparsity

structure. In other words, the form in which we get to see the model obscures the

fact that it actually comes from a model with computationally beneficial structure. In

this case, it may be possible to recover this better description of the given covariance,

allowing us to take advantage of its good computational properties. Furthermore, if we

are given an arbitrary covariance matrix, it is natural to try to approximate it with a

covariance that has structure allowing us to perform inference queries efficiently. For

instance, we may aim to approximate it as the marginal covariance among a subset of

variables in a Gaussian tree model. Such an approximation problem is exactly what

arises when learning a latent variable model from data.
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� 1.1 Outline and Contributions

We now provide an outline of the thesis, summarizing the main content and contribu-

tions of each chapter. Details of related previous work are discussed separately in each

chapter.

Chapter 2: Background

Chapter 2 provides a summary of some of the technical background and notation that

appears in multiple places throughout the thesis. It includes basic information and facts

about convex sets and functions, semidefinite optimization, hyperbolic optimization,

and the interaction between convexity ideas and symmetry.

Section 2.2 of Chapter 2 has more of a tutorial nature than the other sections. It

gives a high-level summary, via concrete examples, of much of the technical context for

Chapters 3, 4, and 5. In particular it explains the way in which a family of non-linear and

non-convex optimization problems can be transformed into the problem of maximizing

a linear functional over a convex set. This basic (and well-known) transformation allows

us to focus on good descriptions of convex sets, whenever we are more broadly interested

in good descriptions of families of optimization problems. This provides justification

for our focus on various families of convex sets in Chapters 3 and 4. Section 2.2 also

discusses the idea of semidefinite relaxations and associated rounding schemes. This

basic idea is central to the discussion of rounding schemes in Chapter 5.

Chapter 3: Semidefinite descriptions of derivative relaxations of spectrahe-
dral cones

Spectrahedral cones are convex cones related to the feasible regions of semidefinite

optimization problems. There is a very appealing way to construct a family of outer

approximations to any spectrahedral cone, called derivative relaxations [102]. These

outer approximations have many interesting algebraic and geometric properties. Among

their remarkable properties is the way their faces relate to the faces of the spectrahedral

cone from which they are constructed. These relaxations preserve low-dimensional

faces, and successively relax high-dimensional faces of the original spectrahedral cone.

This property may play an important role in future applications of these cones, since

in many settings (e.g. structured linear inverse problems [28], convex approaches to

combinatorial optimization problems [54]), we are most interested the solutions lying

on low-dimensional faces of the feasible region (which often correspond to sparse vectors

or low-rank matrices).

We can solve optimization problems involving spectrahedral cones using semidef-

inite optimization. However, it is not obvious, from the construction of derivative

relaxations, that we should also be able to solve optimization problems over derivative
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relaxations of spectrahedral cones using semidefinite optimization. The main contri-

bution of Chapter 3 is the construction of explicit semidefinite representations of the

derivative relaxations of spectrahedral cone. The descriptions we give of these cones are

all of polynomial size in the ‘size’ parameter of the spectrahedral cone and the ‘relax-

ation’ parameter of the derivative relaxation and are the first known representations (of

any size) of these cones. Our constructions show that we can, indeed, solve optimization

problems involving the derivative relaxations of spectrahedral cones using semidefinite

optimization. Chapter 3 is based on the work in [115].

Chapter 4: Semidefinite descriptions of the convex hull of rotation matrices

The set of rotation matrices, i.e. n× n orthogonal matrices with determinant one, de-

scribes linear isometries of Euclidean space that preserve orientation. These matrices

form a group under matrix multiplication, called the special orthogonal group, denoted

SO(n). Optimization problems over rotation matrices arise whenever we want to opti-

mize over the configuration spaces of rigid bodies. Examples of rigid bodies of interest

may be satellites [97], molecules [123], mobile robots [25], or cameras [128].

The main contribution of Chapter 4 is the construction of an explicit semidefinite

description of the convex hull of SO(n) of size 2n−1. The construction is the first known

semidefinite representation (of any size) of this convex body. These descriptions give a

natural way to come up with semidefinite relaxations for problems involving multiple

rotation-matrix-valued variables. Moreover, using these semidefinite descriptions, we

show how to reformulate a family of optimization problems involving n × n rotation

matrices and trigonometric polynomials as semidefinite optimization problems. In the

case n = 3, optimization problems of this form occur in a joint attitude and spin-rate

estimation problem for spacecraft [97]. This estimation problem is discussed briefly in

Chapter 4 and in more detail in [116]. Chapter 4 is based on the work in [117].

Chapter 5: Rounding semidefinite relaxations for pairwise optimization prob-
lems

While Chapters 3 and 4 show how semidefinite optimization can exactly capture cer-

tain specific families of optimization problems, Chapter 5 focuses on how semidefinite

optimization can be used to approximate a certain class of optimization problems. In

particular it focuses on semidefinite relaxations of optimization problems in which

• there are multiple variables, each taking values in some subset X of m × d con-

tractions, and

• the variables Xi, Xj ∈ X interact pairwise via terms in the objective function of

the form tr(CijX
T
i Xj).
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Examples of constraint sets X of interest include the following.

• Rotation matrices, i.e. X = SO(3). The problem class we study arises in the

context of discrete-time optimal filtering problems on SO(3) [118], cryo-electron

miscroscopy [123] where the rotation-valued variables correspond to the orienta-

tions of many different molecules, and in pose estimation problems in robotics [25].

• Permutation matrices, i.e. X consists of d× d matrices with all entries either zero

or one, and exactly one non-zero entry in each row and column. In this case the

problem class we study appears naturally in the joint matching problems studied,

for instance, in [66] and [30] in the context of computer graphics and computer

vision.

We study a particular simple semidefinite relaxation of this general family of pairwise

optimization problems. This is a semidefinite optimization problem that always pro-

duces upper bounds on the value of the maximization problems of interest. We are

interested in understanding the (worst-case) ratio between the optimal value of the

semidefinite optimization problem, and the optimal value of the original pairwise opti-

mization problem over X n. We are also interested in rounding, i.e. constructing, from

the solution of a semidefinite relaxation, feasible points for the original problem that

have near-optimal objective values.

The main contributions of Chapter 5 are the following.

1. We characterize the worst possible gap between the optimal value of the semidefi-

nite relaxation and the optimal value of the original pairwise optimization problem

over X n when the objective function is positive semidefinite and X has certain

symmetry properties. The gap is exactly the optimal value of a geometric prob-

lem related to X and is independent of n. We call this geometric optimization

problem the normalized maximum width problem.

2. We show how to construct a randomized rounding scheme from any feasible point

of the normalized maximum width problem. If we can find a maximizer of the

normalized maximum width problem, the corresponding rounding scheme is op-

timal (in an appropriate sense). Finally, the rounding scheme can be computed

efficiently whenever we can maximize a linear functional over X efficiently.

One way to think about these results is as follows. If we can solve a linear optimization

problem over X , then we can approximately maximize a large class of convex quadratic

forms over X n. Furthermore, the approximation factor depends only on a geometric

quantity related to X , but is independent of n. The results of Chapter 5 unify many

special cases described in the literature (these are explicitly summarized in Section 5.4
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of Chapter 5), as well as providing a systematic approach to the design and analysis of

new rounding schemes (with certain optimality properties) for many problems.

Chapter 6: A convex approach to learning Gaussian latent tree models

In Chapter 6 we shift from reformulating (or approximating) optimization problems

in terms of semidefinite optimization, and focus on the probabilistic modeling setting.

In particular we develop methods to express multivariate Gaussian random variables

in terms of the particularly tractable subclass of Gaussian tree models. Gaussian tree

models are collections of jointly Gaussian random variables indexed by the vertices of a

tree in which the edges of the tree describe certain additional relations, called conditional

independence relations, among the random variables [72]. While such relations reduce

the expressiveness of the model, they significantly improve the tractability of performing

inference in the model. We do not restrict ourselves to tree models in which the variables

are scalar, so this is a flexible class of models in which inference is very efficient only if

all the variables have small dimensions.

Much more expressive, and still computationally tractable, are Gaussian latent tree

models (see, e.g. [93, 31]). These are the jointly Gaussian random variables obtained as

the marginal distribution on a subset of the variables in a Gaussian tree model. If we

are only given such a marginal distribution, it generally has no interesting conditional

independence relations. For us to expose the underlying latent tree structure for com-

putation, we need to be able to recognize that the marginal distribution has such an

alternative description and reconstruct that description.

Specifically, in Chapter 6 we consider the problem of (approximately) realizing a

given covariance matrix as the marginal covariance among the leaf-indexed variables of

a Gaussian tree model. This is the problem of modeling a given covariance as a Gaussian

latent tree model. Our approach is based on reparameterizing the marginal covariance

matrices among the leaves of Gaussian tree models in terms of certain structured matrix

decompositions.

We devise two (closely related) semidefinite optimization-based methods to (approx-

imately) construct a latent tree model for a given covariance matrix. The two methods

differ in the amount of information about the structure of the tree that they fix. The

first (and simpler) method fixes the entire structure of the tree. The second fixes only

certain information about how the observed variables are associated with the (possibly

non-scalar) leaf-indexed variables of the tree. Our main contribution is to provide con-

ditions on an underlying Gaussian tree model under which these methods, when given

the covariance among the leaf-indexed variables of that model (and the corresponding

information about the tree structure), can exactly recover the full model.



Chapter 2

Background

� 2.1 Introduction

This chapter has two main aims. The first is to collect notation, terminology, and

basic facts that are used repeatedly throughout the thesis. As such we discuss various

aspects of convex geometry and convex optimization, as well as the interplay between

group symmetry and these topics. The second aim is to explain a systematic approach

to optimization via convexification. This approach involves transforming optimization

problems into equivalent convex optimization problems, and then seeking tractable de-

scriptions (or approximations) of these convex optimization problems. This approach

highlights the importance of good descriptions of convex optimization problems. We

pay particular attention to descriptions of optimization problems as semidefinite opti-

mization problems.

The rest of the chapter is organized as follows. In Section 2.2 we describe the basic

idea of convex reformulations and relaxations of optimization problems. This section

provides technical context for many of the problems studied in this thesis. In Section 2.3

we summarize basic notation and terminology related to convex sets and functions.

Section 2.4 focuses on semidefinite optimization, explaining basic facts and terminology

related to this family of convex optimization problems. We emphasize properties of

the convex sets that arise as feasible regions of semidefinite optimization problems. In

Section 2.5 we describe hyperbolic polynomials, hyperbolicity cones, and hyperbolic

optimization problems. These are a family of optimization problems that generalize

semidefinite optimization problems, and have nice algebraic properties. In Section 2.6

we discuss the interaction between symmetry and convex geometry and optimization.

We establish some basic results that allow us to exploit symmetry properties, whenever

possible, throughout the thesis.

� 2.2 Convex reformulations and relaxations

In this section we describe a well-known way to reformulate a family of (finite dimen-

sional) optimization problems in terms of maximizing linear functionals over a convex

17
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set. The reformulation is completely formal and so is not obviously useful. However,

it does shift our viewpoint away from the issue of whether a problem is convex, to

the issue of whether it has a tractable convex description. We then briefly discuss the

situation in which we only have a tractable approximation (i.e. a convex relaxation) to

the convex problem we would like to solve.

Throughout this section we use terminology related to convex sets and functions

that we do not introduce until later in the chapter. In these cases we provide forward

references where appropriate. Nevertheless in this section we encourage the reader to

ignore unfamiliar terminology as much as possible.

Throughout this section we discuss a simple example of a non-linear and non-convex

optimization problem. This is not a difficult problem to solve. We use it because it is

simple enough that we can explicitly illustrate the basic approach.

Example 2.2.1. Consider the following optimization problem over the unit circle

(which we parameterize by (cos(θ), sin(θ))):

max
θ∈[−π,π]

cos(θ) + 2 sin(θ)− 2 sin(2θ). (2.2.1)

A plot of this function on the interval [−π, π] is shown below. The unique global

maximum occurs at θ ≈ 2.111 and the maximum value is approximately 2.965.

θ
π0−π

2.965

2.111

This is an instance of a whole family of problems of the form

max
θ∈[−π,π]

a1 cos(θ) + a2 sin(θ) + a3 sin(2θ) (2.2.2)

where a1, a2, and a3 are real parameters.

Generally, suppose we have a compact subset S ⊆ Rn of a finite-dimensional real

vector space and a collection of continuous functions fi : S → R for i = 1, 2, . . . ,m1.

1The compactness assumption on S and the continuity assumption on the fi are made to avoid
certain technicalities.
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Let F : S → Rm be defined by

F (x) =


f1(x)

f2(x)
...

fm(x)

 .

Suppose we are interested in the family of optimization problems

max
x∈S

m∑
i=1

aifi(x) = max
x∈S
〈a, F (x)〉 (2.2.3)

parameterized by a real vector a ∈ Rm. Each problem in this family involves maximizing

some function f ∈ span{f1, f2, . . . , fm}, a particular subspace of functions on S. In this

section, when we refer to the instance of (2.2.3) defined by a particular vector a we

mean the optimization problem (2.2.3) with that particular a as its parameter.

This subspace is typically determined by the basic structure of a problem. It may

be reasonable to assume it is known in advance. This is the case, for instance, in

the attitude estimation problem discussed in Chapter 4. The parameters ai of such a

problem family are often specified by data and only known at ‘run-time’. As such it

can be worthwhile to invest considerable effort in reformulating and understanding the

whole family of problems with the aim of developing solution methods that are valid

for any problem instance.

� 2.2.1 Reparameterization

Example 2.2.2. In our running example, the set is the interval S = [−π, π] (which is

convex in this case, but need not be). A collection of functions fi is given by f1(θ) =

cos(θ), f2(θ) = sin(θ), and f3(θ) = sin(2θ). Note that any collection of functions that

span the same three-dimensional space would do equally well.

Instead of thinking about the decision variable as θ ∈ [−π, π] we reparameterize the

problem, and think of the decision variable as being a three-dimensional vector z taking

values in

F ([−π, π]) =


 cos(θ)

sin(θ)

sin(2θ)

 : θ ∈ [−π, π]

 ⊂ R3. (2.2.4)

This subset of R3 is the curve shown on the left in Figure 2.1. Then we can rewrite the

family of optimization problems (2.2.2) as

max
z∈F ([−π,π])

a1z1 + a2z2 + a3z3, (2.2.5)
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Figure 2.1: On the left is the subset F ([−π, π]) of R3 described in (2.2.4). On the
right is its convex hull.

the maximization of the real-valued linear function specified by a1, a2, and a3 over

F ([−π, π]).

In the general setting we change from regarding x ∈ S ⊂ Rn as the decision vari-

able of the optimization problem to regarding z ∈ Rm as the decision variable and

constraining it to take values in

F (S) =




f1(x)

f2(x)
...

fm(x)

 : x ∈ S

 ⊂ Rm,

which is compact (by the continuity of F and compactness of S). The family of opti-

mization problems (2.2.3) can then be expressed as

max
z∈F (S)

〈a, z〉. (2.2.6)

Note that in this parameterization the objective function is linear in the decision variable

z. All the complexity of the problem is in the (non-convex) constraint set F (S). In this

section we often refer to the function z 7→ 〈a, z〉 as the linear objective function defined

by a.
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� 2.2.2 Convexification

Our problem now involves maximizing a linear objective function over a set. Momen-

tarily, let us assume that all we care about is the optimal value of the problem. (We

return to the issue of recovering an optimal point in Section 2.2.3 to follow.) This value

is the same whether we optimize over F (S) or over its (necessarily compact2) convex

hull, denoted conv(F (S)), i.e.

max
z∈F (S)

〈a, z〉 = max
z∈conv(F (S))

〈a, z〉 (2.2.7)

(see, e.g., [105, Theorem 32.2].) The latter of these problems involves maximizing

a linear objective function over a closed convex set and so is a convex optimization

problem. The family of problems we are interested in is parameterized by all vectors a

that define the linear objective function z 7→ 〈a, z〉. As such, the entire family of convex

optimization problems is captured by the convex set conv(F (S)).

Example 2.2.3. In our running example, the convex hull of F ([−π, π]) is shown on the

right in Figure 2.1. On the left of Figure 2.2 is the set F (S) together with the level set

{z : z1 + 2z2− 2z3 = 2.965 . . .}3 of the objective function, highlighting the intersection.

On the right of Figure 2.2 is the set conv(F (S)) together with the same level set of the

objective function, again highlighting the intersection. Observe that the intersection of

conv(F (S)) with this level set is also a point of F (S).

Indeed the number 2.965 . . . is the optimal value of both the optimization problem

max
z∈F ([−π,π])

z1 + 2z2 − 2z3

and the convex optimization problem

max
z∈conv(F ([−π,π]))

z1 + 2z2 − 2z3.

We have not yet explained how we solved these optimization problems. We do this in

Example 2.2.4 to follow.

Returning to the general setting, the reformulation in (2.2.7) has not yet used any

properties of the set S or the functions fi. Hence our transformations, alone, have

not achieved anything beyond changing our viewpoint. Nevertheless, this viewpoint

puts many families of optimization problems on a common footing, reducing them to

2The convex hull of a compact set is again compact [105, Theorem 17.2]
3We write 2.965 . . . as a decimal followed by an ellipsis to emphasize that this is not a rational

number but an algebraic number. In fact it is an algebraic number of degree four, i.e. a root of a degree
four polynomial with rational coefficients (see, e.g., [14, p. 220]).
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Figure 2.2: Shown on the left is the set F ([−π, π]), the hyperplane {z : z1+2z2−2z3 =
2.965 . . .}, and their intersection (in red). Shown on the right is the set conv(F ([−π, π])),
the same hyperplane, and their intersection (in red). In both cases the intersection is
the same.

understanding a corresponding geometric object, namely conv(F (S)). This allows us

to focus on the problem of maximizing a linear objective function over a convex set as

a prototypical optimization problem.

Tractable descriptions

Given a family of optimization problems, the major challenge is to find efficient algo-

rithms to solve its convex reformulation

max
x∈conv(F (S))

〈a, x〉. (2.2.8)

Rather than directly developing algorithms for (2.2.8) on a case-by-case basis, a con-

ceptually simpler approach is to try to give an alternative mathematical description of

conv(F (S)) in a standard form for which algorithms have already been developed. A

typical notion of a standard form is to fix a convex cone K (see Section 2.3.2 to follow)

that is well-understood, and try to express the convex set in conic form as

conv(F (S)) = π(K ∩ L)
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where π is a linear map and L is an affine subspace (see Section 2.3.1 to follow). Such

a description packages all that is difficult (and interesting) about the problem into the

cone K.

Semidefinite representations

In this thesis we mostly focus on semidefinite representations of convex sets (see Defi-

nition 2.4.5 to follow). These are descriptions of convex sets in conic form in which the

cone K is a cone of positive semidefinite matrices. A semidefinite representation has size

m if K = Sm+ is the cone of m×m positive semidefinite matrices. If we have a semidef-

inite representation of conv(F (S)) of size m we can solve (2.2.8) in time polynomial in

m using algorithms for semidefinite optimization (see Section 2.4 to follow).

Example 2.2.4. In our running example, we want a tractable description of

conv(F ([−π, π])) = conv

{[
cos(θ) sin(θ) sin(2θ)

]T
: θ ∈ [−π, π]

}
.

By specializing Proposition 4.8.5 of Chapter 4 we obtain a semidefinite representation

of size 3 for this convex set as

conv(F ([−π, π])) =


[
u1 v1 v2

]T
∈ R3 : ∃u2 ∈ R,

 1 + v2 u1 + v1 u2

u1 + v1 1 u1 − v1

u2 u1 − v1 1− v2

∈ S3
+

.
This is the projection of a convex set in R4 in the variables (u1, v1, u2, v2) onto the

variables (u1, v1, v2). We can then solve any instance of our family of optimization

problems by solving the semidefinite optimization problem

max
u1,u2,v1,v2

a1u1 + a2v1 + a3v2 subject to

 1 + v2 u1 + v1 u2

u1 + v1 1 u1 − v1

u2 u1 − v1 1− v2

 ∈ S3
+.

In general we do not expect to be able to find tractable descriptions, as semidefinite

representations with fairly small size, of arbitrary convex sets.

Example 2.2.5. For a concrete example, consider the family of binary quadratic op-

timization problems, i.e. problems of the form

max
x∈{−1,1}n

∑
1≤i<j≤n

Aijxixj .

If we take take S = {−1, 1}n and F (x) = (xixj)1≤i<j≤n then we can reformulate this
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family as

max
Z∈conv(F (S))

∑
1≤i<j≤n

AijZij .

The convex set conv(F (S)) is called the cut polytope [38]. If we could efficiently max-

imize arbitrary linear objective functions over the cut polytope (by some method), we

could efficiently solve arbitrary binary quadratic optimization problems, including well-

known NP-hard problems such as max-cut [96, 71]. Concerning semidefinite represen-

tations in particular, it has recently been shown that any semidefinite representation of

the cut polytope must have size exponential in n [76].

Even when solving the optimization problem (2.2.8) is hard, the convexified view-

point is still very useful. This is because it suggests an approach to approximately

solving the problem via convex relaxations (see Section 2.2.4 to follow).

� 2.2.3 Extracting an optimal point

For now, let us assume we can solve the optimization problem (2.2.8) for some fixed

parameter vector a of interest. We now briefly discuss how we can obtain an optimal

point for the original problem from the solution to the convex reformulation.

Figure 2.3: Shown on the left is the set F ([−π, π]), the hyperplane {z : z1 +
z2 − (5/2)z3 = 13/5}, and their intersection (in red). Shown on the right is the set
conv(F ([−π, π])), the same hyperplane, and their intersection (in red). Observe that in
this case the intersection with F ([−π, π]) consists of two points, whereas the intersection
with conv(F ([−π, π])) is the convex hull of these two points.
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Example 2.2.6. In our running example, we have seen in Figure 2.2 that there is a

unique optimal solution to the convex optimization problem

max
z∈conv(F ([−π,π]))

(z1 + 2z2 − 2z3).

This point is z? = (−0.514 . . . , 0.858 . . . ,−0.882 . . .). This is also the unique optimal

solution to

max
z∈F ([−π,π])

(z1 + 2z2 − 2z3).

To obtain a solution θ ∈ [−π, π] we need to solve the following nonlinear equation for

θ:

(cos(θ), sin(θ), sin(2θ)) = F (θ) = z? = (−0.514 . . . , 0.858 . . . ,−0.882 . . .).

Doing so we obtain θ ≈ 2.111 which matches what we observed in the figure immediately

after (2.2.1). If, instead, we choose the parameters a1 = 1, a2 = 1, and a3 = −5/2 we

see from the right of Figure 2.3 that the convex optimization problem

max
z∈conv(F ([−π,π]))

z1 + z2 − (5/2)z3

has multiple optimal solutions. Indeed the optimal face (see Section 2.3.2) is given by all

convex combinations of z
(1)
? = (−3/5, 4/5,−24/25) and z

(2)
? = (4/5,−3/5,−24/25) and

is the intersection of conv(F ([−π, π])) with the hyperplane {z : z1+z2−(5/2)z3 = 13/5}.
The extreme points (see Section 2.3.2) of this optimal face are z

(1)
? and z

(2)
? , which are

elements of F ([−π, π]). From the left of Figure 2.3 we see that these are precisely the

optimal solutions of

max
z∈F ([−π,π])

z1 + z2 − (5/2)z3.

We obtain the corresponding solutions for θ by solving the equations

F (θ) = z
(1)
? and F (θ) = z

(2)
? .

The plot of cos(θ) + sin(θ)− (5/2) sin(2θ) shown in Figure 2.4 confirms that we expect

multiple global optima on the interval [−π, π].

We now consider the general setting. Let C = conv(F (S)) for brevity. Suppose

we solve (2.2.8) for some fixed instance determined by a. We discuss the basic process

of extracting optimal points by considering separately the cases in which the convex

reformulation has a unique optimal point or multiple optimal points, respectively.

First, suppose that the point z? is the unique optimal point for the convex reformu-

lation (2.2.8). Then using the fact that every extreme point of conv(F (S)) is actually

in F (S) [105, Corollary 18.3.1], we can deduce that z? ∈ F (S). Any solution for x for
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θ
π0−π

13/5

Figure 2.4: A plot of cos(θ) + sin(θ) − (5/2) sin(2θ) on [−π, π] showing that it has
multiple global maxima.

the nonlinear equation

F (x) = z? (2.2.9)

is optimal for the original optimization problem maxx∈S〈a, F (x)〉.
Suppose, now, that the convex reformulation (2.2.8) has more than one optimal

solution. The set of optimal solutions is convex (indeed it is a face of C) and the

extreme points of the set of optima are all elements of F (S) [105, Theorem 18.3]. We

can obtain an optimal point for the original problem by taking any extreme point z? of

this optimal face, and solving the non-linear equation (2.2.9) for x.

There are constructive versions of Carathéodory’s theorem [105, Section 17] that

allow us, in principle, to find extreme points of the optimal face. In practice the best

way to do this algorithmically depends significantly on the problem structure.

� 2.2.4 Convex relaxations

It is often the case that no ‘good’ description of the set conv(F (S)) is known, and so we

are not able to solve the convex reformulation (2.2.8) efficiently. In this case, a natural

approach is to find a convex set C such that

C ⊇ conv(F (S))

and such that we can optimize linear objective functions over C efficiently. It is common

to use the term convex relaxation to describe the problem of optimizing a linear objective

function over C, since we have enlarged or relaxed the feasible region from conv(F (S))

to C.

Example 2.2.7. An important example of this is the standard convex relaxation for

binary quadratic optimization (see Example 2.2.5). Here we have S = {−1, 1}n and

F (x) = (xixj)1≤i<j≤n. The set conv(F (S)) is the cut polytope. It is shown in Figure 2.5

for n = 3. A well-known convex relaxation of the cut polytope is the elliptope defined
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by

C =


(Zij)1≤i<j≤n ∈ R(n2) :


1 Z12 Z13 · · · Z1n

Z12 1 Z23 · · · Z2n

Z13 Z23 1 · · · Z3n

...
...

...
. . .

...

Z1n Z2n Z3n · · · 1

 ∈ S
n
+


.

The set C has a semidefinite representation of size n, so we can maximize a linear

objective function over it in time polynomial in n. To see that C ⊇ conv(F ({−1, 1}n)),

let x ∈ {−1, 1}n be arbitrary. Then
1 x1x2 x1x3 · · · x1xn

x1x2 1 x2x3 · · · x2xn
x1x3 x2x3 1 · · · x3xn
...

...
...

. . .
...

x1xn x2xn x3xn · · · 1

 =


x1

x2

x3

...

xn



[
x1 x2 x3 · · · xn

]
∈ Sn+

which shows that F (x) ∈ C. Hence F ({−1, 1}n) ⊆ C. Convex relaxations generalizing

this one play an important role in Chapter 5.

Bounds on the optimal value

The inequality

max
z∈C
〈a, z〉 ≥ max

z∈conv(F (S))
〈a, z〉 = max

x∈S
〈a, F (x)〉 (2.2.10)

always holds because C ⊇ conv(F (S)). This inequality tells us that convex relaxations

give computationally tractable methods to obtain upper bounds on the global maxi-

mum. Such global upper bounds complement optimization methods that search within

the feasible region of the original problem. This is because whenever y ∈ S we have

that

max
z∈C
〈a, z〉 ≥ max

x∈S
〈a, F (x)〉 ≥ 〈a, F (y)〉

where the first inequality is repeated from (2.2.10). As such, the optimal value of a

convex relaxation can be use to assess how close the function value at a local optimum

(obtained by local optimization methods) is to the global optimal value.

Exact instances for convex relaxations

Often a convex outer approximation C to conv(F (S)) preserves some of the faces of

conv(F (S)). Consequently, for certain linear objective functions defined by vectors a,

maximizing 〈a, x〉 over x ∈ conv(F (S)) or over x ∈ C gives the same optimal value and
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Figure 2.5: On the left is the cut polytope for n = 3. In this case it is the tetrahe-
dron conv {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}. On the right is corresponding
elliptope, a convex outer approximation of the cut polytope for n = 3. All of the zero-
and one-dimensional faces of the cut polytope for n = 3 are also faces of the elliptope.

the same optimal face.

Example 2.2.8. In Figure 2.5 we can see that all of the 0- and 1-dimensional faces

of the cut polytope for n = 3 are also faces of the corresponding elliptope. Suppose,

for instance, we maximize the linear objective function defined by A12 = 1, A13 = −2,

A23 = 0 over the elliptope, i.e. solve the semidefinite optimization problem

max
Z12,Z13,Z23

Z12 − 2Z13 + 0Z23 subject to

 1 Z12 Z13

Z12 1 Z23

Z13 Z23 1

 ∈ S3
+.

The unique optimal point is (Z12, Z13, Z23) = (1,−1,−1) (see Figure 2.6). This is a

0-dimensional face of the elliptope that is also a face of the cut polytope. We can

deduce this by observing that (1,−1,−1) = F ((1, 1,−1)). On the other hand, if we

maximize the linear objective function defined, for instance, by A12 = −3/2, A13 = 1,

A13 = 1 over the elliptope, the maximum value is 11/6 and the unique optimal point is

(−7/9, 1/3, 1/3) which is not in F ({−1, 1}3) (see Figure 2.6).

In the general setting, when we maximize the linear objective function defined by a

over C, one of two things could happen.

1. It could happen that the optimal face of C is a face of conv(F (S)). In this case

we have equality in (2.2.10). Furthermore, the extreme points of the optimal face
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Figure 2.6: On the left is the elliptope, the level set {(Z12, Z13, Z23) : Z12−2Z23 = 3}
of the linear objective function Z12 − 2Z23, and their intersection (1,−1,−1). The
maximum of this function over the elliptope is achieved at (1,−1,−1), which is also an
element of the cut polytope. As such the convex relaxation is exact for this instance.
On the right is the elliptope, the level set {(Z12, Z13, Z23) : −(3/2)Z12 + Z13 + Z23 =
11/6} of the linear objective function −(3/2)Z12 + Z13 + Z23, and their intersection at
(−7/9, 1/3, 1/3). The maximum of this linear function over the elliptope is achieved at
(−7/9, 1/3, 1/3) which is not an element of the cut polytope.
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are in F (S), and these correspond to global optima of the instance of the original

optimization problem defined by a. In this case, we say that the relaxation is

exact for the problem instance defined by a.

2. Otherwise the optimal face of C is not a face of conv(F (S)). In this case, we have

a strict inequality in (2.2.10) and the extreme points of the optimal face are not

in F (S).

Suppose we have a way to check whether a given point is in F (S). Then we can use the

solution (in general the optimal face) of our convex relaxation to detect whether the

relaxation was exact for the instance we just solved. To do this, we find the extreme

points of the optimal face and check whether they are in the set F (S). If they are, all of

these extreme points must correspond to optimal solutions for the original optimization

problem (by (2.2.10)).

As we have seen, we can typically detect whether a convex relaxation is exact for

a given instance after we have solved it. Nevertheless, it is of considerable interest to

give simple sufficient conditions on problem instances (i.e. the vectors a) that ensure

a convex relaxation is exact for those instances. We can then guarantee, beforehand,

that these instances of the original problem can be efficiently solved.

Rounding

Suppose C ⊇ conv(F (S)) defines a convex relaxation of our problem of interest. We

have seen that for some problem instances defined by vectors a the maximum of z 7→
〈a, z〉 over C occurs on a face of C that is not a face of conv(F (S)). In other words the

instance defined by a is not exact. Nevertheless, we would expect that the optimal point

of the convex relaxation contains useful global information about the original problem.

Rounding schemes are procedures that map the extreme points of C to conv(F (S))

in a way that aims to preserve the value of the objective function as well as possible (in

a sense that depends on the specific aims of the problem). Such a procedure allows us

to take an optimal point for the convex relaxation defined by C and produce a feasible

point for the convex reformulation defined by conv(F (S)). Usually these procedures

are described as randomized algorithms that map extreme points of C to samples from

a probability distribution on F (S). The map to conv(F (S)) is obtained by taking the

expectation of such a distribution on F (S).

These randomized algorithms allow us to produce feasible points for the original

optimization problem over F (S). In some cases it can be shown that these ‘rounded’

feasible points have objective value that is close to the true global optimum of the

original optimization problem. It is in this way that tractable convex relaxations,

followed by a well-designed rounding scheme, can lead to approximation algorithms.
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This approach to approximation algorithms for combinatorial optimization problems

has been extensively studied by researchers in algorithms and complexity theory (see,

e.g., [136, Chapter 6]). The approach is less developed (particularly the problem of

designing rounding schemes) for continuous optimization problems. Chapter 5 considers

this for a particular family of optimization problems, and a particular family of convex

relaxations.

� 2.3 Convex sets and functions

In this section we summarize basic facts about convex sets and convex functions. All

the material in this section is standard, and is presented rather briefly.

� 2.3.1 Preliminaries

Throughout the thesis we always work in a finite-dimensional real vector space V . For

convenience we usually endow V with a real-valued inner product 〈·, ·〉 : V × V → R
and identify V with its dual space4 via this choice of inner product. If V and W are

two real vector spaces (with associated inner products) and A : V →W is a linear map,

the adjoint of A is the map A∗ : W → V defined by

〈Av,w〉 = 〈v,A∗w〉 for all v ∈ V and all w ∈W.

The main concrete examples of interest are Rn (real n-vectors), Rn×m (real n × m

matrices), and Sm (symmetric m × m matrices). We also work with Cn (complex

n-vectors), Cn×m (complex n × m matrices) and Hm (Hermitian m × m matrices).

Throughout, these last three cases are almost always regarded as real vector spaces of

real dimension 2n, 2nm, and m2 respectively.

We denote the transpose of A ∈ Rn×m by AT , the entry-wise complex conjugate of

A ∈ Cn×m by Ā, and the conjugate transpose of A ∈ Cn×m by A∗. If A ∈ Cn×m then

Re [A] = (A + Ā)/2 and Im [Z] = (A − Ā)/(2i) denote the real and imaginary parts

respectively. Note that A 7→ Ā, A 7→ A∗, A 7→ Re [A] and A 7→ Im [A] are linear maps

when we regard Cn×m as a 2nm dimensional real vector space.

We equip the real vector spaces of interest with real-valued inner products as follows.

The inner product on

• Rn is the standard inner product 〈x, y〉 :=
∑n

i=1 xiyi;

• Rn×m is the trace inner product 〈X,Y 〉 := tr(XTY ) =
∑n

i=1

∑m
j=1XijYij ;

4If V is a finite dimensional vector space its dual space is V ∗ := {` : V → R : ` is linear}, the real
vector space of R-valued linear functionals on V .
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• Sm is the restriction of the trace inner product to symmetric matrices, i.e. 〈X,Y 〉 =

tr(XY );

• Cn is the real inner product 〈x, y〉 := Re [x∗y] = 〈Re [x],Re [y]〉+ 〈Im [x], Im [y]〉;

• Cn×m is the real trace inner product 〈X,Y 〉 := Re [tr(X∗Y )] = 〈Re [X],Re [Y ]〉+
〈Im [X], Im [Y ]〉;

• Hm is the restriction of the real trace inner product to Hermitian matrices, i.e.

〈X,Y 〉 = Re [tr(XY )].

Associated with each of these inner products is a norm ‖ · ‖ = 〈 · , · 〉1/2. In the case of

Rn and Cn this is the usual Euclidean norm and is simply denoted ‖ · ‖. In the cases

of Rn×m, Sm, Cn×m and Hm the corresponding norm is the Frobenius norm and is

denoted ‖ · ‖F .

Linear and affine subspaces

A subset U of a finite dimensional real vector space V is a (linear) subspace if whenever

u1, u2 ∈ U and λ1, λ2 ∈ R then λ1u1 + λ2u2 ∈ U , i.e. U is closed under taking linear

combinations. If S ⊆ V then the span of S, denoted span(S), is the set of all linear

combinations of finitely many elements of S. Equivalently, span(S) is the intersection

of all linear subspaces of V containing S.

A subset L of a finite dimensional real vector space V is an affine subspace if

whenever u1, u2 ∈ L and λ1, λ2 ∈ R satisfy λ1 + λ2 = 1 then λ1u1 + λ2u2 ∈ L, i.e. L is

closed under taking affine combinations. If S ⊆ V then the affine span of S, denoted

aff(S), is the set of all affine combinations of finitely many elements of S. Equivalently,

aff(S) is the intersection of all affine subspaces of V containing S.

Topological notions

If V is a finite dimensional real inner product space we equip V with the usual topology

induced by the metric d(x, y) = ‖x− y‖ on the vector space V . The interior of a set is

denoted int(S), the closure is denoted cl(S). Any relative topological notions related to

a set S are taken with respect to the affine span of S. For instance the relative interior

of S, denoted relint(S), is the interior of S when thought of as a subset of aff(S) with

the relative topology induced from V .

Subspaces associated with linear maps

If A : V →W is a linear map between two finite dimensional real vector spaces V and

W then the column space5 of A, denoted col(A), is the subspace A(V ) = {Av : v ∈ V }
5Since this is an abstract linear map it would be more usual to call this the image or the range

space of A. Throughout much of the thesis we work concretely with matrices, so we use the more
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of W . The nullspace of A, denoted null(A), is the subspace {v ∈ V : Av = 0} of V .

Dimension and explicit parameterization of affine subspaces

An affine subspace L can always be expressed as L = {x0}+U = {x0 +u : u ∈ U} where

x0 ∈ L is any point in L and U is a linear subspace uniquely determined by L. The

dimension of an affine subspace L = {x0} + U is the dimension of the corresponding

linear subspace U .

If U = col(A) for some n ×m matrix A, then the affine subspace {x0} + U of Rn

can be expressed concretely as

{x0}+ U = {x0 +Ax : x ∈ Rm}. (2.3.1)

Similarly if V = null(B) for some m × n matrix B, then the affine subspace {x0} + V

of Rn can be expressed concretely as

{x0}+ V = {x ∈ Rn : x− x0 ∈ null(B)} = {x ∈ Rn : Bx = Bx0}. (2.3.2)

Orthogonal projections

If U is a subspace of a finite dimensional real inner product space V then the orthogonal

projection onto U is PU : V → V defined by being self-adjoint and satisfying col(PU ) =

U and P 2
U = PU . We also define ΠU : V → U and its adjoint Π∗U : U → V by

PU = Π∗UΠU and I = ΠUΠ∗U .

� 2.3.2 Convex sets

A subset K of a finite dimensional real vector space V is a convex cone if whenever

u1, u2 ∈ S and λ1, λ2 ∈ R such that λ1, λ2 ≥ 0 then λ1u1 + λ2u2 ∈ K, i.e. K is closed

under taking conic combinations. If S ⊆ V then the conic hull of S, denoted cone(S),

is the set of all conic combinations of finitely many elements of S. This is also the

intersection of all convex cones in V containing S.

A subset C of a finite dimensional real vector space V is convex if whenever u1, u2 ∈
S and λ1, λ2 ∈ R such that λ1 + λ2 = 1 and λ1, λ2 ≥ 0 then λ1u1 + λ2u2 ∈ C, i.e. C is

closed under taking convex combinations. If S ⊆ V then the convex hull of S, denoted

conv(S), is the set of all convex combinations of finitely many elements of S. This is

also the intersection of all convex subsets of V containing S.

A convex cone K is pointed if K ∩ (−K) = {0}, solid if the span of K is all of V ,

and proper if it is pointed, solid, and closed. Any pointed cone K ⊆ V defines a partial

order on V which we denote by x �K y if and only if y − x ∈ K.

matrix-oriented term column space.
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Isomorphism of convex sets

We now describe the appropriate notion of equiavalence for convex cones. Suppose V1

and V2 are finite dimensional real vector spaces. A pair of convex cones K1 ⊆ V1 and

K2 ⊆ V2 are linearly isomorphic if there is a bijective linear map A : span(K1) →
span(K2) such that A(K1) = K2. Note that the ambient spaces of V1 and V2 need not

be the same, and K1 and K2 need not be full-dimensional.

In the case of general convex sets the appropriate maps to consider are affine maps.

These are maps T : U → W between finite dimensional real vector spaces that have

the form T (u) = Au + b where A : U → W is linear and b ∈ W . A pair of convex

sets C1 ⊆ V1 and C2 ⊆ V2 are affinely isomorphic if there is a bijective affine map

T : aff(C1)→ aff(C2) such that T (C1) = C2. Again the ambient spaces V1 and V2 need

not be the same, and C1 and C2 need not be full-dimensional.

Positive semidefinite matrices

A symmetric matrix A ∈ Sm is positive semidefinite if it satisfies 〈Ax, x〉 ≥ 0 for all

x ∈ Rm. An Hermitian matrix A ∈ Hm is positive semidefinite if it satisfies 〈Ax, x〉 ≥ 0

for all x ∈ Cn. The set of all m ×m symmetric positive semidefinite matrices forms a

proper convex cone (in Sm) denoted Sm+ . We denote the corresponding partial order by

A � B if A − B ∈ Sm+ . The set of all m ×m Hermitian positive semidefinite matrices

forms a proper convex cone (in Hm) denoted Hm+ .

The interior of Sm+ is the open convex cone of strictly positive definite m × m

symmetric matrices, i.e. those symmetric matrices A satisfying 〈Ax, x〉 > 0 whenever

x ∈ Rm \ {0}. If A is strictly positive definite we write A � 0. Similarly the interior of

Hm+ is the open convex cone of strictly positive definite m×m Hermitian matrices, i.e.

those Hermitian matrices A satisfying 〈Ax, x〉 > 0 whenever x ∈ Cm \ {0}.

Faces

Suppose C is a convex set. An element x ∈ C is an extreme point of C if whenever

y, z ∈ C and λ ∈ (0, 1) are such that x = λy+(1−λ)z then x = y = z. A convex subset

F of C is a face of C if whenever y, z ∈ C and λ ∈ (0, 1) are such that λy+(1−λ)z ∈ F
then y, z ∈ F . The dimension of a face F is the dimension of its affine span aff(F ). By

comparing the definitions, we can see that the extreme points of C are precisely the

zero-dimensional faces of C. A face F of a convex set C is exposed if there is an affine

hyperplane (i.e. codimension one affine subspace) L such that L ∩ C = F . An exposed

point is a zero-dimensional exposed face. If K is a convex cone, an extreme ray of K is

a one-dimensional face that is of the form cone(x) for some x ∈ K.
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Figure 2.7: On the left is the set S = {(x, y) ∈ R2 : x2+y2 = 1}∪{(
√

2, 0)}, the union
of a circle and a point. On the right is the convex hull of S. The convex set conv(S)

has two faces that are not exposed, these are
(

1√
2
,± 1√

2

)
. The two one-dimensional

faces of conv(S) are indicated with a thicker line. See Example 2.3.1 for a discussion of
the faces of this convex set.

Example 2.3.1. On the right in Figure 2.7 is the convex set

conv(S) = conv({(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(
√

2, 0)}),

the convex hull of the unit circle and a point outside the circle. We now describe

the faces of this convex set. The one-dimensional faces are the convex sets F1 =

conv{(
√

2, 0), (1/
√

2, 1/
√

2)} and F2 = conv{(
√

2, 0), (1/
√

2,−1/
√

2)}. These are ex-

posed faces since, for instance, F1 = conv(S) ∩ L where L = {(x, y) ∈ R2 : x +

y =
√

2}. The zero-dimensional faces (i.e. extreme points) are (
√

2, 0) and each

point of the form (cos(θ), sin(θ)) for θ ∈ [π/4, 7π/4]. All of these are exposed points

except the points (cos(π/4), sin(π/4)) = (1/
√

2, 1/
√

2) and (cos(7π/4), sin(7π/4)) =

(1/
√

2,−1/
√

2). Any affine line passing through either of these points necessarily in-

tersects with other points of conv(S).

Example 2.3.2 (Faces of the positive semidefinite cone). The faces of Sm+ , the cone

of m×m positive semidefinite matrices, are in bijection with subspaces U of Rm. If U

is a subspace of Rm then FU := {A ∈ Sm+ : col(A) ⊆ U} is a face of Sm+ . Moreover all

of the faces of Sm+ are of this form (see, e.g., [101]). These are all exposed faces since

each FU can alternatively be expressed as FU = Sm+ ∩ {A ∈ Sm : 〈PU⊥ , A〉 = 0} where

PU⊥ = I − PU is the orthogonal projector onto the orthogonal complement of U .

� 2.3.3 Convex functions

Let V be a finite-dimensional real vector space. When discussing convex functions on V

it is useful to allow functions that take values in the extended real line R = R∪{−∞,∞}
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with arithmetic on −∞ and ∞ defined appropriately (see, e.g., [105, Section 4]). With

any function f : V → R we associate its epigraph, the set

epi(f) = {(x, t) ∈ V × R : f(x) ≤ t} .

A function f : V → R is convex if its epigraph is a convex set. A function f : V → R
is concave if −f is convex. If f does not take the value −∞ then a more familiar

definition of convexity makes sense. Indeed f : V → R ∪ {∞} is convex if and only if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all x, y ∈ V and all α ∈ [0, 1].

It can also be useful to regard sets as (extended real-valued) functions. If S ⊆ V is

a set then its indicator function is ιS : V → R defined by

ιS(x) =

{
0 if x ∈ S
∞ otherwise.

If S is a convex set then ιS is a convex function.

� 2.3.4 Notions of duality

Notions of duality are central to convex geometry, analysis, and optimization. These

allow us to view convex sets not just in terms of the points in the set but also in terms

of the values that linear functionals take on the set.

Definition 2.3.3. If S ⊆ V is a subset of a real inner product space V then the dual

cone of S is

S∗ = {y ∈ V : 〈y, x〉 ≥ 0, for all x ∈ S}.

The dual cone S∗ is always a closed convex cone since it is given by the intersection

of half-spaces passing through the origin in V , each of which is a closed convex cone.

The dual cone of a set S is shown in Figure 2.8.

Definition 2.3.4. If S ⊆ V is a subset of a real inner product space V then the polar

of S is

S◦ = {y ∈ V : 〈y, x〉 ≤ 1, for all x ∈ S}.

The polar S◦ is a closed convex set (again it is the intersection of half-spaces)

containing the origin in V .

Example 2.3.5. If a 6= 0 is a point in Rn then its polar is

{a}◦ = {y ∈ Rn : 〈a, y〉 ≤ 1},

a closed half-space containing the origin.
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0

S

0

S

S∗

(S∗)∗

Figure 2.8: Shown on the left is a set S together with the origin. Shown on the right
is S together with its dual cone S∗, and the dual of the dual cone (S∗)∗. Both S∗ and
(S∗)∗ are closed convex cones. Furthermore, (S∗)∗ is the closure of the conic hull of S
(by Proposition 2.3.7).

Example 2.3.6. If K is a convex cone then K◦ = −K∗. This holds because K is

closed under non-negative scaling so that

K◦ = {y : 〈x, y〉 ≤ 1, for all x ∈ K}
= {y : 〈tx, y〉 ≤ 1, for all t ≥ 0 and all x ∈ K} (since tK = K for all t ≥ 0)

= {y : 〈x, y〉 ≤ 0, for all x ∈ K} = −K∗.

The following biduality results give concrete ways to describe the (closure of the)

conic and convex hulls of S.

Proposition 2.3.7 ([105, Section 14]). Let S ⊆ V be a subset of a real inner product

space V . Then

cl(cone(S)) = (S∗)∗ and cl(conv(S ∪ {0})) = (S◦)◦.

Note that this biduality theorem gives an alternative characterization of the closure

of the convex and conic hulls of a set. Rather than describing these in terms of combi-

nations of points in S, biduality describes these sets in terms of half-spaces that contain

S. A set S together with the dual of its dual cone (S∗)∗ is shown in Figure 2.8
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(
√

2, 0)(0, 0)

S S◦

(0, 0)

x = 1/
√

2

Figure 2.9: On the left is the set S = {(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(
√

2, 0)} and on
the right is its polar S◦ = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x ≤ 1/

√
2}.

Useful duality results

The following lemma is useful for understanding the polars of the unions of sets. It

follows in a straightforward way from the definition of the polar of a set.

Lemma 2.3.8 ([105, Corollary 16.5.2]). If S1, S2 are subsets of a finite-dimensional

real inner product space V then

(S1 ∪ S2)◦ = S◦1 ∩ S◦2 .

Example 2.3.9. Consider the set S = {(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(
√

2, 0)} shown

on the left in Figure 2.9. Its polar is the intersection of the polar of a circle and the

polar of a point, i.e.

S◦ = {(x, y) ∈ R2 : x2 + y2 = 1}◦ ∩ {(
√

2, 0)}◦.

The polar of the unit circle is the unit disk, and the polar of a point is a half-space.

Hence

S◦ = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x ≤ 1/
√

2}

as shown on the right in Figure 2.9.

The following result tells us about the polar of the image of a set under a linear

map. It is also straightforward consequence of the definitions.

Lemma 2.3.10 ([105, Corollary 16.3.2]). Let V,W be finite dimensional real inner

product spaces and B : W → V a linear map. If C ⊆ V is a subset of V then

(B(C))◦ = {w ∈W : B∗(w) ∈ C◦}.
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Duality relations are less straightforward when they involve the intersection of a

convex set and a subspace (taking a ‘slice’ of the convex set). Either additional closure

operations are required (as in (2.3.3) to follow) or additional assumptions (such as the

existence of x0 in Lemmas 2.3.11 and 2.3.12 to follow) are required that ensure the

intersection is sufficiently ‘general’. Note also that while Lemma 2.3.10 holds for an

arbitrary set C, the following result requires a convex set C.

Lemma 2.3.11 ([105, Corollary 16.3.2]). Let V and W be finite-dimensional real inner

product spaces and A : W → V a linear map. If C ⊆ V is a convex subset of V then

{x ∈W : A(x) ∈ cl(C)}◦ = cl(A∗(C◦)). (2.3.3)

If there exists x0 ∈W such that A(x0) is in the relative interior of C then

{x ∈W : A(x) ∈ C}◦ = A∗(C◦).

Combining the previous two results allows us to express the dual cone of a projection

of a slice of a closed convex cone K in terms of a projection of a slice of the dual cone

K∗.

Lemma 2.3.12. Let W,V1, V2 be finite-dimensional real inner product spaces. Suppose

K1 ⊆ V1 is a closed convex cone and A : W → V1 and B : W → V2 are linear maps.

Let

K2 = {B(x) : A(x) ∈ K1} ⊆ V2.

Furthermore, assume there is some x0 ∈ V1 such that A(x0) is in the relative interior

of K1. Then

K∗2 = {w ∈ V2 : ∃y ∈ K∗1 s.t. B∗(w) = A∗(y)}.

Proof. If K2 is a convex cone then K∗2 = −K◦2 (by Example 2.3.6), so we can apply

the results of Lemmas 2.3.10 and 2.3.11 to find K◦2 and then appropriately change the

sign. Let C = {x ∈ W : A(x) ∈ K1}. Then since K1 is closed and convex and there is

x0 ∈ W such that A(x0) is in the relative interior of K1, it follows from Lemma 2.3.11

that

C◦ = A∗(K◦1 ) = {A∗(y) : y ∈ K◦1}.

Combining this with Lemma 2.3.10 we see that

K◦2 = (B(C))◦ = {w ∈W : B∗(y) ∈ C◦} = {w ∈W : ∃y ∈ K◦1 s.t. B∗(w) = A∗(y)}.

To complete the argument we use the fact that K◦2 = −K∗2 and that K◦1 = −K∗1 .
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Convex conjugates and support functions

If f : V → R is a function then its Fenchel conjugate is a function f∗ : V → R defined

by

f∗(y) = sup
x
〈y, x〉 − f(x). (2.3.4)

The conjugate function f∗ is always convex since its epigraph is the intersection of

half-spaces, one for each value of x. It follows that (f∗)∗ : V → R is a convex function,

called the convex envelope of f . Observe that

(f∗)∗(x) = sup
y
〈x, y〉 − f∗(y)

is the pointwise maximum of a collection of affine functions x 7→ 〈x, y〉 − f∗(y). Each

of these affine functions is a lower bound on x 7→ f(x) since the inequality

f(x) ≥ 〈x, y〉 − f∗(y) for all x and all y

is a restatement of (2.3.4). As such the convex envelope is the pointwise maximum of

all the affine functions that are global lower bounds on f .

An important case of this construction is the conjugate function of an indicator

function. If S ⊆ V is a set then its support function is hS : V → R defined by

hS(y) = ι∗S(y) = sup
x∈S
〈y, x〉. (2.3.5)

Note that hS is a convex function for any set S and is the conjugate function of the

indicator function of S. Furthermore, hS(y) = hcl(convS)(y) for all y (see, e.g., [105,

Theorem 32.2] specialized to the case of linear functions).

� 2.4 Semidefinite representations and semidefinite optimization

In this section we summarize basic facts about the family of semidefinite optimization

problems before focusing our attention on the convex sets that arise as the feasible

regions of semidefinite optimization problems.

� 2.4.1 Semidefinite optimization

A semidefinite optimization problem is an optimization problem of the form

min
X
〈C,X〉 subject to X ∈ L ∩ Sm+ (2.4.1)

where L is an affine subspace of Sm and Sm+ is the cone of m ×m symmetric positive

semidefinite matrices. It is typical to write semidefinite optimization problems via an
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explicit parameterization of the affine subspace L appearing in (2.4.1). Suppose we

parameterize L as

L = {X ∈ Sm : A(X) = b} = X0 + null(A)

where b ∈ Rn, A : Sm → Rn is a linear map, X0 ∈ Sm satisfies A(X0) = b and null(A)

is the nullspace of A. Using this description for L, (2.4.1) becomes

min
X
〈C,X〉 subject to X � 0, A(X) = b. (2.4.2)

An optimization problem that is dual to (2.4.2) (in a sense that is discussed under the

heading ‘duality results’ to follow) is

max
y
〈b, y〉 subject to C −A∗(y) � 0. (2.4.3)

This is again a semidefinite optimization problem. To see this note that if col(A∗)
denotes the column space of A∗ then the feasible region of (2.4.3) is affinely isomorphic

to the intersection of Sm+ with the affine subspace C + col(A∗). Moreover the objective

function is linear.

Semidefinite optimization problems are of interest because they can be solved ef-

ficiently to numerical accuracy (both in theory and in practice) using interior point

methods [89] and can also model a wide range of optimization problems (see, e.g., [87]).

The main property of semidefinite optimization problems that allows the application

of interior point methods is that their feasible regions have certain well-behaved bar-

rier functions called self-concordant barrier functions [89]. In addition to being self-

concordant, to obtain efficient algorithms it is necessary that the gradient and the

Hessian of the barrier function can be evaluated efficiently, and that a quantity called

the barrier parameter [89] is not too large. In particular, the function X 7→ − log det(X)

is a self-concordant barrier function for Sm+ with barrier parameter m. Restricting the

function − log det(·) to the affine subspace L gives a self-concordant barrier function

for L ∩ Sm+ with barrier parameter m.

Duality results

We now summarize basic duality results for the pair (2.4.2) and (2.4.3). The first result

is known as weak duality, and holds just by virtue of the structure of the primal and

dual problems.

Lemma 2.4.1. If X is feasible for (2.4.2) and y is feasible for (2.4.3) then 〈C,X〉 ≥
〈y, b〉.
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Proof. Since X is feasible for (2.4.2) we have that A(X) = b. Hence

〈C,X〉 − 〈y, b〉 = 〈C,X〉 − 〈y,A(X)〉 = 〈C,X〉 − 〈A∗(y), X〉 = 〈C −A∗(y), X〉 ≥ 0

where the last equality holds because C −A∗(y) � 0 and X � 0.

Let p? denote the optimal value of (2.4.2) and d? the optimal value of (2.4.3),

adopting the usual convention that p? = −∞ if the problem is unbounded and p? =∞
if the problem is infeasible, and that d? =∞ if the problem is unbounded and d? = −∞
if the problem is infeasible (these are reversed because one is a maximization problem,

the other a minimization problem). We could restate Lemma 2.4.1 in this language as

d? ≤ p?.
In general strong duality does not hold, i.e. we do not always have p? = d?. The

optimal value of the primal problem and the optimal value of the dual problem can both

be finite and yet not coincide (for instance see the example after Theorem 3.1 of [131]).

It is also possible that the optimal primal or dual values are not achieved by any feasible

point, i.e. there is a sequence of feasible points with objective value approaching the

optimal value, but no feasible point with objective value equal to the optimal value

(see, for instance, the same example after Theorem 3.1 of [131]). Nevertheless, under

fairly mild additional hypotheses, these situations can be ruled out. The following

paraphrases [131, Theorem 3.1].

Theorem 2.4.2. If either

1. there is X0 � 0 such that A(X0) = b (i.e. the problem (2.4.2) is strictly feasible)

or

2. there is y such that C −A∗(y) � 0 (i.e. the problem (2.4.3) is strictly feasible)

then p? = d?. Furthermore if both conditions 1 and 2 hold, then the primal and dual

optimal values are both achieved.

Under similar hypotheses to those that ensure strong duality holds, there is a sim-

ple characterization of the optimality conditions for the semidefinite optimization prob-

lem (2.4.2). We choose this rather asymmetric statement of the optimality conditions

because it is most natural in Chapter 6.

Theorem 2.4.3. If X? is feasible for (2.4.2) and there exists y? such that

C −A∗(y?) � 0 and X?(C −A∗(y?)) = 0 (2.4.4)

then X? is optimal for (2.4.2) (and y? is optimal for (2.4.3)). Conversely, if the pri-

mal (2.4.2) and the dual (2.4.3) are strictly feasible and X? is optimal for (2.4.2) then

there exists y? such that (2.4.4) holds.
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Proof. If some y? satisfying (2.4.4) exists then

0 = tr(X?(C −A∗(y?))) = 〈C,X?〉 − 〈A(X?), y?〉 = 〈C,X?〉 − 〈b, y?〉. (2.4.5)

Let X be any primal feasible point. Then by weak duality (and the fact that y? is dual

feasible), 〈C,X〉 ≥ 〈b, y?〉. Then by (2.4.5) we have 〈C,X〉 ≥ 〈b, y?〉 = 〈C,X?〉. Hence

X? is optimal.

On the other hand let X? be optimal for (2.4.2). If both the primal and dual

problems are strictly feasible then by Theorem 2.4.2 the primal and dual optimal values

are the same and are achieved. Hence there exists y? that satisfies C − A∗(y?) � 0

and 〈y?, b〉 = 〈C,X?〉. Equivalently 〈C − A∗(y?), X?〉 = 0. Since both X? � 0 and

C −A∗(y?) � 0 it follows that (C −A∗(y?))X? = 06. Hence y? satisfies (2.4.4).

� 2.4.2 Spectrahedral and semidefinite representations

In this section we discuss two families of convex sets related to semidefinite optimization.

The first family are the spectrahedra (see Definition 2.4.4 to follow). These are the

feasible regions (up to the notion of affine isomorphism discussed in Section 2.3.2) of

semidefinite optimization problems. In their foundational paper [101], Ramana and

Goldman coined the term ‘spectrahedra’ for these sets and established many of the

basic properties of these convex sets.

Definition 2.4.4. A convex set C is a spectrahedron if there exists a positive integer

m and an affine subspace L of Sm such that C is affinely isomorphic to L ∩ Sm+ .

The second family of convex sets we discuss in this section are the semidefinitely

representable sets (see Definition 2.4.5 to follow). These are the images of spectra-

hedra under linear maps that are possibly not injective. Consequently, semidefinitely

representable convex sets are also known as projected spectrahedra.

Definition 2.4.5. A convex set C ⊆ Rn is semidefinitely representable if there exists

a positive integer m, an affine subspace L of Sm and a linear map π : Sm → Rn such

that C = π(L ∩ Sm+ ).

At first glance these definitions look very similar. The key difference is the map

π : Sm → Rn appearing in the definition of a semidefinitely representable set. Any

spectrahedron is also semidefinitely representable. However, it is not at all clear from the

definition whether the family of semidefinitely representable sets is strictly larger than

the family of spectrahedra, i.e. whether we can obtain more sets by allowing maps π that

6We have used the fact that if A,B ∈ Sm+ then 〈A,B〉 = 0 if and only if AB = 0 [14, Corollary
A.24].
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are not injective. It turns out that this is the case; there are semidefinitely representable

sets that are not spectrahedra. We describe one such set in Example 2.4.10.

By comparing the definition of a spectrahedron (Definition 2.4.4) with the descrip-

tion of a semidefinite optimization problem in (2.4.2) we can see that spectrahedra

are the feasible regions of semidefinite optimization problems. We are also interested in

semidefinitely representable sets in the context of semidefinite optimization, because we

can optimize a linear functional over a semidefinitely representable set using semidefi-

nite optimization. We now explain why this is the case. Suppose C = π(L ∩ Sm+ ) is a

semidefinitely representable set where L is an affine subspace of Sm and π : Sm → Rn

is a linear map. Then we can rewrite the optimization problem

min
x
〈c, x〉 s.t. x ∈ C = π(L ∩ Sm+ )

as a semidefinite optimization problem. Indeed an equivalent problem is

min
X
〈c, π(X)〉 s.t. X ∈ L ∩ Sm+ .

By rewriting the objective function we obtain a problem in the form

min
X
〈π∗(c), X〉 s.t. X ∈ L ∩ Sm+ ,

i.e. the standard form of a semidefinite optimization problem (2.4.2). In other words,

instead of optimizing the linear functional defined by c over the set C, we can optimize

the linear functional defined by π∗(c) over the set L ∩ Sm+ , which is a semidefinite

optimization problem.

The cost of solving a semidefinite optimization problem depends on the size of the

positive semidefinite matrices involved in the formulation (i.e. on the parameter m

in (2.4.2)). As such, it is useful to have refinements of the notions of spectrahedra and

semidefinitely representable sets that keep track of this size parameter.

Definition 2.4.6. A convex set C has a spectrahedral representation of size m if there

exists an affine subspace L of Sm such that C is affinely isomorphic to L ∩ Sm+ .

This differs from the definition of a spectrahedron only in that it includes the size

parameter m in the definition.

Definition 2.4.7. A convex set C ⊆ Rn has a semidefinite representation of size m

if there exists an affine subspace L of Sm and a linear map π : Sm → Rn such that

C = π(L ∩ Sm+ ).

Again, this differs from the definition of a semidefinitely representable set only in

that it includes the size parameter m in the definition.
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We can explicitly parameterize the affine subspaces L that appear in Definitions 2.4.6

and 2.4.7. Any affine subspace L of Sm with dimension at most n can be parameterized

as

L =

{
A0 +

n∑
i=1

Aixi : x ∈ Rn
}

where A0, A1, . . . , An ∈ Sm (see (2.3.1)). As such, C has a spectrahedral representation

of size m if and only if C is affinely isomorphic to a set of the form{
x ∈ Rn : A0 +

n∑
i=1

Aixi ∈ Sm+

}

where A0, A1, . . . , An ∈ Sm. Similarly a convex set C ⊆ Rn has a semidefinite repre-

sentation of size m if and only if it is of the form

C =

{
x ∈ Rn : ∃y s.t. x = π(y) and A0 +

n∑
i=1

Aiyi ∈ Sm+

}

where π : Sm → Rn and A0, A1, . . . , An ∈ Sm.

Polars of spectrahedra

In Lemma 2.4.8 to follow we give explicit descriptions for the polar of a spectrahe-

dron. These descriptions show that the polar of a spectrahedron is semidefinitely rep-

resentable. Since the second description in Lemma 2.4.8 is not so standard, we include

a proof.

Lemma 2.4.8. Let A : Sm → Rn be a linear map with adjoint A∗ : Rn → Sm. Suppose

C = {x ∈ Rn : A0 − A∗(x) ∈ Sm+ } is a spectrahedron with non-empty interior and

suppose there is e ∈ Rn such that A0 −A∗(e) � 0. Then

C◦ = {y ∈ Rn : ∃Z s.t. y = A(Z), 〈A0, Z〉 ≤ 1, Z ∈ Sm+ }. (2.4.6)

Suppose, in addition, there is some Z0 ∈ Sm+ such that 〈A0, Z0〉 = 1 and A(Z0) = 0.

Then

C◦ = {y ∈ Rn : ∃Z s.t. y = A(Z), 〈A0, Z〉 = 1, Z ∈ Sm+ }. (2.4.7)

Proof. The characterization in (2.4.6) is given, for instance, in [55]. (It could also be

deduced directly from Lemma 2.3.11 in Section 2.3 applied to the set {A0} − Sm+ and

observing that its polar is {Z ∈ Sm : 〈A0, Z〉 ≤ 1, Z ∈ Sm+ }.)
We now establish the second description of C◦ in (2.4.7). Suppose there is Z0 ∈ Sm+

such that 〈A0, Z0〉 = 1 and A(Z0) = 0. Under this additional assumption we show that
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{y ∈ Rn : ∃Z s.t. y = A(Z), 〈A0, Z〉 ≤ 1, Z ∈ Sm+ } ⊆
{y ∈ Rn : ∃Z s.t. y = A(Z), 〈A0, Z〉 = 1, Z ∈ Sm+ } (2.4.8)

which is enough to establish (2.4.7) (since the other inclusion is obvious). To estab-

lish (2.4.8), define

Z ′ = Z + (1− 〈A0, Z〉)Z0.

Then since Z ∈ Sm+ and Z0 ∈ Sm+ it follows that Z ′ ∈ Sm+ . Furthermore,

〈A0, Z
′〉 = 〈A0, Z〉+ 〈A0, Z0〉 − 〈A0, Z〉〈A0, Z0〉 = 〈A0, Z〉+ 1− 〈A0, Z〉 = 1.

Finally A(Z ′) = A(Z + (1− 〈A0, Z〉)Z0) = A(Z) = y since A(Z0) = 0. Hence Z ′ is an

element of the right hand of (2.4.8) as we require.

Faces of spectrahedra

If L ∩ Sm+ is a spectrahedron, then all of its faces are of the form L ∩ FU where FU
is the face of the positive semidefinite cone corresponding to the subspace U ⊆ Rm

(see Example 2.3.2). An important characteristic that spectrahedra inherit from the

positive semidefinite cone is that all of their faces are exposed.

Lemma 2.4.9 (Ramana and Goldman [101]). All boundary faces of a spectrahedron

are exposed.

One may wonder whether the faces of semidefinitely representable sets are always

exposed. This is not the case as the following example shows.

Example 2.4.10. In this example we describe a semidefinitely representable set with

non-exposed faces.

Let S = {(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(
√

2, 0)} be the set shown on the left in

Figure 2.7. Consider its polar, the convex set C = S◦ = {(x, y) ∈ R2 : x2 + y2 ≤
1, x ≤ 1/

√
2} shown on the right of Figure 2.9. First note that C has a spectrahedral

representation as

C =

(x, y) ∈ R2 :

1/
√

2 0 0

0 1 0

0 0 1

+ x

−1 0 0

0 −1 0

0 0 1

+ y

0 0 0

0 0 1

0 1 0

 � 0

 .

We now explain why this representation is valid. Since the matrices in the representation

of C are block diagonal, and after a little rearrangement, we obtain the equivalent
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description

C =

{
(x, y) ∈ R2 : x ≤ 1/

√
2,

[
1− x y

y 1 + x

]
� 0

}
.

Since a 2 × 2 symmetric matrix A is positive semidefinite if and only if tr(A) ≥ 0 and

det(A) ≥ 0 we see that the conditions[
1− x y

y 1 + x

]
� 0 and det

([
1− x y

y 1 + x

])
≥ 0 and x2 + y2 ≤ 1

are all equivalent.

The polar of C is C◦ = (S◦)◦ = conv(S) (where we have used the biduality result

Proposition 2.3.7 and the fact that conv(S) is closed and 0 ∈ conv(S)). The set C◦ is the

convex set shown on the right in Figure 2.7. On the one hand this set is semidefinitely

representable because it is the polar of a spectrahedron, and the polar of a spectrahedron

is semidefinitely representable by Lemma 2.4.8. On the other hand, we have already

seen (in Example 2.3.1) that C◦ has non-exposed faces. Hence C◦ is a semidefinitely

representable set with non-exposed faces.

Since the faces of spectrahedra are always exposed, it follows that the family of spec-

trahedra is a strict subset of the family of semidefinitely representable sets. Moreover,

this example also shows that the polar of a spectrahedron need not be a spectrahedron.

Size of spectrahedral and semidefinite representations

Suppose C has a spectrahedral representation of size m. This means we can optimize a

linear functional over C by solving a semidefinite optimization problem involving m×m
positive semidefinite matrices. It may be the case that C has a (different) semidefinite

representation of much smaller size. In other words we may be able to express C as the

projection of a spectrahedron in a higher dimensional space that has a much simpler

description.

An example of this arises in Chapter 4. Let C be the nuclear norm ball in Rn×n,

i.e. the set of n × n real matrices such that the sum of the singular values is at most

one. This is a spectrahedron (see Theorem 4.1.2 from Chapter 4) and the size of the

smallest possible spectrahedral representation of this set is 2n (see Theorem 4.1.4 from

Chapter 4). On the other hand it is known that C has a semidefinite representation of

size 2n (see Example 4.1.5 from Chapter 4).

Expressive power and limitations of semidefinite optimization

Studying which convex sets have semidefinite representations tells us which optimization

problems we can solve via semidefinte optimization. By also paying attention to the
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size of such representations, we can also keep track of the complexity of the resulting

semidefinite optimization problems.

All semidefinitely representable sets are convex and semialgebraic7. Helton and

Nie [63] have investigated the general question of which convex semialgebraic sets have

semidefinite representations, leading to the following conjecture.

Conjecture 2.4.11 (Helton-Nie [63]). Every convex semialgebraic subset of Rn is

semidefinitely representatable.

This conjecture has been resolved in the case of subsets of R2 by Scheiderer.

Theorem 2.4.12 (Scheiderer [119, Theorem 6.7]). Every convex semialgebraic subset

of R2 is semidefinitely representatable.

In practice, we are interested not just in whether such representations exist, but

also the size of the smallest such representation. Very few techniques are available for

establishing lower bounds on the size of semidefinite representations of convex sets.

Most of the work carried out in this direction has focused on lower bounds on the size

of semidefinite representations of polytopes, i.e. convex sets obtained by taking the

convex hull of finitely many points. Perhaps the only strong lower bound on the size of

semidefinite representations of an explicit polytope is in the recent work of Lee et al. [76].

In that work it is established (among other results) that any semidefinite representation

of the cut polytope, i.e. conv {(xixj)1≤i<j≤n : xi ∈ {−1, 1} for i = 1, 2, . . . , n} must

have exponential size. For a survey of what is known about the limitations on the

expressive power of semidefinite representations and related topics, and a long list of

interesting open problems, see [42].

� 2.5 Hyperbolic polynomials and hyperbolicity cones

In this section we describe a family of convex cones that are constructed from multi-

variate polynomials with certain restrictions on their zeros. These hyperbolicity cones

(see Definition 2.5.2 to follow) include many familiar convex cones, most notably the

cone of real symmetric m × m positive semidefinite matrices. Hyperbolic optimiza-

tion problems are problems involving maximizing (or minimizing) a linear functional

over the intersection of a hyperbolicity cone and an affine subspace. In Section 2.5.4 we

briefly discuss what is known, and what is conjectured to be true, about the relationship

between semidefinite optimization and hyperbolic optimization.

7A subset of Rn is basic semialgebraic if it has the form {x ∈ Rn : p0(x) 6= 0, p1(x) ≥ 0, . . . , pm(x) ≥
0} for some positive integer m and polynomials p0, p1, . . . , pm. A subset of Rn is semialgebraic if it is
the union of finitely many basic semialgebraic sets (see, e.g., [14, Appendix A.4.4])
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� 2.5.1 Hyperbolic polynomials

The following definition dates back (at least) to the 1959 work of G̊arding [49] on partial

differential equations.

Definition 2.5.1. A homogeneous polynomial p of degree m in n variables is hyperbolic

with respect to e ∈ Rn if p(e) 6= 0 and whenever x ∈ Rn the univariate polynomial

t 7→ p(x− te) has only real roots in t.

Similar definitions, that place related restrictions on the location of the zeros of

multivariate polynomials, appear in combinatorics, probability theory, control theory,

and statistical mechanics (see, e.g., the recent surveys [94, 134]).

Examples

• Let p(x) =
∏n
i=1 xi and let e ∈ Rn be the vector with all entries equal to one.

Then p is hyperbolic with respect to e because if x ∈ Rn, the univariate polynomial

t 7→ p(x− te) =
∏n
i=1(xi − t) has roots x1, x2, . . . , xn ∈ R.

• Let p(x) = (x2
1 + x2

2 + · · · + x2
n−1) − x2

n and let e = (0, 0, . . . , 0, 1). Then p is

hyperbolic with respect to e because for any x ∈ Rn the univariate polynomial

t 7→ p(x− te) = (x2
1 + x2

2 + · · ·+ x2
n−1)− (xn − t)2

has only the real roots t = xn ± (x2
1 + · · ·+ x2

n−1)1/2.

• Let X be a symmetric m × m matrix of indeterminates. Then the polynomial

p(X) = det(X) is hyperbolic with respect to I ∈ Sm. This is because if X ∈ Sm

then the univariate polynomial t 7→ p(X− tI) is the characteristic polynomial of a

symmetric matrix and so its roots are the (real) eigenvalues λ1(X) ≥ · · · ≥ λn(X)

of X.

• Let A1, A2, . . . , An ∈ Sm and e ∈ Rn be such that A0 :=
∑n

i=1Aiei � 0. Then

the polynomial

p(x) = det (
∑n

i=1Aixi)

is hyperbolic with respect to e. This is because if A
1/2
0 is the unique positive

definite square root of A0 we have

t 7→ p(x− te) = det(A0) det
(∑n

i=1A
−1/2
0 AiA

−1/2
0 xi − tI

)
is (up to positive scaling) the characteristic polynomial of the symmetric matrix∑n

i=1A
−1/2
0 AiA

−1/2xi. Hence the roots of t 7→ p(x− te) are the (real) eigenvalues

of
∑n−1

i=1 A
−1/2
0 AiA

−1/2
0 xi.
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It is less obvious that the next two examples are, in fact, hyperbolic polynomials. The

first example is discussed in Section 3.1.2 of Chapter 3. For the second example, see [138,

Theorem 10.2].

• Let [n] = {1, 2, . . . , n} and let

p(x) =
∑
I⊆[n]
|I|=k

∏
i∈I

xi

be the elementary symmetric polynomial of degree k in n variables. This polyno-

mial is hyperbolic with respect to e = (1, 1, . . . , 1).

• Let M be an entry-wise non-negative k × n matrix (with k ≤ n). Then define a

polynomial in n variables of degree k by

p(x) =
∑
I⊆[n]
|I|=k

Per(MI)
∏
i∈I

xi

where MI is the square k× k submatrix of M with columns indexed by the set I

and Per(A) is the permanent of a k × k matrix A, i.e.

Per(A) =
∑
σ

∏
i∈[k]

Aiσ(i)

where the sum is over all permutations σ of k symbols. The polynomial p is

hyperbolic with respect to e = (1, 1, . . . , 1) [138, Theorem 10.2].

Note that we recover (up to scaling) the first example from the second by taking M to

be the k× n matrix of all ones. This last example is particularly interesting because it

shows that hyperbolic polynomials are not necessarily easy to evaluate. Indeed suppose

a subset I ⊆ [n] has |I| = k and define εI ∈ Rn to have ones in the positions indexed

by I and zeros elsewhere. Then to compute p(εI) we must compute Per(MI) which for

a general non-negative k × k integer matrix MI is #P-complete [130].

� 2.5.2 Hyperbolicity cones

Definition 2.5.2. If p is hyperbolic with respect to e then the hyperbolicity cone cor-

responding to (p, e) is the connected component of {x ∈ Rn : p(x) 6= 0} containing e.

We denote this cone by Λ++(p, e) and its closure by Λ+(p, e).

It is clear from the definition that the closure Λ+(p, e) of Λ++(p, e) is closed under

non-negative scaling (i.e. it is a closed cone). The remarkable fact is that it is a convex
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cone, i.e. it is also closed under addition. This was first established by G̊arding in the

context of partial differential equations.

Theorem 2.5.3 (G̊arding [49]). If p is hyperbolic with respect to e then Λ+(p, e) is a

closed convex cone.

There are a number of alternative characterizations of the hyperbolicity cone, per-

haps the simplest being the following.

Theorem 2.5.4. If p is hyperbolic with respect to e ∈ Rn then

Λ+(p, e) = {x ∈ Rn : all roots of t 7→ p(x− te) are non-negative} .

Throughout Chapter 3 we make extensive use of yet another characterization of

Λ+(p, e), in terms of polynomial inequalities (see (3.1.1) of Chapter 3).

Examples

We now describe the hyperbolicity cones corresponding to the first group of examples

from Section 2.5.1. These are all familiar convex cones.

• If e = (1, 1, . . . , 1) and p(x) =
∏
i∈[n] xi then the roots of p(x − te) are simply

x1, x2, . . . , xn. Hence the corresponding closed hyperbolicity cone is

Λ+(p, e) = {x ∈ Rn : xi ≥ 0 for all i ∈ [n]} .

• If e = (0, 0, . . . , 0, 1) and p(x) =
∑n−1

i=1 x
2
i − x2

n then the roots of p(x − te) are

xn ±
(∑n−1

i=1 x
2
i

)1/2
. Hence the corresponding closed hyperbolicity cones is

Λ+(p, e) =

{
x ∈ Rn :

(∑n−1
i=1 x

2
i

)1/2
≤ xn

}
.

• If e = I and p(X) = det(X) (where X is symmetric) then the roots of p(x − te)
are the eigenvalues of X. Hence the corresponding closed hyperbolicity cone is

Λ+(p, e) = {X ∈ Sm : λi(X) ≥ 0, for all i = 1, 2, . . . ,m} = {X ∈ Sm : X � 0} .

• Suppose A1, A2, . . . , An ∈ Sm and e ∈ Rn is such that A0 =
∑n

i=1Aiei � 0. Then

the roots of p(x − te) are the eigenvalues of
∑n

i=1A
−1/2
0 AiA

−1/2
0 xi. Hence the

corresponding closed hyperbolicity cones is

Λ+(p, e) = {x ∈ Rn :
∑n

i=1Aixi � 0} ,
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i.e. it is a spectrahedral cone.

When p(x) is the elementary symmetric polynomial of degree k and e is the vector with

all entries equal to one, the corresponding hyperbolicity cone is called the kth derivative

relaxation of the orthant (see Equation (3.1.4) of Chapter 3). These are central objects

of interest in Chapter 3, so we defer further discussion of these cones to that chapter.

All of the boundary faces of hyperbolicity cones are exposed, a result due to Rene-

gar [102, Theorem 23]. This allows us to deduce that the dual cones of hyperbolicity

cones are not typically hyperbolicity cones. We show this by modifying Example 2.4.10.

Example 2.5.5. Consider polynomial, homogeneous of degree 3, defined by

p(x, y, z) = (x2 + y2 − z2)(z/
√

2− x)

and let e = (0, 0, 1). The polynomial p is hyperbolic with respect to e since, for any

(x, y, z) the roots of t 7→ p(x, y, z − t) are t = z −
√

2x, t = z + (x2 + y2)1/2, t =

z − (x2 + y2)1/2. The corresponding hyperbolicity cone is

Λ+(p, e) = {(x, y, z) ∈ R3 : (x2 + y2)1/2 ≤ z, x ≤ z/
√

2},

i.e. the cone over the set C in Example 2.4.10. Its dual cone is

{(x, y, z) ∈ R3 : (x2 + y2)1/2 ≤ z}+ cone{(−
√

2, 0, 1)}

the sum of a quadratic cone and a single ray. This cone has non-exposed extreme rays.

They are the extreme rays generated by (−1/
√

2, 1/
√

2, 1) and (−1/
√

2,−1/
√

2, 1) (this

follows by a very similar argument to that from Example 2.3.1). Since all boundary

faces of hyperbolicity cones are exposed, the dual cone (Λ+(p, e))∗ of the hyperbolicity

cone Λ+(p, e) is not a hyperbolicity cone.

� 2.5.3 Hyperbolic optimization

Interest in hyperbolicity cones in the context of optimization was stimulated by Güler [58].

Among other things, he established that there is a natural self-concordant barrier func-

tion associated with any hyperbolicity cone.

Theorem 2.5.6 (Güler). If p has degree m and is hyperbolic with respect to e ∈ Rn

then F (x) = − log p(x) is a self-concordant barrier function with barrier parameter m.

As such, as long as F and its gradient and Hessian can be evaluated efficiently,

polynomial time (in n and m) interior point methods [89, 58] can be devised for the

corresponding hyperbolic optimization problem:

min
x
〈c, x〉 subject to A(x) = b, x ∈ Λ+(p, e) (2.5.1)
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where A : Rn → Rk is a linear map and b ∈ Rk. The corresponding conic dual problem

is

max
y
〈y, b〉 subject to c−A∗(y) ∈ (Λ+(p, e))∗ (2.5.2)

where (Λ+(p, e))∗ is the dual cone of Λ+(p, e). Foundational work on this family of

optimization problems has been carried out by Güler [58] and more recently by Rene-

gar [102].

One of the challenges with hyperbolic optimization in general is that we do not

have a good understanding of the dual cones (Λ+(p, e))∗. This makes the development

of primal-dual algorithms for this class of optimization problems challenging. Recent

progress in this direction has been made by Renegar and Sondjaja [103] and Myklebust

and Tunçel [83].

� 2.5.4 Hyperbolic vs semidefinite optimization

Chapter 3 is devoted to describing explicit polynomial-size semidefinite representations

for a particular family of hyperbolicity cones. It can be viewed in the context of a

broader family of questions about the relationship between hyperbolicity cones, spec-

trahedral cones, and semidefinitely representable cones.

Since all spectrahedral cones are also hyperbolicity cones, and there are no known

properties of spectrahedral cones that are not also properties of hyperbolicity cones, it

is natural to wonder if these two classes of convex bodies are the same. This is known

to be true for three-dimensional hyperbolicity cones. In fact the following stronger

result was conjectured by Lax [74], and established (in different language) by Helton

and Vinnikov [64] (see also [77]).

Theorem 2.5.7 (Helton-Vinnikov [64]). Suppose that the degree m polynomial p : R3 →
R is hyperbolic with respect to e ∈ R3. Then there exist matrices A1, A2, A3 ∈ Sm such

that A1e1 +A2e2 +A3e3 � 0 and

p(x1, x2, x3) = det (A1x1 +A2x2 +A3x3) . (2.5.3)

In dimensions greater than three, a parameter-counting argument [18] rules out

the possibility that every hyperbolic polynomial has a determinantal representation

generalizing (2.5.3). Nevertheless, it is possible for different hyperbolic polynomials (of

different degrees) to have the same hyperbolicity cone (see, e.g., [18]). The following

conjecture, which is a consequence of the Helton-Vinnikov theorem in dimension 3, is

often called the generalized Lax conjecture.

Conjecture 2.5.8. Every hyperbolicity cone is spectrahedral.

Although it is very appealing, at present there is little evidence, positive or negative,
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for this conjecture.

Recall that semidefinitely representable sets (see Definition 2.4.5) are a strictly larger

family of convex sets than spectrahedra. If the following were to hold then every hyper-

bolic optimization problem could, in principle, be solved using semidefinite optimiza-

tion8.

Conjecture 2.5.9. Every hyperbolicity cone is semidefinitely representable.

This conjecture is a simultaneous weakening of the generalized Lax conjecture (Con-

jecture 2.5.8) and the Helton-Nie conjecture (Conjecture 2.4.11). Netzer and Sanyal

established that all smooth hyperbolicity cones are semidefinitely representable [90] by

carefully applying results of Helton and Nie [63] to the setting of hyperbolicity cones.

The resulting semidefinite representations are very large and are not explicitly defined.

� 2.6 Symmetry, representations, and convexity

Many of the convex bodies we study in this thesis have a large symmetry group. This

is a more common situation than one might imagine. Many problems of interest in-

volve optimization over the configurations of a system, which may have a great deal

of symmetry. For instance in Chapter 4 we study optimization problems over rotation

matrices, i.e. orientation-preserving rigid transformations. In this section we collect

some basic results about the way group symmetry interacts with convex optimization

and convex geometry. A number of these simple results are used repeatedly throughout

the thesis.

In Section 2.6.1 we gather some basic definitions relating to groups and their action

on vector spaces, i.e. linear representations of groups. Section 2.6.2 contains a number of

useful results about the interaction between symmetry and convexity. In Section 2.6.3

we briefly discuss equivariant semidefinite representations of symmetric convex sets.

These are semidefinite representations that respect, in a sense we make precise, the

symmetries of the underlying set.

� 2.6.1 Basic definitions

Definition 2.6.1. A group is a set G together with a binary operation (a, b) 7→ ab such

that

1. if a, b ∈ G then ab ∈ G;

2. if a, b, c ∈ G then (ab)c = a(bc);

8Although this would tell us nothing about the complexity of directly solving the hyperbolic opti-
mization problem vs solving the semidefinite optimization problem. For more refined questions along
these lines that also take into account complexity issues, see [129, Chapter 12].
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3. there exists e ∈ G such that ae = ea = a for all a ∈ G; and

4. for all a ∈ G there exists b ∈ G such that ba = ab = e

The maps that preserve group structure are called group homomorphisms.

Definition 2.6.2. If G and H are groups then φ : G → H is a homomorphism if

φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈ G.

Groups naturally arise when considering the symmetries of sets. If V is a set then

the automorphism group Aut(V ) of V is the group consisting of bijections f : V → V

with the group operation being composition. An action of a group G on a set V is

a homomorphism ρ : G → Aut(V ). In other words, this associates with each group

element g ∈ G a bijection ρ(g) : V → V so that ρ(gh) = ρ(g) ◦ ρ(h) for all g, h ∈ G.

If the set V has additional structure, then it is fruitful to restrict to group actions

that preserve that structure. Our primary interest is in convex subsets of finite di-

mensional real vector spaces V . The structure-preserving automorphisms of V are the

invertible linear maps. We denote these by GL(V ). When V = Rn we instead use the

notation GL(n). Concretely GL(n) can be thought of as the group of n× n invertible

matrices with the group operation being matrix multiplication.

The space V together with a linear group action is a (linear) representation of that

group.

Definition 2.6.3. If G is a group and (V, ρ) is a pair consisting of a finite dimensional

real vector space V and homomorphism ρ : G→ GL(V ), we call (V, ρ) a representation

of G over R.

Since we often fix an inner product on V (and use it to identify V and its dual

space V ∗), it is natural to further restrict to automorphisms of V that are linear and

preserve the inner product. The linear maps Q : V → V such that 〈Qu,Qv〉 = 〈u, v〉
for all u, v ∈ V are called orthogonal. The group of orthogonal transformations of V is

denoted O(V ). Again when V = Rn we denote this group by O(n). Concretely we can

think of O(n) as consisting of n× n matrices that satisfy QTQ = I. We now define the

representations that additionally preserve inner products.

Definition 2.6.4. A representation (V, ρ) of G over R is orthogonal if 〈ρ(g)x, ρ(g)y〉 =

〈x, y〉 for all x, y ∈ V and all g ∈ G.

There are obvious parallels of Definitions 2.6.3 and 2.6.4 if V is a complex vector

space equipped with an Hermitian inner product. In this case we would refer to a

(unitary) representation of G over C rather than an orthogonal representation of G

over R.
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� 2.6.2 Convexity and the fixed point subspace

If a group acts on a vector space by linear transformations, the set of points that are

fixed by the action is a subspace. More precisely, if (V, ρ) is a representation of G then

the fixed-point subspace is

V ρ := {v ∈ V : ρ(g)v = v for all g ∈ G}.

Example 2.6.5. Let G be the group (under matrix multiplication) of diagonal matrices

with all entries either 1 or −1. We call these diagonal sign matrices. Let V = Sn be

the space of n × n symmetric matrices. The group G acts on V by conjugation, i.e.

ρ(g)(X) = gXgT for all g ∈ G. Note that this is an orthogonal representation since

〈gXgT , gY gT 〉 = 〈X,Y 〉 for all symmetric matrices X and Y . The fixed-point subspace

of this action is precisely the subspace of diagonal matrices.

Suppose G is a finite group and (V, ρ) is an orthogonal representation of G. One

reason the fixed point subspace is very useful in the context of convex optimization and

convex geometry is that the orthogonal projector onto the fixed point subspace is a

convex combination of the ρ(g).

Lemma 2.6.6. Let G be a finite group and (V, ρ) a finite-dimensional orthogonal rep-

resentation of G. Then the orthogonal projector PV ρ onto the fixed-point subspace V ρ

is given by

PV ρ =
1

|G|
∑
g∈G

ρ(g).

Proof. Let P = 1
|G|
∑

g∈G ρ(g). We will show that P is symmetric, satisfies P 2 = P ,

and has column space V ρ. To see that P is symmetric note that

P T =
1

|G|
∑
g∈G

ρ(g)T =
1

|G|
∑
g∈G

ρ(g−1) =
1

|G|
∑
h∈G

ρ(h)

where for the last equality we have made the change of variables h = g−1 in the sum.

If g ∈ G then

ρ(g)P = ρ(g)
1

|G|
∑
h∈G

ρ(h) =
1

|G|
∑
h∈G

ρ(gh) =
1

|G|
∑
h′∈G

ρ(h′) = P

where for the second last equality we have made the change of variables h′ = gh in the

sum. Hence P 2 = 1
|G|
∑

g∈G ρ(g)P = P . If v ∈ V ρ then

Pv =
1

|G|
∑
g∈G

ρ(g)v =
1

|G|
∑
g∈G

v = v
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so the column space of P contains V ρ. Conversely if w ∈ V is arbitrary (so Pw is an

arbitrary element of the column space of P ) then π(g)(Pw) = (π(g)P )w = Pw for all

g ∈ G. It follows that Pw ∈ V ρ and so that the column space of P is contained in V ρ.

Hence the column space of P is V ρ, completing the proof.

This result also holds for unitary representations, and for a much larger class of

groups than finite groups; for instance it holds for any unimodular group [22, Chap-

ter 1]. For these groups there is a unique probability measure on the group that is

invariant under left translation (the left Haar measure [22, Chapter 1]), and a unique

probability measure on the group that is invariant under right translation (the right

Haar measure [22, Chapter 1]), and these measures coincide. All the steps in the proof

above hold if we replace the sum with the integral with respect to such a measure.

Example 2.6.7. In the case where the group G consists of n×n diagonal sign matrices

acting on Sn by conjugation, we have seen that the fixed-point subspace is the subspace

of diagonal matrices. As such, the orthogonal projection onto diagonal matrices is given

by
1

2n

∑
g∈G

gXgT .

We note that this mapping sends positive semidefinite matrices to positive semidefinite

matrices since if X � 0 then gXgT � 0 for all g. Thus we recover the simple fact that

the diagonal elements of positive semidefinite matrices are non-negative.

Consequences for convex optimization

The following result tells us that if a convex optimization problem has an objective

function and constraint set that are invariant under the action of a group, then it has

a solution that is fixed by the group.

Lemma 2.6.8. Suppose G is a finite group and (V, ρ) is an orthogonal representation

of G. Let f : V → R be a convex function and C ⊆ V be a convex set such that

f(ρ(g)v) = f(v) for all v ∈ V and all g ∈ G and ρ(g)C = C for all g ∈ G.

Then if the convex optimization problem minx∈C f(x) has an optimal solution, it has

an optimal solution in V ρ.

Proof. Let x be any optimal solution of minx∈C f(x). We claim that PV ρx ∈ V ρ is also

optimal. To see this note that since f is convex and invariant,

f(PV ρx) = f
(

1
|G|
∑

g∈Gρ(g)x
)
≤ 1

|G|
∑
g∈G

f(ρ(g)x) = f(x).
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U

C

U

C

PUC C ∩ U

V ρ = fixed point subspace of ρ

C

PV ρC = C ∩ V ρ

ρ(ε)

Figure 2.10: On the top left is shown a convex set C (shaded), a subspace U (the
thin solid line) and the projection PUC of the convex set onto the subspace (the thick
solid line). The dashed lines are only present to help visualize the projection. On the
top right is shown the same convex set C, the same subspace U , and the intersection
C ∩U of the convex set and the subspace (the thick solid line). Comparing the top left
and top right diagram, we see that PUC ⊇ C ∩ U . On the bottom is shown a convex
set C (shaded) and a different subspace V ρ (the thin line). In the bottom diagram
the group {1, ε} consisting of two elements acts on R2 in such a way that ρ(1) is the
identity map and ρ(ε) is the reflection in the horizontal line shown. Clearly V ρ is the
fixed point subspace of this action and C is invariant under the action. In this case
PV ρC = C ∩V ρ, i.e. the projection of C onto V ρ and the intersection of C with V ρ are
the same (see part 1 of Lemma 2.6.9 to follow).

Furthermore since ρ(g)x ∈ C for all g ∈ G we have that

PV ρx =
1

|G|
∑
g∈G

ρ(g)x

is a convex combination of elements of C and so is in C. Hence PV ρx ∈ C and has cost

no larger than the cost of x, from which it follows that PV ρx is also optimal.

Geometric consequences

Suppose C ⊆ V is a convex set and U ⊆ V is a subspace. In general the orthogonal

projection of C onto the subspace U contains the intersection of C with the subspace

U . Furthermore, the containment is usually strict (see the top of Figure 2.10). In the
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special case where C is invariant under the action of a group and V ρ is the fixed point

subspace of the action, the projection onto V ρ and the intersection with V ρ are actually

the same (see the bottom of Figure 2.10). We prove this in part 1 of Lemma 2.6.9 to

follow. This allows us to deduce a useful description of the polar of the intersection of

C and the fixed point subspace (part 2 of Lemma 2.6.9).

Lemma 2.6.9. Suppose G is a finite group and (V, ρ) is an orthogonal representation

of G. Let C ⊆ V be a convex set such that ρ(g)C = C for all g ∈ G. Then

1. V ρ ∩ C = PV ρC and

2. [ΠV ρ(V
ρ ∩ C)]◦ = ΠV ρ(V

ρ ∩ C◦).

Proof. To see that V ρ ∩ C ⊆ PV ρC simply note that if x ∈ V ρ ∩ C then PV ρx = x so

x ∈ PV ρC. It is the reverse inclusion that uses our assumptions on C and properties of

V ρ. Indeed let x ∈ PV ρC. Hence there is y ∈ C such that

x = PV ρy =
1

|G|
∑
g∈G

ρ(g)y.

Since ρ(g)C = C for all g ∈ G we have that ρ(g)y ∈ C for all g ∈ G. Since C is convex

it follows that x ∈ C. Furthermore, by construction x = PV ρy ∈ V ρ. Hence x ∈ V ρ ∩C
establishing the reverse inclusion and the first part of the statement of the Lemma.

We now prove the second part of the statement. We have already seen from the

first part that

[ΠV ρ(V
ρ ∩ C)]◦ = [ΠV ρPV ρC]◦ = [ΠV ρC]◦.

Applying Lemma 2.3.10 that characterizes the polar of the image of a convex set under

a linear map, we see that

[ΠV ρC]◦ = {y : Π∗V ρ(y) ∈ C◦} = ΠV ρ(V
ρ ∩ C◦),

completing the proof.

� 2.6.3 Equivariant semidefinite representations

Suppose (V, ρ) is a representation of a group G, and C ⊆ V is a convex set that is

invariant under the group action. Recall that a semidefinite representation of C is

a description of the form C = π(Sm+ ∩ L) where π : Sm → V is a linear map, and

L ⊆ Sm is an affine subspace. If C has symmetry, it is natural to study semidefinite

representations of C that respect this symmetry. The idea is that for every linear

transformation that preserves C, there should be a corresponding linear transformation

of the space of symmetric matrices that preserves Sm+ and L. This is made precise in

the following definition [43].
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Definition 2.6.10. Let (V, λ) be a representation of a group G, and let C ⊆ V be

a convex set such that λ(g)C = C for all g ∈ G. A semidefinite representation C =

π(Sd+ ∩ L) of C is λ-equivariant if there is a representation (ρ,Rm) such that

1. ρ(g)Lρ(g)T = L for all g ∈ G

2. π(ρ(g)Xρ(g)T ) = λ(g)π(X) for all X ∈ Sm and all g ∈ G.

It is common just to assume that G acts on V without explicitly naming the repre-

sentation λ. In this case we use the term G-equivariant rather then λ-equivariant.

One major motivation for studying equivariant semidefinite representations comes

from attempts to prove lower bounds on the size of semidefinite representations of

convex sets with symmetry. As we discussed at the end of Section 2.4, very few tech-

niques are currently available to establish such lower bounds, even for polytopes. In

the absence of good tools for establishing such lower bounds, one way to make par-

tial progress is to seek lower bounds that holds under additional restrictions on the

semidefinite representations allowed. For convex sets with symmetry, restricting atten-

tion to equivariant semidefinite lifts is a natural choice. Doing so means that basic tools

from representation theory can be applied to the problem. See, for instance, [43] which

studies the structure of equivariant semidefinite representations of a class of symmetric

convex bodies known as orbitopes (see Chapter 4).



Chapter 3

Polynomial-sized Semidefinite

Representations of Derivative

Relaxations of Spectrahedral Cones

� 3.1 Introduction

In Section 2.5 of Chapter 2 we described a construction due to G̊arding that asso-

ciates convex cones with certain multivariate polynomials, called hyperbolic polynomi-

als. The associated cones, called hyperbolicity cones, include the non-negative orthant,

the second-order cone, and the positive semidefinite cone as special cases. A hyperbolic

optimization problem is an optimization problem that involves maximizing (or mini-

mizing) a linear functional over an affine slice of a hyperbolicity cone (see Section 2.5).

Since the family of hyperbolicity cones contains the positive semidefinite cone, every

semidefinite optimization problem is an instance of a hyperbolic optimization problem.

Understanding the extent to which hyperbolic optimization is more expressive than

semidefinite optimization is an important part of the general program of understanding

the power and limitations of different classes of convex optimization problems. One

natural approach to these questions is purely geometric. The aim is to understand which

hyperbolicity cones have semidefinite representations (see Definition 2.4.5 of Chapter 2),

and if so, how large those representations are.

Finding semidefinite representations of hyperbolicity cones has other benefits be-

yond understanding the relationships between hyperbolic and semidefinite optimiza-

tion problems. Semidefinite optimization problems enjoy a simple and well-understood

duality theory. As such, giving a semidefinite representation of a hyperbolicity cone

provides insight into its dual cone. This is useful because, in general, the dual cones

of hyperbolicity cones are not hyperbolicity cones [58], and their properties remain

poorly-understood. In addition there are many well-developed numerical routines to

solve semidefinite optimization problems. As such a semidefinite representation of a

hyperbolicity cone also allows us to use these existing numerical routines to solve the

61
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corresponding hyperbolic optimization problem. At least in theory, such a transforma-

tion is not likely to be a good idea, since it typically increases the theoretical complexity

of solving the optimization problem. Nevertheless, in practice semidefinite optimization

solvers are fairly well developed, are widely available, and are easy to use. This is not

yet the case for numerical solvers for hyperbolic optimization problems, although this

may change in the light of recent algorithmic developments [103, 83].

There are a number of algebraic operations that allow us to construct new hyper-

bolic polynomials from existing hyperbolic polynomials. One of the most important is

the operation of taking directional derivatives (in directions that are in the correspond-

ing hyperbolicity cone). The fact that directional derivatives preserve hyperbolicity

is central to a number of recent applications of hyperbolic polynomials, most notably

the affirmative resolution of the Kadison-Singer problem by Marcus, Spielman, and

Srivastava [81]. Geometrically, the hyperbolicity cone of such a directional derivative

always contains the hyperbolicity cone corresponding to the original polynomial (see

Equation (3.1.3) in Section 3.1.2). As such, the hyperbolicity cones obtained by taking

directional derivatives are often called ‘derivative relaxations’ or ‘Renegar derivatives’

(after J. Renegar, who studied this construction, for instance, in [102]). One particularly

noteworthy feature of this construction is that derivative relaxations preserve all the

(sufficiently) low-dimensional faces of the original hyperbolicity cone (see, e.g., [102]).

In this chapter we study these derivative relaxations of the non-negative orthant

and the positive semidefinite cone from the point of view of semidefinite representabil-

ity. (We give precise definitions of these families of convex cones in Section 3.1.2 to

follow.) Our main contribution is to construct explicit, polynomial-sized semidefinite

representations of these convex cones.

The rest of this chapter is organized as follows. In Sections 3.1.1 and 3.1.2 we

summarize basic facts about hyperbolic polynomials, hyperbolicity cones, and deriva-

tive relaxations. Section 3.1.3 summarizes prior work directly related to the problem

considered in this chapter. In Section 3.2 we state our constructions, explaining their

recursive structure and establishing their size. Section 3.3 gives the proofs of the key

steps in our constructions. Section 3.4 proves the correctness of our semidefinite de-

scriptions of the corresponding dual cones. We conclude by describing, in Section 3.5,

some related problems for future work.

� 3.1.1 Hyperbolic polynomials and hyperbolicity cones

We begin by recalling (from Section 2.5) the definition of hyperbolic polynomials and

their hyperbolicity cones. A homogeneous polynomial p of degree m in n variables

is hyperbolic with respect to e ∈ Rn if p(e) 6= 0 and if for all x ∈ Rn the univariate

polynomial t 7→ p(x−te) has only real roots. G̊arding’s foundational work on hyperbolic
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polynomials [49] establishes that if p is hyperbolic with respect to e then the connected

component of {x ∈ Rn : p(x) 6= 0} containing e is an open convex cone. This cone is

called the hyperbolicity cone corresponding to (p, e). We denote it by Λ++(p, e), and

its closure by Λ+(p, e). Note that p is hyperbolic with respect to e if and only if −p is

hyperbolic with respect to e. As such we assume throughout that p(e) > 0.

In this chapter we use an equivalent description of the hyperbolicity cone Λ+(p, e),

which we now state. Since p is a polynomial we can expand p(x+ te) as

p(x+ te) = p(e)
[
tm + a1(x)tm−1 + a2(x)tm−2 + · · ·+ am−1(x)t+ am(x)

]
where the ai(x) are polynomials that are homogeneous of degree i. The hyperbolicity

cone Λ+(p, e) can be expressed in terms of inequalities on the polynomials ai(x)

Λ+(p, e) = {x ∈ Rn : a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0} , (3.1.1)

a description due to Renegar [102, Theorem 20]. We use this description of Λ+(p, e)

throughout the chapter.

Basic examples: We revisit the basic examples of the non-negative orthant and the pos-

itive semidefinite cone. We saw that these are hyperbolicity cones in Section 2.5.2. We

now use (3.1.1) to describe these cones in terms of elementary symmetric polynomials.

• The polynomial p(x1, x2, . . . , xn) = x1x2 · · ·xn is hyperbolic with respect to e =

1n := (1, 1, . . . , 1). The associated closed hyperbolicity cone is the non-negative

orthant, Rn+. Since

p(x+ t1n) = tn + e1(x)tn−1 + · · ·+ en−1(x)t+ en(x)

where

ek(x) =
∑

1≤i1<···<ik≤n
xi1 · · ·xik (3.1.2)

is the elementary symmetric polynomial of degree k in the variables x1, x2, . . . , xn,

we have that

Λ+(p, e) = Rn+ = {x ∈ Rn : e1(x) ≥ 0, e2(x) ≥ 0, . . . , en(x) ≥ 0} .

• Let X be an n× n symmetric matrix of indeterminates. The polynomial p(X) =

det(X) is hyperbolic with respect to e = In, the n × n identity matrix. The

associated closed hyperbolicity cone is the positive semidefinite cone, Sn+. Since

p(X + tIn) = tn + E1(X)tn−1 + · · ·+ En−1(X)t+ En(X)



64 CHAPTER 3. DERIVATIVE RELAXATIONS OF SPECTRAHEDRAL CONES

where the Ek(X) are the coefficients of the characteristic polynomial of X, we

have that

Λ+(p, e) = Sn+ = {X : E1(X) ≥ 0, E2(X) ≥ 0, . . . , En(X) ≥ 0} .

Observe that Ek(X) := ek(λ(X)) is the elementary symmetric polynomial of

degree k in the eigenvalues of X so the positive semidefinite cone can also be

described in terms of polynomial inequalities on the eigenvalues of X as

Sn+ = {X : e1(λ(X)) ≥ 0, e2(λ(X)) ≥ 0, . . . , en(λ(X)) ≥ 0} .

� 3.1.2 Derivative relaxations

If p is hyperbolic with respect to e then (essentially by Rolle’s theorem [106]) the

directional derivative of p in the direction e, viz.

p(1)
e (x) :=

d

dt
p(x+ te)

∣∣∣∣
t=0

is also hyperbolic with respect to e, a construction that goes back to G̊arding [49]. If p

has degree m, by repeatedly differentiating in the direction e we construct a sequence

of polynomials p, p
(1)
e , p

(2)
e , . . . , p

(m−1)
e each hyperbolic with respect to e.

The corresponding hyperbolicity cones can be expressed nicely in terms of polyno-

mial inequalities. Indeed if p(x+ te) = p(e)
[
tm +

∑m
i=1 ai(x)tm−i

]
then differentiating

k times with respect to t we see that

p(k)
e (x+ te) = p(e)

[
c0am−k(x) + c1am−k−1(x)t+ · · ·+ cm−kt

m−k
]

where ci = (k + i)!/i! > 0. By (3.1.1) the corresponding hyperbolicity cone is

Λ
(k)
+ (p, e) := Λ+(p(k)

e , e) = {x ∈ Rn : a1(x) ≥ 0, a2(x) ≥ 0, . . . , am−k(x) ≥ 0}

and can be obtained from (3.1.1) by removing k of the inequality constraints. As a

result, the hyperbolicity cones Λ
(k)
+ (p, e) provide a sequence of outer approximations to

the original hyperbolicity cone that satisfy

Λ+(p, e) ⊂ Λ
(1)
+ (p, e) ⊂ · · · ⊂ Λ

(m−1)
+ (p, e). (3.1.3)

The last of these, Λ
(m−1)
+ (p, e), is simply the closed half-space defined by e. The work of

Renegar [102] highlights the many nice properties of this sequence of approximations.

Note that we abuse terminology by referring to the cones Λ
(k)
+ (p, e) as derivative

relaxations of the hyperbolicity cone Λ+(p, e). The abuse is that Λ
(k)
+ (p, e) does not
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depend only on the geometric object Λ+(p, e) but on its particular algebraic description

via p and e.

Examples:

• In the case of p(x) = x1x2 · · ·xn = en(x) and e = 1n, we have that p
(k)
e (x) =

k!en−k(x). Consequently the kth derivative relaxation of the orthant, which we

denote by Rn,(k)
+ , is the hyperbolicity cone Λ+(en−k,1n). It can be expressed as

Rn,(k)
+ = {x ∈ Rn : e1(x) ≥ 0, e2(x) ≥ 0, . . . , en−k(x) ≥ 0}. (3.1.4)

Consistent with these descriptions we define Rn,(n)
+ := Rn. Note, also, that

Rn,(0)
+ = Rn+.

• In the case of p(X) = det(X) = En(X) and e = In, we have that p
(k)
e (x) =

k!En−k(X). The kth derivative relaxation of the positive semidefinite cone, which

we denote by Sn,(k)
+ , can be described as

Sn,(k)
+ = {X ∈ Sn : E1(x) ≥ 0, E2(x) ≥ 0, . . . , En−k(x) ≥ 0} (3.1.5)

= {X ∈ Sn : e1(λ(X)) ≥ 0, e2(λ(X)) ≥ 0, . . . , en−k(λ(X)) ≥ 0} .
(3.1.6)

Again we define Sn,(n)
+ := Sn, the set of n× n symmetric matrices and note that

Sn,(0)
+ = Sn+. Since Ei(diag(x)) = ei(x) for all i, the diagonal slice of Sn,(k)

+ is

exactly Rn,(k)
+ .

Symmetry: Suppose G is a group acting by linear transformations on Rn by x 7→ g · x
for all g ∈ G. Suppose both p and e are invariant under the group action, i.e., g · e = e

and (g · p)(x) := p(g−1 · x) = p(x) for all g ∈ G. Then for all t ∈ R, x ∈ Rn and g ∈ G

p(x+ te) = (g · p)(x+ te) = p(g−1 · (x+ te)) = p((g−1 · x) + te).

Hence the hyperbolicity cone Λ+(p, e) and all of its derivative cones Λ
(k)
+ (p, e) are in-

variant under this same group action.

For our purposes an important example of this is the symmetry of the cones Sn,(k)
+ .

The action of O(n) by conjugation on symmetric matrices leaves the polynomial p(X) =

det(X) invariant and preserves the direction e = In. Hence all of the derivative relax-

ations of the positive semidefinite cone are invariant under conjugation by orthogonal
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matrices. As such, the cones Sn,(k)
+ are spectral sets, in the sense that whether a sym-

metric matrix X belongs to Sn,(k)
+ depends only on the eigenvalues of X. This is evident

from the description of Sn,(k)
+ in (3.1.6).

� 3.1.3 Related work

Previous work has focused on semidefinite and spectrahedral representations (see Sec-

tion 2.4) of the derivative relaxations of the orthant. Zinchenko [140] used a decompo-

sition approach to give semidefinite representations of Rn,(1)
+ and its dual cone. Sanyal

[111] subsequently gave spectrahedral representations of Rn,(1)
+ and Rn,(n−2)

+ and con-

jectured that all of the derivative relaxations of the orthant admit spectrahedral repre-

sentations.

Recently Brändén [17] settled this conjecture in the affirmative giving spectrahedral

representations of Rn,(n−k)
+ for k = 1, 2, . . . , n− 1 of size O(nk−1). For each 1 ≤ k < n

Brändén constructs a graph Gn,k = (V,E) together with edge weights (we(x))e∈E that

are linear forms in x so that

Rn,(n−k)
+ =

{
x ∈ Rn : LGn,k(x) � 0

}
(3.1.7)

where LGn,k(x) is the |V |×|V | edge-weighted Laplacian of Gn,k. Since LGn,k(x) is linear

in the edge weights, and the edge weights are linear forms in x, (3.1.7) is a spectrahe-

dral representation of size |V |. With the exception of two distinguished vertices, the

vertices of Gn,k are indexed by all `-tuples (for 1 ≤ ` ≤ k − 1) consisting of distinct

elements of {1, 2, . . . , n}. Hence |V | = 2 +
∑k−1

`=1 `!
(
n
`

)
showing that Brändén’s spectra-

hedral representation of Rn,(n−k)
+ has size O(nk−1). While Brändén’s construction is of

considerable theoretical interest, these representations (unlike ours) are not practical

for optimization due to their prohibitive size.

A spectrahedral representation of Rn,(1)
+ is implicit in the work of Choe et al. [138]

that studies the relationships between matroids1 and hyperbolic polynomials. Choe

et al. observe that if M is a regular matroid2 represented by the rows of a totally

unimodular3 matrix V then det(V Tdiag(x)V ) is the basis generating polynomial of

M. In particular, the uniform matroid Un−1
n is regular and has en−1(x) as its basis

1A matroid is a finite set S together with a collection I of subsets of S satisfying 1. if I ∈ I and
J ⊆ I then J ∈ I and 2. if I, J ∈ I and |I| < |J | then there is z ∈ J \ I such that I ∪ {z} ∈ I [121,
Section 39.1]. A matroid (S, I) is representable over a field K if there is a matrix V with entries in K
and columns indexed by S such that I ∈ I if and only if the columns of V indexed by I are linearly
independent over K.

2A regular matroid is a matroid that is representable over every field, and can always be represented
by the columns of a totally unimodular matrix [121, Section 39.4].

3A matrix is totally unimodular if all of its square submatrices have determinant −1, 0, or 1 [121,
Section 5.16].
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generating polynomial, yielding a symmetric determinantal representation of en−1(x)

and hence a spectrahedral representation of Rn,(n−1)
+ .

From a computational perspective, Güler [58] showed that if p has degree m and

is hyperbolic with respect to e then − log p is a self-concordant barrier function (with

barrier parameter m) for the hyperbolicity cone Λ+(p, e). As such, as long as p and its

gradient and Hessian can be computed efficiently, one can use interior point methods to

minimize a linear functional over an affine slice of Λ+(p, e) efficiently. Renegar [102, Sec-

tion 9] gave an efficient interpolation-based method for computing p
(k)
e (and its gradient

and Hessian) whenever p (and its gradient and Hessian) can be evaluated efficiently.

Güler and Renegar’s observations together yield efficient computational methods to op-

timize a linear functional over an affine slice of a derivative relaxation of a spectrahedral

cone. Our results complement these, giving a method to solve optimization problems

of this type using existing numerical procedures for semidefinite programming.

� 3.2 Results

Our main contribution is to construct two different explicit polynomial-sized semidefi-

nite representations of the derivative relaxations of the positive semidefinite cone. We

call our two representations the derivative-based and polar derivative-based represen-

tations respectively. In this section we describe these representations, and outline the

proof of our main theoretical result.

Theorem 3.2.1. For each positive integer n and each k = 1, 2, . . . , n − 1, the cone

Sn,(k)
+ has a semidefinite representation of size O(min{k, n− k}n2).

We defer detailed proofs of the correctness of our representations to Sections 3.3

and 3.4. At this stage, we just highlight that there is essentially one basic algebraic fact

that underlies all of our results. Whenever Vn is an n×(n−1) matrix with orthonormal

columns that are each orthogonal to 1n, i.e. V T
n Vn = In−1 and V T

n 1n = 0, then

en−1(x) = n det(V T
n diag(x)Vn).

We give a proof of this identity in Section 3.3. Note that this identity is independent

of the particular choice of Vn satisfying V T
n Vn = In−1 and V T

n 1n = 0. In fact, all of the

results expressed in terms of Vn (notably Propositions 3.2.3, 3.2.4, 3.2.3D, and 3.2.4D)

are similarly independent of the particular choice of Vn.

Both of the representations are recursive in nature. The derivative-based repre-

sentation is based on recursively applying two basic propositions (Propositions 3.2.2

and 3.2.3, to follow) to construct a chain of semidefinite representations of the form
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Sn,(k)
+

O(n2)←−−−−−−
Prop. 3.2.2

Rn,(k)
+

0←−−−−−−
Prop. 3.2.3

Sn−1,(k−1)
+

O((n−1)2)←−−−−−−
Prop. 3.2.2

Rn−1,(k−1)
+ ← · · · (3.2.1)

· · · ← Rn−k+1,(1)
+

0←−−−−−−
Prop. 3.2.3

Sn−k,(0)
+ .

The annotated arrow C
m←−−−−

Prop. a
K indicates that given a semidefinite representation of

K of size m′ we can construct a semidefinite representation of C of size m′ + m, and

that an explicit description of the construction is given in Proposition a.

The base case of the recursion is just the positive semidefinite cone Sn−k,(0)
+ = Sn−k+ ,

which has a trivial semidefinite representation. Hence starting from Sn−k,(0)
+ (which has

a semidefinite representation of size n− k), we can apply Proposition 3.2.3 to obtain a

semidefinite representation of Rn−k+1,(1)
+ of size n− k, then apply Proposition 3.2.2 to

obtain a semidefinite representation of Sn−k+1,(1)
+ of size (n− k) +O((n− k+ 1)2), and

so on.

The polar derivative-based representation is based on recursively applying Propo-

sition 3.2.2 together with a third basic proposition (Proposition 3.2.4, to follow) to

construct a slightly different chain of semidefinite representations of the form

Sn,(k)
+

O(n2)←−−−−−−
Prop. 3.2.2

Rn,(k)
+

n←−−−−−−
Prop. 3.2.4

Sn−1,(k)
+

O(n2)←−−−−−−
Prop. 3.2.2

Rn−1,(k)
+ ← · · · (3.2.2)

· · · ← Rk+2,(k)
+

n←−−−−−−
Prop. 3.2.4

Sk+1,(k)
+ .

Note that the base case of the recursion is just Sk+1,(k)
+ = {X ∈ Sk+1 : tr(X) ≥ 0}, a

half-space.

� 3.2.1 Building blocks of the two recursions

We now describe the constructions related to each of the types of arrows in the recursions

sketched above. The arrows labeled by Proposition 3.2.2 assert that we can construct a

semidefinite representation of Sn,(k)
+ from a semidefinite representation of Rn,(k)

+ . This

can be done in the following way.

Proposition 3.2.2. If Rn,(k)
+ has a semidefinite representation of size m, then Sn,(k)

+

has a semidefinite representation of size m+O(n2). Indeed

Sn,(k)
+ =

{
X ∈ Sn : ∃z ∈ Rn s.t. z ∈ Rn,(k)

+ , (X, z) ∈ SHn

}
, (3.2.3)
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where SHn is the Schur-Horn cone defined as

SHn =
{

(X, z) : z1 ≥ z2 ≥ · · · ≥ zn, X ∈ convQ∈O(n){QTdiag(z)Q}
}

i.e. the set of pairs (X, z) such that X is in the convex hull of all symmetric matrices

with ordered spectrum z. The Schur-Horn cone has the semidefinite characterization

(X, z) ∈ SHn if and only if z1 ≥ z2 ≥ · · · ≥ zn and

there exist t2, . . . , tn−1 ∈ R, Z2, . . . , Zn−1 � 0

such that tr(X) =
∑n

j=1 zj , X � z1I, and

for ` = 2, . . . , n− 1, X � t`I + Z` and ` · t` + tr(Z`) ≤
∑`

j=1 zj .

Proposition 3.2.2 holds because of the symmetry of Sn,(k)
+ . In particular it is a

spectral set—invariant under conjugation by orthogonal matrices. The other reason

this representation works is that the diagonal slice of Sn,(k)
+ is Rn,(k)

+ . We discuss this

result in more detail in Section 3.4.

The arrows in (3.2.1) labeled by Proposition 3.2.3 appear only in the derivative-

based recursion. They assert that we can obtain a semidefinite representation of Rn,(k)
+

from a semidefinite representation of Sn−1,(k−1)
+ . Indeed we establish in Section 3.3.1

that Rn,(k)
+ is actually a slice of Sn−1,(k−1)

+ .

Proposition 3.2.3. If 1 ≤ k ≤ n− 1 then

Rn,(k)
+ =

{
x ∈ Rn : V T

n diag(x)Vn ∈ Sn−1,(k−1)
+

}
.

The arrows in (3.2.2) labeled by Proposition 3.2.4 appear only in the polar derivative-

based recursion. They assert that we can obtain a semidefinite representation of

Rn,(k)
+ from a semidefinite representation of Sn−1,(k)

+ . We establish the following in

Section 3.3.2.

Proposition 3.2.4. If 1 ≤ k ≤ n− 2 then

Rn,(k)
+ =

{
x ∈ Rn : ∃Z ∈ Sn−1,(k)

+ s.t. diag(x) � VnZV T
n

}
.

� 3.2.2 Size of the representations

Recall that each arrow C
m←− K in (3.2.1) and (3.2.2) is labeled with the additional size

m required to implement the representation of C given a semidefinite representation

of K. Since the derivative-based recursion has 2k arrows, it is immediate from (3.2.1)

that the derivative-based semidefinite representation of Sn,(k)
+ has size O(kn2) and so is
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of polynomial size.

On the other hand, this approach gives a disappointingly large semidefinite rep-

resentation of the half-space Sn,(n−1)
+ = {X ∈ Sn : tr(X) ≥ 0} of size O(n3). The

derivative-based approach cannot exploit the fact that this is a very simple cone. This

is why we also consider the polar derivative-based representation, as it is designed

around the fact that Sn,(n−1)
+ has a simple semidefinite representation.

It is immediate from (3.2.2) that the polar derivative-based semidefinite represen-

tation of Sn,(k)
+ has size O((n − k)n2) and so is also of polynomial size. Furthermore,

it gives small representations of size O(n2) exactly when the derivative-based represen-

tations are large, of size O(n3). For any given pair (n, k) we should always use the

derivative-based representation of Sn,(k)
+ if k < n/2 and the polar derivative-based rep-

resentation when k > n/2. Theorem 3.2.1 combines our two size estimates, stating that

Sn,(k)
+ has a semidefinite representation of size O(min{k, n− k}n2).

� 3.2.3 Pseudocode for our derivative-based representation

We do not write out any of our semidefinite representations in full because the re-

cursive descriptions given here are actually more naturally suited to implementation.

To illustrate this, we give pseudocode for the MATLAB-based high-level modeling lan-

guage YALMIP [78] that ‘implements’ the derivative-based representations of Sn,(k)
+ and

Rn,(k)
+ . Decision variables are declared by expressions like x = sdpvar(n,1); which cre-

ates a decision variable x taking values in Rn. A linear matrix inequality (LMI) object

is a list of equality constraints and positive semidefinite matrix inequality constraints

that are linear in any declared decision variables.

Suppose we have a function SH(X,z) that takes a pair of decision variables and

returns an LMI object corresponding to the constraint that (X, z) ∈ SHn. This is easy

to construct from the explicit semidefinite representation in Proposition 3.2.2. Then

the function psdcone takes an n× n symmetric matrix-valued decision variable X and

returns an LMI object for the constraint X ∈ Sn,(k)
+ .

1: function K = psdcone(X,k)

2: if k==0

3: K = [X >= 0];

4: else

5: z = sdpvar(size(X,1),1);

6: K = [orthant(z,k), SH(X,z)];

7: end
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It calls a function orthant that takes a decision variable x in Rn and returns an LMI

object for the constraint x ∈ Rn,(k)
+ .

1: function K = orthant(x,k)

2: if k==0

3: K = [x >= 0];

4: else

5: V = null(ones(size(x))’);

6: K = [psdcone(V’*diag(x)*V,k-1)];

7: end

It is straightforward to adapt these two functions for the polar derivative-based repre-

sentation, one needs only to change the base cases (lines 2–4 of each) and to adapt line

6 of orthant to reflect Proposition 3.2.4.

� 3.2.4 Dual cones

If a cone is semidefinitely representable, so is its dual cone. In fact there are explicit

procedures to take a semidefinite representation for a cone and produce a semidefi-

nite representation for its dual cone [85, Section 4.1.1]. Here we describe two explicit

semidefinite representations of the dual cones (Sn,(k)
+ )∗ that enjoy the same recursive

structure as the corresponding semidefinite representations of Sn,(k)
+ .

To construct them, we essentially dualize all the relationships given by the arrows

in (3.2.1) and (3.2.2). By straightforward applications of a conic duality argument, in

Section 3.3.3 we establish the following dual analogues of Propositions 3.2.3 and 3.2.4.

Proposition 3.2.3D. If 1 ≤ k ≤ n− 1 then

(Rn,(k)
+ )∗ =

{
diag(VnY V

T
n ) : Y ∈ (Sn−1,(k−1)

+ )∗
}
.

Proposition 3.2.4D. If 1 ≤ k ≤ n− 2 then

(Rn,(k)
+ )∗ =

{
diag(Y ) : Y � 0, V T

n Y Vn ∈ (Sn−1,(k)
+ )∗

}
.

We could also obtain a dual version of Proposition 3.2.2 by directly applying conic

duality to the semidefinite representation in Proposition 3.2.2. This would involve

dualizing the semidefinite representation of SHn. Instead we give another, perhaps

simpler, representation of (Sn,(k)
+ )∗ in terms of (Rn,(k)

+ )∗ that is not obtained by directly

applying conic duality to Proposition 3.2.2.
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Proposition 3.2.2D. If (Rn,(k)
+ )∗ has a semidefinite representation of size m, then

(Sn,(k)
+ )∗ has a semidefinite representation of size m+O(n2) given by

(Sn,(k)
+ )∗ =

{
W ∈ Sn : ∃y ∈ Rn s.t. y ∈ (Rn,(k)

+ )∗, (W, y) ∈ SHn

}
. (3.2.4)

Recall that Proposition 3.2.2 holds because Sn,(k)
+ is invariant under orthogonal

conjugation and Rn,(k)
+ is the diagonal slice of Sn,(k)

+ . While it is immediate that (Sn,(k)
+ )∗

is also orthogonally invariant, it is a less obvious result that the diagonal slice of (Sn,(k)
+ )∗

is (Rn,(k)
+ )∗. We prove this in Section 3.4.

The recursions underlying the derivative-based and polar derivative-based represen-

tations of (Sn,(k)
+ )∗ then take the form

(Sn,(k)
+ )∗ ← (Rn,(k)

+ )∗ ← (Sn−1,(k−1)
+ )∗ ← · · · ← (Rn−k+1,(1)

+ )∗ ← (Sn−k,(0)
+ )∗ (3.2.5)

and, respectively,

(Sn,(k)
+ )∗ ← (Rn,(k)

+ )∗ ← (Sn−1,(k)
+ )∗ ← · · · ← (Rk+2,(k)

+ )∗ ← (Sk+1,(k)
+ )∗. (3.2.6)

Note that for the dual derivative-based representation, the base case is (Sn−k,(0)
+ )∗ =

Sn−k+ (since the positive semidefinite cone is self dual). For the dual polar derivative-

based representation the base case is (Sk+1,(k)
+ )∗ = {tIk+1 : t ≥ 0}, the ray generated

by the identity matrix in Sk+1.

� 3.2.5 Derivative relaxations of spectrahedral cones

So far we have focused on the derivative relaxations of the positive semidefinite cone.

It turns out that the derivative relaxations of spectrahedral cones are just slices of the

associated derivative relaxations of the positive semidefinite cone.

Proposition 3.2.5. Suppose p(x) = det(
∑n

i=1Aixi) where the Ai are m×m symmetric

matrices and e ∈ Rn is such that
∑n

i=1Aiei = B is positive definite. Then for k =

0, 1, . . . ,m− 1,

Λ
(k)
+ (p, e) =

{
x ∈ Rn :

n∑
i=1

B−1/2AiB
−1/2xi ∈ Sm,(k)

+

}
.

Proof. Let A(x) =
∑n

i=1B
−1/2AiB

−1/2xi. Then A(e) = I and for all x ∈ Rn and all

t ∈ R
p(x+ te) = det(B) det(A(x+ te)) = det(B) det(A(x) + tI).

This implies that all the derivatives of p in the direction e are exactly the same as the
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corresponding derivatives of det(B) det(X) in the direction I evaluated at X = A(x).

Since det(B) > 0, it follows that for k = 0, 1, . . . ,m − 1, x ∈ Λ
(k)
+ (p, e) if and only if

A(x) ∈ Sm,(k)
+ .

We conclude this section with an example of these constructions.

Example 3.2.6 (Derivative relaxations of a 3-ellipse). Given foci (0, 0), (0, 4) and (3, 0)

in the plane, the 3-ellipse consisting of points such that the sum of distances to the foci

equals 8 is shown in Figure 3.1. This is one connected component of the real algebraic

curve of degree 8 given by {(x, y) ∈ R2 : det E(x, y, 1) = 0} where E is defined in (3.2.7)

(see Nie et al. [91]). The region enclosed by this 3-ellipse is the z = 1 slice of the

spectrahedral cone defined by E(x, y, z) � 0 where

E(x, y, z) =



5z + 3x y y − 4z 0 y 0 0 0

y 5z + x 0 y − 4z 0 y 0 0

y − 4z 0 5z + x y 0 0 y 0

0 y − 4z y 5z − x 0 0 0 y

y 0 0 0 11z + x y y − 4z 0

0 y 0 0 y 11z − x 0 y − 4z

0 0 y 0 y − 4z 0 11z − x y

0 0 0 y 0 y − 4z y 11z − 3x


. (3.2.7)

Note that E(0, 0, 1) � 0 and so e = (0, 0, 1) is a direction of hyperbolicity for p(x, y, z) =

det E(x, y, z). The left of Figure 3.1 shows the z = 1 slice of the cone Λ+(p, e) and

its first three derivative relaxations Λ
(1)
+ (p, e),Λ

(2)
+ (p, e), and Λ

(3)
+ (p, e). The right of

Figure 3.1 shows the z = 1 slice of the cones (Λ+(p, e))∗, (Λ
(1)
+ (p, e))∗, (Λ

(2)
+ (p, e))∗, and

(Λ
(3)
+ (p, e))∗. All of these convex bodies were plotted by computing 200 points on their

respective boundaries by optimizing 200 different linear functionals over them. We

performed the optimization by modeling our semidefinite representations of these cones

in YALMIP [78] which numerically solved the corresponding semidefinite program using

SDPT3 [127].

� 3.3 The derivative-based and polar derivative-based recursive construc-
tions

In this section we prove Proposition 3.2.3 which relates Rn,(k)
+ and Sn−1,(k−1)

+ as well as

Proposition 3.2.4 which relates Rn,(k)
+ and Sn−1,(k)

+ . These relationships are the geomet-

ric consequences of polynomial identities between elementary symmetric polynomials

and determinants.
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Figure 3.1: On the left, the inner region is the 3-ellipse consisting of points with sum-
of-distances to (0, 0), (0, 4), and (3, 0) equal to 8, i.e. the z = 1 slice of the spectrahedral
cone defined by (3.2.7). The outer three regions are the z = 1 slices of the first three
derivative relaxations of this spectrahedral cone in the direction (0, 0, 1). On the right
are the z = 1 slices of the dual cones of the cones shown on the left, with dual pairs
having the same shading.

Specifically the proof of Proposition 3.2.3 makes use of a determinantal representa-

tion (Equation (3.3.3) in Section 3.3.1) of the derivative

∂
∂ten(sx+ t1n)

∣∣
s=1

=
[
1 · en−1(x) + · · ·+ (n− 1) · e1(x)tn−2 + n · tn−1

]
. (3.3.1)

(Note that s plays no role in (3.3.1), we include it to highlight the relationship with (3.3.2).)

Similarly the proof of Proposition 3.2.4 relies on a determinantal expression (Equa-

tion (3.3.6) in Section 3.3.2) for the polar derivative

∂
∂sen(sx+ t1n)

∣∣
s=1

=
[
n · en(x) + (n− 1) · en−1(x)t+ · · ·+ 1 · e1(x)tn−1

]
. (3.3.2)

This explains why we call one the derivative-based representation, and the other the

polar derivative-based representation.

� 3.3.1 The derivative-based recursion: relating Rn,(k)
+ and Sn−1,(k−1)

+

Let Vn denote an (arbitrary) n× (n−1) matrix satisfying V T
n Vn = In−1 and V T

n 1n = 0.

Our results in this section and the next stem from the following identity.

Lemma 3.3.1. For all x ∈ Rn and all t ∈ R,

∂
∂ten(sx+ t1n)

∣∣
s=1

= en−1(x+ t1n) = n det(V T
n diag(x)Vn + tIn−1). (3.3.3)
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This is a special case of an identity established by Choe et al. [138, Corollary 8.2]

and is closely related to Sanyal’s result [111, Theorem 1.1]. The proof of Choe et al. uses

the Cauchy-Binet identity. Here we provide an alternative proof.

Proof. The polynomial en−1(x1, x2, . . . , xn) is characterized by satisfying en−1(1n) = n,

and by being symmetric, homogeneous of degree n− 1 and of degree one in each of the

xi. We show, below, that n det(V T
n diag(x)Vn) also has these properties and so that

en−1(x) = n det(V T
n diag(x)Vn). The stated result then follows because V T

n Vn = In−1

implies

en−1(x+ t1n) = n det(V T
n diag(x+ t1n)Vn) = n det(V T

n diag(x)Vn + tIn−1).

Now, it is clear that det(V T
n diag(x)Vn) is homogeneous of degree n− 1 and that

n det(V T
n diag(1n)Vn) = n det(In−1) = n.

It remains to establish that det(V T
n diag(x)Vn) is symmetric and of degree one in each

of the xi. To do so we repeatedly use the fact that if Vn and Un both have orthonor-

mal columns that span the orthogonal complement of 1n then det(V T
n diag(x)Vn) =

det(UTn diag(x)Un).

The polynomial det(V T
n diag(x)Vn) is symmetric because for any n×n permutation

matrix P the columns of Vn and PVn respectively are both orthonormal and each spans

the orthogonal complement of 1n (because P1n = 1n). Hence

det(V T
n diag(Px)Vn) = det((PVn)Tdiag(x)(PVn)) = det(V T

n diag(x)Vn).

We finally show that det(V T
n diag(x)Vn) is of degree one in each xi by a convenient

choice of Vn. For any i, we can always choose Vn to be of the form

V T
n =

[
v1 · · · vi−1

√
n−1
n εi vi+1 · · · vn

]
where εi is the ith standard basis vector in Rn−1. Then

det(V T
n diag(x)Vn) = det

(
xi
(
n−1
n

)
εiε

T
i +

∑
j 6=ixjvjv

T
j

)
which is of degree one in xi by the linearity of the determinant in its ith column.

As observed by Sanyal, such a determinantal identity for en−1(x) establishes that

Rn,(1)
+ is a slice of Sn−1

+ = Sn−1,(1−1)
+ . We now have two expressions for the derivative

∂
∂ten(sx+ t1n)

∣∣
s=1

, one from the definition (3.3.1) and one from (3.3.3). Comparing

them allows us to deduce Proposition 3.2.3, that Rn,(k)
+ is a slice of Sn−1,(k−1)

+ for all
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1 ≤ k ≤ n− 1.

Proof of Proposition 3.2.3. From (3.3.1) and (3.3.3) we see that

∂
∂ten(sx+ t1n)

∣∣
s=1

=
[
1 · en−1(x) + · · ·+ (n− 1) · e1(x)tn−2 + n · tn−1

]
= n

[
En−1(V T

n diag(x)Vn) + · · ·+ E1(V T
n diag(x)Vn)tn−2 + tn−1

]
.

Comparing coefficients of powers of t we see that for i = 0, 1, . . . , n− 1

nE(n−1)−(i−1)(V
T
n diag(x)Vn) = (n− i)en−i(x).

Hence for k = 1, 2, . . . , n− 1, x ∈ Rn,(k)
+ if and only if V T

n diag(x)Vn ∈ Sn−1,(k−1)
+ .

� 3.3.2 The polar derivative-based recursion: relating Rn,(k)
+ and Sn−1,(k)

+

In this section we relate Rn,(k)
+ with Sn−1,(k)

+ , eventually proving Proposition 3.2.4. Our

argument follows a pattern similar to the previous section. First we give a determi-

nantal expression for the polar derivative ∂
∂sen(sx+ t1n)

∣∣
s=1

, and then interpret it

geometrically.

While our approach here is closely related to the approach of the previous section,

things are a little more complicated. This is not surprising because our construction

aims to express Rn,(k)
+ , which has an algebraic boundary of degree n − k, in terms of

Sn−1,(k)
+ , which has an algebraic boundary of smaller degree, n− k− 1. Hence it is not

possible for Rn,(k)
+ simply to be a slice of Sn−1,(k)

+ .

Block matrix notation: Let 1̂n = 1n/
√
n and define Qn =

[
Vn 1̂n

]
noting that Qn is

orthogonal. It is convenient to introduce the block matrix

M(x) := QTndiag(x)Qn =

[
V T
n diag(x)Vn V T

n diag(x)1̂n
1̂Tndiag(x)Vn 1̂Tndiag(x)1̂n

]
=:

[
M11(x) M12(x)
M12(x)T M22(x)

]
(3.3.4)

which reflects the fact that it is natural to work in coordinates that are adapted to

the symmetry of the problem. (Indeed 1̂n and the columns of Vn each span invariant

subspaces for the permutation action on the coordinates of Rn.)

Schur complements: In this section our results are expressed naturally in term of the

Schur complement (M/M22)(x) := M11(x) − M12(x)M22(x)−1M12(x)T which is well

defined whenever e1(x) = nM22(x) 6= 0. The following lemma summarizes the main

properties of the Schur complement that we use.
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Lemma 3.3.2. If M =
[
M11 M12

MT
12 M22

]
is a partitioned symmetric matrix with non-zero

scalar M22 and M/M22 := M11 −M12M
−1
22 M

T
12 then[

M11 M12

MT
12 M22

]
=

[
In−1 M12M

−1
22

0 I1

][
M/M22 0

0 M22

][
In−1 0

M−1
22 M

T
12 I1

]
. (3.3.5)

This factorization immediately implies the following properties.

• If M is invertible then the (1, 1) block of M−1 is given by [M−1]11 = (M/M22)−1.

• If M22 > 0 then

M � 0⇐⇒M/M22 � 0.

We now establish our determinantal expression for the polar derivative.

Lemma 3.3.3. If e1(x) = nM22(x) 6= 0 then

∂
∂sen(sx+ t1n)

∣∣
s=1

= e1(x) det((M/M22)(x) + tIn−1). (3.3.6)

Proof. First assume xi 6= 0 for i = 1, 2, . . . , n. If x ∈ Rn let x−1 denote its entry-wise

inverse. Exploiting our determinantal (3.3.3) expression for the derivative we see that

∂
∂sen(sx+ t1n) = en(x) ∂∂sen(s1n + tx−1)

∗
= en(x)n det(V T

n diag(tx−1 + s1n)Vn)

= en(x)n det(V T
n diag(x−1)Vn) det(tIn−1 + s(V T

n diag(x−1)Vn)−1)
∗
= en(x)en−1(x−1) det(tIn−1 + s(V T

n diag(x−1)Vn)−1)

= e1(x) det(tIn−1 + s(V T
n diag(x−1)Vn)−1) (3.3.7)

where the equalities marked with an asterisk are due to (3.3.3). Since Qn is orthogonal

M(x)−1 = (QTndiag(x)Qn)−1 = QTndiag(x−1)Qn = M(x−1). Hence using a property of

the Schur complement from Lemma 3.3.2 we see that

(V T
n diag(x−1)Vn)−1 = [M(x−1)]−1

11 = [M(x)−1]−1
11 = (M/M22)(x).

Substituting this into (3.3.7) establishes the stated identity, which, by continuity, is

valid for all x such that e1(x) = nM22(x) 6= 0.

We now have two expressions for the polar derivative, namely (3.3.2) and (3.3.6).

One comes from the definition of polar derivative, the other from the determinantal

representation of Lemma 3.3.3. Expanding each and equating coefficients gives the

following identities.
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Lemma 3.3.4. Let x ∈ Rn be such that e1(x) = nM22(x) 6= 0. Then for k =

0, 1, 2, . . . , n− 1

e1(x)En−1−k((M/M22)(x)) = (n− k)en−k(x).

Proof. Expanding the polar derivative two ways (from Lemma 3.3.3 and (3.3.2)) we

obtain

∂
∂sen(sx+ t1n)

∣∣
s=1

=
[
n · en(x) + (n− 1) · en−1(x)t+ · · ·+ 1 · e1(x)tn−1

]
= e1(x)

[
En−1((M/M22)(x)) + En−2((M/M22)(x))t+ · · ·+ tn−1

]
.

The result follows by equating coefficients of tk.

We are now in a position to prove the main result of this section.

Proof of Proposition 3.2.4. From the definition of M(x) in (3.3.4), observe that because

Qn is orthogonal, the constraint diag(x) � VnZV T
n holds if and only if

M(x) = QTndiag(x)Qn � QTn (VnZV
T
n )Qn =

[
Z 0
0 0

]
.

Hence we aim to establish the following statement that is equivalent to Proposition 3.2.4

Rn,(k)
+ =

{
x ∈ Rn : ∃Z ∈ Sn−1,(k)

+ s.t. M(x) �

[
Z 0

0 0

]}
for k = 1, 2, . . . , n− 2.

The arguments that follow repeatedly use the fact (from Lemma 3.3.2) that if e1(x) =

nM22(x) > 0 then

M(x) �

[
Z 0

0 0

]
⇐⇒ (M/M22)(x) � Z. (3.3.8)

With these preliminaries established, we turn to the proof of Proposition 3.2.4.

First suppose there is Z ∈ Sn−1,(k)
+ such that M(x) −

[
Z 0
0 0

]
� 0. There are two cases

to consider, depending on whether M22(x) is positive or zero.

Suppose we are in the case where e1(x) = nM22(x) > 0. Then (M/M22)(x) � Z, so

there is some Z ′ ∈ Sn−1
+ such that

(M/M22)(x) = Z + Z ′ ∈ Sn−1,(k)
+ + Sn−1

+ = Sn−1,(k)
+

where the last equality holds because Sn−1,(k)
+ ⊃ Sn−1

+ . It follows that x ∈ Rn,(k)
+

because e1(x) > 0 (by assumption) and by Lemma 3.3.4,

iei(x) = e1(x)Ei−1((M/M22)(x)) ≥ 0 for i = 2, 3, . . . , n− k.
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Now consider the case where e1(x) = nM22(x) = 0. Since[
M11(x)− Z M12(x)

M12(x)T M22(x)

]
=

[
M11(x)− Z V T

n x/
√
n

xTVn/
√
n 0

]
� 0

it follows that V T
n x = 0. Since, 1̂Tnx = 0 we see that QTnx = 0 so x = 0 ∈ Rn,(k)

+ .

Consider the reverse inclusion and suppose x ∈ Rn,(k)
+ . Again there are two cases

depending on whether e1(x) is positive or zero. If e1(x) > 0 take Z = (M/M22)(x).

Then, by (3.3.8), M(x) �
[
Z 0
0 0

]
. To see that Z ∈ Sn−1,(k)

+ note that by Lemma 3.3.4,

Ei((M/M22)(x)) = (i+ 1)
ei+1(x)

e1(x)
≥ 0 for i = 1, 2, . . . , n− 1− k.

If x ∈ Rn,(k)
+ and e1(x) = 0 then we use the assumption that k ≤ n − 2. Under

this assumption x ∈ Rn,(k)
+ ∩ {x : e1(x) = 0} = {0}. In this case we can simply take

Z = 0 ∈ Sn−1,(k)
+ since M(x) = 0 � 0 =

[
Z 0
0 0

]
.

� 3.3.3 Dual relationships

We conclude this section by establishing Propositions 3.2.3D and 3.2.4D, the dual ver-

sions of Propositions 3.2.3 and 3.2.4. Both follow from Lemma 2.3.12 which we restate

here for convenience.

Lemma 2.3.12. Let W,V1, V2 be finite-dimensional real inner product spaces. Suppose

K1 ⊆ V1 is a closed convex cone and A : W → V1 and B : W → V2 are linear maps.

Let

K2 = {B(x) : A(x) ∈ K1} ⊆ V2.

Furthermore, assume there is some x0 ∈ V1 such that A(x0) is in the relative interior

of K1. Then

K∗2 = {w ∈ V2 : ∃y ∈ K∗1 s.t. B∗(w) = A∗(y)}.

Proof of Proposition 3.2.3D. DefineA : Rn → Sn−1 byA(x) = V T
n diag(x)Vn and define

B to be the identity on Rn. Then by Proposition 3.2.3

Rn,(k)
+ = {B(x) : A(x) ∈ Sn−1,(k−1)

+ }.

Clearly B∗ is the identity on Rn andA∗ : Sn−1 → Rn is given byA∗(Y ) = diag(VnY V
T
n ).

Since A(1n) = In−1 is in the interior of Sn−1,(k−1)
+ , applying Lemma 2.3.12 we obtain

(Rn,(k)
+ )∗ = {w ∈ Rn : ∃Y ∈ (Sn−1,(k−1)

+ )∗ s.t. w = diag(VnY V
T
n ).}
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Eliminating w gives the statement in Proposition 3.2.3D.

Proof of Proposition 3.2.4D. Define A : Rn × Sn−1 → Sn × Sn−1 by

A(x, Z) = (diag(x)− VnZV T
n , Z)

and B : Rn × Sn−1 → Rn by B(x, Z) = x. Then by Proposition 3.2.4

Rn,(k)
+ = {B(x, Z) : A(x, Z) ∈ Sn+ × S

n−1,(k)
+ }.

A straightforward computation shows that B∗ : Rn → Rn × Sn−1 is given by B∗(w) =

(w, 0). Furthermore A∗ : Sn × Sn−1 is given by A∗(Y,W ) = (diag(Y ),W − V T
n Y Vn).

Since A(21n, In−1) is in the interior of Sn+×S
n−1,(k)
+ , applying Lemma 2.3.12 we obtain

(Rn,(k)
+ )∗ = {w ∈ Rn : ∃(Y,W ) ∈ Sn+ × (Sn−1,(k)

+ )∗ s.t. w = diag(W ), V T
n Y Vn = W}.

Eliminating W and w gives the statement in Proposition 3.2.4D.

� 3.4 Exploiting symmetry: relating Sn,(k)
+ and Rn,(k)

+ and their dual cones

In the introduction we observed that Sn,(k)
+ is invariant under the action of orthogonal

matrices by conjugation on Sn and that its diagonal slice is Rn,(k)
+ . In this section we

explain how to use these properties to construct the semidefinite representation of Sn,(k)
+

in terms of Rn,(k)
+ stated in Proposition 3.2.2. We then discuss how the duals of these

two cones relate. The material in this section is well known so in some places we give

appropriate references to the literature rather than providing proofs.

� 3.4.1 Relating Sn,(k)
+ and Rn,(k)

+ : proof of Proposition 3.2.2

Let O(n) denote the group of n× n orthogonal matrices. The Schur-Horn cone is

SHn =
{

(X, z) : z1 ≥ z2 ≥ · · · ≥ zn, X ∈ convQ∈O(n){QTdiag(z)Q}
}
, (3.4.1)

the set of pairs (X, z) such that z is in weakly decreasing order and X is in the convex

hull of symmetric matrices with ordered spectrum z. We call this the Schur-Horn cone

because all symmetric Schur-Horn orbitopes [110] appear as slices of SHn of the form

{X : (X, z0) ∈ SHn} where z0 is fixed and in weakly decreasing order.

Whenever a convex subset C ⊂ Sn is invariant under orthogonal conjugation, i.e. C

is a spectral set, we can express C in terms of the Schur-Horn cone and the (hopefully

simpler) diagonal slice of C as follows.
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Lemma 3.4.1. If C ⊂ Sn is convex and invariant under orthogonal conjugation then

C = {X ∈ Sn : ∃z ∈ Rn s.t. (X, z) ∈ SHn, diag(z) ∈ C}.

Proof. Suppose X ∈ C. Take z = λ(X), the ordered vector of eigenvalues of X. Then

there is some Q ∈ O(n) such that X = QTdiag(λ(X))Q so (X,λ(X)) ∈ SHn. By the

orthogonal invariance of C, X ∈ C implies that QXQT = diag(λ(X)) ∈ C.

For the reverse inclusion, suppose there is z ∈ Rn such that (X, z) ∈ SHn and

diag(z) ∈ C. Then by the orthogonal invariance of C, QTdiag(z)Q ∈ C for allQ ∈ O(n).

Since C is convex, convQ∈O(n){QTdiag(z)Q} ⊆ C. Hence (X, z) ∈ SHn implies that

X ∈ convQ∈O(n){QTdiag(z)Q} ⊆ C.

The first statement in Proposition 3.2.2 follows from Lemma 3.4.1 by recalling that

Sn,(k)
+ is orthogonally invariant and Rn,(k)

+ = {z ∈ Rn : diag(z) ∈ Sn,(k)
+ }.

Proving the remainder of Proposition 3.2.2 then reduces to establishing the correct-

ness of the stated semidefinite representation of SHn. This can be deduced from the

following two well-known results.

Lemma 3.4.2. If λ(X) is ordered so that λ1(X) ≥ · · · ≥ λn(X) then (X, z) ∈ SHn if

and only if z1 ≥ z2 ≥ · · · ≥ zn,

tr(X) =
n∑
i=1

λi(X) =
n∑
i=1

zi, and
∑̀
i=1

λi(X) ≤
∑̀
i=1

zi for ` = 1, 2, . . . , n− 1.

In other words (X, z) ∈ SHn if and only if z is weakly decreasing and λ(X) is ma-

jorized by z. This is discussed, for example, in [110, Corollary 3.2]. To turn this char-

acterization into a semidefinite representation, it suffices to have semidefinite represen-

tations of the epigraphs (see Section 2.3) of the convex functions s`(X) :=
∑`

i=1 λi(X).

These are given by Nesterov and Nemirovski in [89, Section 6.4.3, Example 7].

Lemma 3.4.3. If 2 ≤ ` ≤ n − 1, the epigraph of the convex function s`(X) =∑`
i=1 λi(X) has a semidefinite representation of size O(n) given by

{(X, t) : s`(X) ≤ t} =

{(X, t) :∃s ∈ R, Z ∈ Sn s.t. Z � 0, X � Z + sI, tr(Z) + s ` ≤ t} .

The epigraph of s1(X) has a simpler semidefinite representation as

{(X, t) : s1(X) ≤ t} = {(X, t) : X � tI}.
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� 3.4.2 Relating the corresponding dual cones: proof of Proposition 3.2.2D

We now turn to the relationship between (Sn,(k)
+ )∗ and (Rn,(k)

+ )∗. Note that (Sn,(k)
+ )∗ is

invariant under orthogonal conjugation. So the claim (Proposition 3.2.2D) that

(Sn,(k)
+ )∗ = {Y ∈ Sn : ∃w ∈ Rn s.t. w ∈ (Rn,(k)

+ )∗, (Y,w) ∈ SHn}

would follow from Lemma 3.4.1 once we know that the diagonal slice of (Sn,(k)
+ )∗ is

(Rn,(k)
+ )∗. The next lemma establishes this.

Lemma 3.4.4. The intersection of (Sn,(k)
+ )∗ with the subspace of diagonal matrices is

(Rn,(k)
+ )∗, i.e.

{y ∈ Rn : diag(y) ∈ (Sn,(k)
+ )∗} = {z ∈ Rn : diag(z) ∈ Sn,(k)

+ }∗ = (Rn,(k)
+ )∗. (3.4.2)

Proof. For every subset I ⊆ {1, 2, . . . , n} let ∆I denote the diagonal matrix with

[∆I ]ii = 1 if i ∈ I and [∆I ]ii = −1 otherwise. The ∆I are all orthogonal, form a

group under matrix multiplication, and act on symmetric matrices by X 7→ ∆IX∆T
I .

A symmetric matrix is fixed by the action of all the ∆I if and only if it is diagonal.

Since Sn,(k)
+ is invariant under conjugation by orthogonal matrices, it is invariant

under conjugation by all the ∆I . The result then follows by applying Lemma 2.6.9 from

Chapter 2.

� 3.5 Concluding remarks

We conclude with some comments about ways to simplify our representations a little.

We also discuss some open questions.

� 3.5.1 Simplifications

If we can simplify a representation of Rn,(k)
+ or Sn,(k)

+ for some k = i, that allows us to

simplify the derivative-based representations for k ≥ i and the polar derivative-based

representations for k ≤ i. For example Rn,(n−2)
+ can be succinctly expressed in terms of

the second-order cone Qn+1
+ = {x ∈ Rn+1 : (

∑n
i=1 x

2
i )

1/2 ≤ xn+1} as

Rn,(n−2)
+ = {x ∈ Rn : (x, e1(x)) ∈ Qn+1

+ }.

Then we can represent Sn,(n−2)
+ in terms of the second-order cone as

Sn,(n−2)
+ = {Z ∈ Sn : (Z, tr(Z)) ∈ Qn2+1

+ }
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because tr(Z) =
∑n

i=1 λi(Z) and
∑n

i,j=1 Z
2
ij =

∑n
i=1 λi(Z)2. This should be used as a

base case instead of Sn,(n−1)
+ in the polar derivative-based representations.

As an example of this, Proposition 3.2.4 can be used to give a concise representation

of Rn,(n−3)
+ in terms of the second-order cone as

x ∈ Rn,(n−3)
+ ⇐⇒ ∃Z ∈ Sn−1 such that

diag(x) � VnZV T
n and (Z, tr(Z)) ∈ Q(n−1)2+1

+ .

� 3.5.2 Lower bounds on the size of representations

The explicit constructions given in this chapter establish upper bounds on the mini-

mum size of semidefinite representations of Sn,(k)
+ and Rn,(k)

+ . To assess how good our

representations are, it is interesting to establish corresponding lower bounds on the

size of semidefinite representations of Rn,(k)
+ and Sn,(k)

+ . Since Rn,(k)
+ is a slice of Sn,(k)

+ ,

any lower bound on the size of a semidefinite representation of Rn,(k)
+ also provides a

lower bound on the size of a semidefinite representation of Sn,(k)
+ . Hence we focus our

discussion on Rn,(k)
+ .

In the case of Rn,(n−1)
+ , a halfspace, the obvious semidefinite representation of size

one is clearly of minimum size. Less trivial is the case of Rn,(0)
+ , the non-negative

orthant. It has been shown by Gouveia et al. [56, Section 5] that Rn+ does not admit a

semidefinite representation of size smaller than n. Hence the obvious representation of

Rn+ as the restriction of Sn+ to the diagonal is of minimum size.

For each k, the slice of Rn,(k)
+ obtained by setting the last k variables to zero is

Rn−k+ . Hence any semidefinite representation of Rn,(k)
+ has size at least n − k, the

minimum size of a semidefinite representation of Rn−k+ . This argument establishes that

Sanyal’s spectrahedral representation of Rn,(1)
+ of size n− 1 is actually a minimum size

semidefinite representation of Rn,(1)
+ .

Problem 3.5.1. Find lower bounds on the size of semidefinite representations of the

cones Rn,(k)
+ for 2 ≤ k ≤ n− 2.

The cones Rn,(k)
+ are invariant under permutation of coordinates. Furthermore, the

semidefinite representations of Rn,(k)
+ given in this chapter are equivariant with respect

to this action of the symmetric group. (See Definition 2.6.10 for a precise definition of

this notion.) As such it would also be interesting to establish lower bounds on the size of

equivariant semidefinite representations of the derivative relaxations of the non-negative

orthant.

Problem 3.5.2. Find lower bounds on the size of equivariant semidefinite representa-

tions of the cones Rn,(k)
+ for 2 ≤ k ≤ n− 2.
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This may be significantly easier than Problem 3.5.1. This is because the additional

equivariance assumptions of Problem 3.5.2 allow us to use tools from representation

theory to find obstructions to the existence of semidefinite representations. Indeed such

representation-theoretic tools have already proved to be quite effective in giving such

lower bounds for orbitopes [43].

� 3.5.3 Spectrahedral representations of the cones Sn,(k)
+

We have shown that the cones Rn,(k)
+ and Sn,(k)

+ have semidefinite representations of

polynomial size. Brändén [17] has shown that the cones Rn,(k)
+ also have spectrahedral

representations (see Section 3.1.3). It is obvious that Sn,(k)
+ has a spectrahedral repre-

sentation when k = 0, n−2, n−1, since in these cases Sn,(k)
+ is the positive semidefinite

cone, a quadratic cone, and a half-space, respectively.

Question 3.5.3. Does Sn,(k)
+ have a spectrahedral representation for all n and all 1 ≤

k ≤ n− 3?

Resolving this question is a natural step in understanding the generalized Lax con-

jecture (Conjecture 2.5.8) which asks whether all hyperbolicity cones are spectrahedral.



Chapter 4

Semidefinite descriptions of the

convex hull of rotation matrices

� 4.1 Introduction

Optimization problems in which the decision variables are constrained to be in the set

of orthogonal matrices

O(n) := {X ∈ Rn×n : XTX = I} (4.1.1)

arise in many contexts (see, e.g., [84, 86] and references therein), particularly when

searching over Euclidean isometries or orthonormal frames. In some situations, espe-

cially those arising from physical problems, we require the additional constraint that

the decision variables be in the set of rotation matrices

SO(n) := {X ∈ Rn×n : XTX = I, det(X) = 1} (4.1.2)

representing Euclidean isometries that also preserve orientation. For example, these

additional constraints arise in problems involving attitude estimation for spacecraft

[97], pose estimation in computer vision applications [65], or in understanding protein

folding [80]. The unit determinant constraint is important in these situations because

we typically cannot reflect physical objects such as spacecraft or molecules.

The set of n × n rotation matrices is non-convex, so optimization problems over

rotation matrices are ostensibly non-convex optimization problems. An important ap-

proach to global non-convex optimization is to approximate the original non-convex

problem with a tractable convex optimization problem. In some circumstances it may

even be possible to exactly reformulate the original non-convex problem as a tractable

convex problem. This approach to global optimization via convexification has been

very influential in combinatorial optimization [121], and more generally in polynomial

optimization via the machinery of moments and sums of squares [14].

As an example of a problem amenable to this approach, in Section 4.2 we describe

85
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the problem of jointly estimating the attitude and spin-rate of a spinning satellite and

show how to reformulate this ostensibly non-convex problem as a convex optimization

problem that, using the constructions in this chapter, can be expressed as a semidefinite

program.

When we attempt to convexify optimization problems involving rotation matrices

two natural geometric objects arise. The first of these is the convex hull of SO(n)

which we denote, throughout, by convSO(n). The second convex body of interest in

this chapter is the polar of SO(n), the set of linear functionals that take value at most

one on SO(n), i.e.,

SO(n)◦ = {Y ∈ Rn×n : 〈Y,X〉 ≤ 1 for all X ∈ SO(n)}

where we have identified Rn×n with its dual space via the trace inner product 〈Y,X〉 =

tr(Y TX). These two convex bodies are closely related. Since convSO(n) is closed and

contains the origin it follows from a basic result of convex analysis (Proposition 2.3.7

in Chapter 2) that convSO(n) = (SO(n)◦)◦.

We also study the convex hull and the polar of orthogonal matrices in this chapter.

It is well-known that these correspond to commonly used matrix norms (see, e.g., [110]).

The convex hull of O(n) is the operator norm ball, the set of n×n matrices with largest

singular value at most one, and the polar of O(n) is the nuclear norm ball, the set of

n× n matrices such that the sum of the singular values is at most one, i.e.

convO(n) =
{
X ∈ Rn×n : σ1(X) ≤ 1

}
and O(n)◦ =

{
X ∈ Rn×n :

n∑
i=1

σi(X) ≤ 1

}
.

Note that O(n) is the (disjoint) union of SO(n) and the set SO−(n) := {X ∈ Rn×n :

XTX = I, det(X) = −1}. As such, it follows from basic properties of the polar (see

Lemma 2.3.8 in Chapter 2) that

O(n)◦ = SO(n)◦ ∩ SO−(n)◦, (4.1.3)

allowing us to deduce properties of O(n)◦ from those of SO(n)◦. On the other hand we

show in Proposition 4.4.6 that for n ≥ 3,

convSO(n) = (convO(n)) ∩ (n− 2)SO−(n)◦, (4.1.4)

allowing us to deduce properties of convSO(n) from properties of convO(n) and SO−(n)◦.

Figure 4.1 illustrates the differences between convSO(n) and convO(n) and the rela-

tionship described in (4.1.3).

The convex bodies convSO(n) and convO(n) are examples of orbitopes, a family of
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Figure 4.1: On the left are shown 2-dimensional projections of convSO(3) (red),
convSO−(3) (blue), and convO(3) = conv [SO(3) ∪ SO−(3)] (black). On the right
are shown the corresponding 2-dimensional sections of SO(3)◦ (red), SO−(3)◦ (blue),
and O(3)◦ = SO(3)◦ ∩ SO−(3)◦ (black). These were created by optimizing 100 linear
functionals over each of these sets to obtain 100 boundary points. The optimization was
performed by implementing our spectrahedral representations in the parser YALMIP
[78], and solving the semidefinite programs numerically using SDPT3 [127].

highly symmetric convex bodies that arise from representations of groups [8, 10, 110].

Suppose a compact group G acts on Rn by linear transformations and x0 ∈ Rn. Then

the orbit of x0 under G is

G · x0 = {g · x0 : g ∈ G} ⊆ Rn

and the corresponding orbitope is conv (G · x0), the convex hull of the orbit. The sets

O(n) and SO(n) defined above can be thought of as the orbit of the identity matrix

I ∈ Rn×n under the linear action of the groups O(n) and SO(n), respectively, by

right multiplication on n × n matrices. The corresponding orbitopes are known as

the tautological O(n) orbitope and the tautological SO(n) orbitope respectively [110].

The set SO−(n) can be viewed as the orbit of R := diag∗(1, 1, . . . , 1,−1), the diagonal

matrix with diagonal entries (1, 1, . . . , 1,−1), under the same SO(n) action on n × n
matrices. Note that SO−(n) is then the image of SO(n) under the invertible linear

map X 7→ R ·X.

Spectrahedra and semidefinite representations As we discussed in Chapter 2, for con-

vex reformulations or relaxations involving the convex hull of SO(n) to be useful from

a computational point of view we need an effective description of the convex body

convSO(n). One effective way to describe a convex body is to express it as a spectra-

hedron, the intersection of the cone of symmetric positive semidefinite matrices with an

affine subspace. We discuss the properties of spectrahedra in Section 2.4 of Chapter 2.
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We briefly recall their algebraic description here, since we use such descriptions through-

out the chapter. If C ⊂ Rn contains the origin in its interior1, it is a spectrahedron if

it can be expressed as

C =

{
x ∈ Rn : Im +

n∑
i=1

A(i)xi � 0

}
(4.1.5)

where Im is the m ×m identity matrix, A(1), A(2), . . . , A(n) are m ×m real symmetric

matrices. If the matrices A(i) are m×m, we call the description (4.1.5) a spectrahedral

representation of size m.

We are also interested in semidefinite representations of convex sets, i.e. descriptions

as the image of a spectrahedron under a linear map (see Section 2.4 of Chapter 2).

Throughout much of this chapter we consider only spectrahedral representations, con-

fining our discussion of semidefinite representations to Section 4.5.2.

Doubly spectrahedral convex sets In this chapter we are interested in both SO(n)◦ and

convSO(n), and so study both from the point of view of semidefinite programming.

For finite sets S, both S◦ and convS are polyhedra. On the other hand, for infinite

sets S, usually neither S◦ nor convS are spectrahedra. Even if a convex set is a

spectrahedron, typically its polar is not a spectrahedron (see Section 4.6). We use the

term doubly spectrahedral convex sets to refer to those very special convex sets C with

the property that both C and C◦ are spectrahedra.

Main contribution The main contribution of this chapter is to establish that convSO(n)

is doubly spectrahedral and to give explicit spectrahedral representations of both SO(n)◦

and convSO(n).

Main proof technique The main idea behind our representations is that we start with a

parameterization of SO(n), rather than working with the defining equations in (4.1.2).

The parameterization is a direct (and classical) generalization of the widely used unit

quaternion parameterization of SO(3). In higher dimensions the unit quaternions are

replaced with Spin(n), a multiplicative subgroup of the invertible elements of a Clifford

algebra. In the cases n = 2 and n = 3 it is relatively straightforward to produce

our semidefinite representations directly from this parameterization. For n ≥ 4 the

parameterization does not immediately yield our semidefinite representations. The

additional arguments required to establish the correctness of our representations for

n ≥ 4 form the main technical contribution of the chapter.

1We can assume this without loss of generality by translating C and restricting to its affine hull
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� 4.1.1 Statement of results

In this section we explicitly state the spectrahedral representations that we prove are

correct in subsequent sections of the chapter. In particular we state spectrahedral

representations for SO(n)◦ and convSO(n), as well as a spectrahedral representation

of O(n)◦, the nuclear norm ball. All the spectrahedral representations stated in this

section are of minimum size (see Theorem 4.1.4). The reader primarily interested in

implementing our semidefinite representations should find all the information necessary

to do so in this section.

Matrices of the spectrahedral representations Our main results are stated in terms of a

collection of symmetric 2n−1 × 2n−1 matrices denoted (A(ij))1≤i,j≤n. We give concrete

descriptions of them here in terms of the Kronecker product of 2×2 matrices, deferring

more invariant descriptions to Section 4.7. The matrices A(ij) can be expressed as

A(ij) = −P TevenλiρjPeven (4.1.6)

where (λi)
n
i=1 and (ρi)

n
i=1 are the 2n × 2n skew-symmetric matrices defined concretely

by

λi =

i−1︷ ︸︸ ︷[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
⊗

[
0 −1

1 0

]
⊗

n−i︷ ︸︸ ︷[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]

and

ρj =

[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]
︸ ︷︷ ︸

j−1

⊗

[
0 −1

1 0

]
⊗

[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
︸ ︷︷ ︸

n−j

and where Peven is the 2n × 2n−1 matrix with orthonormal columns

Peven =
1

2

[
1

1

]
⊗

n−1︷ ︸︸ ︷[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]
+

1

2

[
1

−1

]
⊗

n−1︷ ︸︸ ︷[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
.

Note that P TevenMPeven just selects a particular 2n−1 × 2n−1 principal submatrix of

M . For any 1 ≤ i ≤ n, λi and ρi are both skew-symmetric since they are formed by

taking the Kronecker product of n − 1 symmetric matrices and one skew-symmetric

matrix. Furthermore, for any pair 1 ≤ i, j ≤ n the product λiρj is symmetric. This is



90 CHAPTER 4. THE CONVEX HULL OF ROTATION MATRICES

because if i ≥ j, λiρj is the Kronecker product of n symmetric matrices, and if i < j,

λiρj is the Kronecker product of n − 2 symmetric matrices and two skew-symmetric

matrices. It follows that each A(ij) is symmetric. Furthermore since λi and ρj are

signed permutation matrices, so is −λiρj . From this we can see that all of the entries

of the A(ij) are 0, 1, or −1.

Spectrahedral representations The following, which we prove in Section 4.4, is the main

technical result of this chapter.

Theorem 4.1.1. The polar of SO(n) is a spectrahedron. Explicitly

SO(n)◦ =

{
Y ∈ Rn×n :

n∑
i,j=1

A(ij)Yij � I2n−1

}
(4.1.7)

where the 2n−1 × 2n−1 matrices A(ij) are defined in (4.1.6).

Since O(n) = SO(n)∪SO−(n) as a corollary of Theorem 4.1.1 we obtain a spectra-

hedral representation of O(n)◦ = SO(n)◦ ∩ SO−(n)◦.

Theorem 4.1.2. The polar of O(n) is a spectrahedron. Explicitly

O(n)◦ =

{
Y ∈ Rn×n :

n∑
i,j=1

A(ij)Yij � I2n−1 ,
n∑

i,j=1

A(ij)[RY ]ij � I2n−1

}
.

where R = diag∗(1, 1, . . . , 1,−1).

Just because a convex set C is a spectrahedron does not, in general, mean that

its polar is also spectrahedron (see Section 4.6 for a simple example). Even if we

are in the special case where C is doubly spectrahedral, it is not straightforward to

obtain a spectrahedral representation of C◦ from a spectrahedral representation of C.

For example, if C is a polyhedron (and so certainly doubly spectrahedral) this is the

problem of computing a facet description of C◦ (i.e. the vertices of C) from a facet

description of C.

Nevertheless, we obtain a spectrahedral representation of convSO(n) by showing

that, for n ≥ 3, convSO(n) = (convO(n)) ∩ (n − 2)SO−(n)◦ (Proposition 4.4.6),

expressing convSO(n) as the intersection of two spectrahedra. We explain how this

works in detail in Section 4.4.3.

Theorem 4.1.3. The convex hull of SO(n) is a spectrahedron. Explicitly

convSO(n) =

{
X∈Rn×n :

[
0 X
XT 0

]
� I2n,

n∑
i,j=1

A(ij)[RX]ij � (n− 2)I2n−1

}
. (4.1.8)
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In the special cases n = 2 and n = 3 we have

convSO(2) =

{[
c −s
s c

]
∈ R2×2 :

[
1 + c s
s 1− c

]
� 0

}
and (4.1.9)

convSO(3) =

{
X ∈ R3×3 :

3∑
i,j=1

A(ij)[RX]ij � I4

}
(4.1.10)

=

{
X ∈ R3×3 : (4.1.11)[

1−X11−X22+X33 X13+X31 X12−X21 X23+X32
X13+X31 1+X11−X22−X33 X23−X32 X12+X21
X12−X21 X23−X32 1+X11+X22+X33 X31−X13
X23+X32 X12+X21 X31−X13 1−X11+X22−X33

]
� 0

}
.

We note that the representation of convSO(3) described in Sanyal et al. [110, Propo-

sition 4.1] can be obtained from the spectrahedral representation for convSO(3) given

here by conjugating by a signed permutation matrix, establishing that the two repre-

sentations are equivalent.

In Section 4.5 we prove that our spectrahedral representations in Theorems 4.1.1,

4.1.2, 4.1.3 are of minimum size. We do so by establishing lower bounds on the minimum

size of spectrahedral representations of SO(n)◦, convSO(n) and O(n)◦ that match the

upper bounds given by our constructions.

Theorem 4.1.4. If n ≥ 1 the minimum size of a spectrahedral representation of O(n)◦

is 2n. If n ≥ 2 the minimum size of a spectrahedral representation of SO(n)◦ is 2n−1.

If n ≥ 4 the minimum size of a spectrahedral representation of convSO(n) is 2n−1 +2n.

The minimum size of a spectrahedral representation of convSO(3) is 4.

Semidefinite representations Given a spectrahedral representation of size m of a convex

set C (with the origin in its interior), by applying a straightforward conic duality

argument (Lemma 2.4.8 of Chapter 2) we can obtain a semidefinite representation of

C◦. This representation, however, is usually not a spectrahedral representation.

Example 4.1.5. Theorems 4.1.2 and 4.1.4 tell us that the smallest spectrahedral rep-

resentation of O(n)◦, the nuclear norm ball, has size 2n. Yet by dualizing the size

2n spectrahedral representation of convO(n) (given in Proposition 4.4.7 to follow) we

obtain a semidefinite representation of O(n)◦ of size 2n

O(n)◦ =

{
Z ∈ Rn×n : ∃X,Y s.t.

[
X Z
ZT Y

]
� 0, tr(X) + tr(Y ) = 2

}
.

This is equivalent to the representation given by Fazel [45] for the nuclear norm ball.
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By dualizing, in a similar fashion, the spectrahedral representation of SO(n)◦ we ob-

tain a representation of convSO(n) as the projection of a spectrahedron, i.e. a semidef-

inite representation of convSO(n). In some situations it may be preferable to use this

representation of convSO(n) rather than the spectrahedral representation in Theo-

rem 4.1.3.

Corollary 4.1.6. The convex hull of SO(n) can be expressed as a projection of the

2n−1 × 2n−1 positive semidefinite matrices with trace one as

convSO(n) =




〈A(11), Z〉 〈A(12), Z〉 · · · 〈A(1n), Z〉
〈A(21), Z〉 〈A(22), Z〉 · · · 〈A(2n), Z〉

...
...

. . .
...

〈A(n1), Z〉 〈A(n2), Z〉 · · · 〈A(nn), Z〉

 : Z � 0, tr(Z) = 1

 .

Note that we obtained this by applying Lemma 2.4.8. In doing so we use the fact that

there is a point Z0 satisfying tr(Z0) = 1, Z0 � 0 and 〈A(ij), Z0〉 = 0 for all 1 ≤ i, j ≤ n.

Indeed one can take Z0 = I/2n−1, since tr(A(ij)) = 0 for all 1 ≤ i, j ≤ n, a fact we

establish in Lemma 4.7.4 to follow using properties of the linear maps represented by

the matrices A(ij).

� 4.1.2 Related work

That the convex hull of O(n) is a spectrahedron is a classical result. (We give a self-

contained proof of this fact in Proposition 4.4.7 to follow.) It was not until recently

that Sanyal, Sottile, and Sturmfels [110] established that O(n)◦ is a spectrahedron by

explicitly giving a (non-optimal) size
(

2n
n

)
spectrahedral representation. In the same

paper, Sanyal, Sottile, and Sturmfels study numerous SO(n)- and O(n)-orbitopes con-

sidering both convex geometric aspects such as their facial structure and Carathéodory

number [59, Definition 2.4], and algebraic aspects such as their algebraic boundary and

whether they are spectrahedra. They describe (previously known) spectrahedral repre-

sentations of convSO(2) and convSO(3). The representation for convSO(3) given in

[110, Eq. 4.1] is equivalent to our representation in Theorem 4.1.3, and the representa-

tion given in [110, Eq. 4.2] is equivalent to

convSO(3) =

{[
Z11−Z22−Z33+Z44 −2Z13−2Z24 −2Z12+2Z34

2Z13−2Z24 Z11+Z22−Z33−Z44 −2Z14−2Z23
2Z12+2Z34 2Z14−2Z23 Z11−Z22+Z33−Z44

]
: Z � 0, tr(Z) = 1

}

which can be obtained by specializing Corollary 4.1.6. Sanyal, Sottile, and Sturmfels

raise the general question of whether convSO(n) is a spectrahedron for all n (which

we answer in the affirmative), and more broadly ask for a classification of the SO(n)-

orbitopes that are spectrahedra.



Sec. 4.2. An illustrative application—joint satellite attitude and spin-rate estimation 93

Earlier work on orbitopes in the context of convex geometry includes the work

of Barvinok and Vershik [10] who consider orbitopes of finite groups in the context of

combinatorial optimization, Barvinok and Blekherman [8], who used asymptotic volume

computations to show that there are many more non-negative polynomials than sums

of squares (among other things), and Longinetti et al. [80] who studied SO(3)-orbitopes

with a view to applications in protein structure determination. More recently Sinn [99]

has studied in detail the algebraic boundary of four-dimensional SO(2)-orbitopes as

well as the Barvinok-Novik orbitopes [9, 133].

� 4.1.3 Notation

In this brief section we recall some notation from Chapter 2 and define some notation

that is not explicitly defined elsewhere. If U ⊆ Rn is a subspace then ΠU : Rn → U is the

orthogonal projector onto U and Π∗U : U → Rn is its adjoint. If the subspace in question

is the subspace of diagonal matrices D ⊆ Rn×n we occasionally also use diag := ΠD
and diag∗ := Π∗D. We frequently use the matrix R = diag∗(1, 1, . . . , 1,−1) ∈ Rn×n. It

could be replaced, throughout, by any orthogonal self-adjoint matrix with determinant

−1. We use the shorthand [n] for the set {1, 2, . . . , n} and Ieven for the set of subsets

of [n] with even cardinality.

� 4.1.4 Outline

The remainder of the chapter is organized as follows. In Section 4.2 we describe a

problem in satellite attitude estimation that can be reformulated as a semidefinite pro-

gram using the ideas in this chapter. Section 4.3 focuses on the symmetry properties

of convSO(n) and convO(n), as well as certain convex polytopes that naturally arise

when studying these convex bodies. With these preliminaries established, Section 4.4

outlines the main arguments required to establish the correctness of the spectrahedral

representations of SO(n)◦, O(n)◦, convSO(n) and convO(n). Details of some of the

constructions required for these arguments are deferred to Section 4.7. Section 4.5 es-

tablishes lower bounds on the size of spectrahedral representations of SO(n)◦, O(n)◦,

convSO(n) and convO(n) as well as a lower bound on the size of equivariant semidef-

inite representations of convSO(n).

Many of the properties of the convex bodies of interest in this chapter are summa-

rized in Table 4.1 which may serve as a useful navigational aid for the reader.

� 4.2 An illustrative application—joint satellite attitude and spin-rate esti-
mation

In this section we discuss a problem in satellite attitude estimation that can be re-

formulated as a semidefinite optimization problem using the representation of SO(n)◦
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S SO(n) O(n)

Definition {X ∈ Rn×n : XTX = I, det(X) = 1} {X ∈ Rn×n : XTX = I}

S◦ SO(n)◦ O(n)◦ = Nuclear norm ball

Diagonal slice Polar of parity polytope (Prop. 4.3.3) Cross-polytope (Prop. 4.3.3)

Spectrahedral Size: 2n−1 (Thm 4.1.1) Size: 2n (Thm 4.1.2)
representation Optimal? Yes (Thm 4.1.4) Optimal? Yes (Thm 4.1.4)

Semidefinite Size: 2n−1 Size: 2n (Eg. 4.1.5)
representation Optimal? Unknown(Cor. 4.5.5, Q. 4.6.2)

(S◦)◦ = convS convSO(n) convO(n) = Operator norm ball

Diagonal slice Parity polytope (Prop. 4.3.3) Hypercube (Prop. 4.3.3)

Spectrahedral
representation

Size:

{
2n−1 + 2n n ≥ 4

4 n = 3
(Thm 4.1.3) Size: 2n (Prop. 4.4.7)

Optimal? Yes (Thm 4.1.4) Optimal? Yes (Thm 4.1.4)

Semidefinite Size: 2n−1 (Cor. 4.1.6) Size: 2n
representation Optimal? Unknown(Cor. 4.5.5, Q. 4.6.2)

Table 4.1: Summary of results related to the convex bodies considered in this chapter.

described in Section 4.1.1. Our aim here is to give a concrete example of situations

where the semidefinite representations we describe in this paper arise naturally. The

problem of interest is one of estimating the attitude (i.e. orientation) and spin-rate of

a spinning satellite, and is a slight generalization of a problem posed recently by Psiaki

[97]. We first focus on describing the basic attitude estimation problem in Section 4.2.1,

before describing the joint attitude and spin-rate estimation problem in Section 4.2.2.

We show how to reformulate the joint attitude and spin-rate estimation problem as a

semidefinte optimization problem in Section 4.2.3 (with some proofs deferred to Sec-

tion 4.8).

� 4.2.1 Attitude estimation

The attitude of a satellite is the element of SO(3) that transforms a reference coordinate

system (the inertial system) in which, say, the sun is fixed, into a local coordinate

system fixed with respect to the satellite’s body (the body system). We are given unit

vectors x1, x2, . . . , xT (e.g., the alignment of the Earth’s magnetic field, directions of

landmarks such as the sun or other stars, etc.) in the inertial coordinate system, and

noisy measurements y1, y2, . . . , yT of these directions in the body coordinate system.

Let Q ∈ SO(3) denote the unknown attitude of the satellite. The aim is to estimate
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(in the maximum likelihood sense) Q given the yk, the xk and a description of the

measurement noise.

The simplest noise model assumes that each yk is independent and has a von Mises-

Fisher distribution [82] (a natural family of probability distributions on the sphere) with

mean Qxk and concentration parameter κ, i.e. its probability density function is, up

to a proportionality constant that does not depend on Q, p(yk;Q) ∝ exp (κ〈yk, Qxk〉).
Then the maximum likelihood estimate of Q is found by solving

max
Q∈SO(3)

T∑
k=1

κ〈yk, Qxk〉 = max
Q∈SO(3)

〈Q, κ
T∑
k=1

ykx
T
k 〉 = max

Q∈convSO(3)
〈Q, κ

T∑
k=1

ykx
T
k 〉. (4.2.1)

This is a probabilistic interpretation of a problem known as Wahba’s problem in the

astronautical literature, posed by Grace Wahba in the July 1965 SIAM Review problems

and solutions section [135, Problem 65-1].

Our spectrahedral representation of convSO(n) allows us to express the optimiza-

tion problem in (4.2.1) as a semidefinite optimization problem. In the astronautical

literature it is common to solve this problem via the q-method [69] which involves pa-

rameterizing SO(3) in terms of unit quaternions and solving a symmetric eigenvalue

problem. Our semidefinite optimization-based formulation could be thought of as a

much more flexible generalization of this eigenvalue problem-based approach that works

for any n, not just the case n = 3.

� 4.2.2 Joint attitude and spin-rate estimation

A significant benefit of having a semidefinite optimization-based description of a prob-

lem (such as Wahba’s problem), is that it can lead to semidefinite optimization-based

solutions to more complicated related problems by composing semidefinite representa-

tions in different ways. An example of this is given by the following generalization of

Wahba’s problem posed by Psiaki [97].2

Consider a satellite rotating at a constant unknown angular velocity ω rad/sample

around a known axis (e.g. its major axis). Assume the body coordinate system is chosen

so that the rotation is around the axis defined by the first coordinate direction. Then

the attitude matrix at the kth sample instant is of the form

Q(k) =

1 0 0

0 cos(kω) − sin(kω)

0 sin(kω) cos(kω)

Q
2Psiaki’s formulation only considers the κ2 = 0 case, where measurements of the spin rate are not

considered.
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where Q ∈ SO(3) is the initial attitude. Suppose, now, the satellite sequentially

obtains measurements y0, y1, . . . , yT in the body coordinate system of known land-

marks in the directions x0, x1, . . . , xT in the inertial coordinate system. As before

assume that the yk are independent and have von Mises-Fisher distribution with mean

Q(k)xk and concentration parameter κ1. Furthermore, the satellite obtains a sequence

ω1, ω2, . . . , ωT of noisy measurements of the unknown constant spin rate ω. Suppose

the ωk are independent and each ωk has a von Mises distribution [82] (a natural dis-

tribution for angular-valued quantities) with mean ω and concentration parameter κ2,

i.e., its probability density function (up to a constant independent of ω) is given by

p(ωk;ω) ∝ exp (κ2 cos(ωk − ω)). If the ωk and the yk are independent then the maxi-

mum likelihood estimate of Q and ω can be found by solving

max
Q∈SO(3)
ω∈[0,2π)

T∑
k=0

〈
yk, κ1

[
1 0 0
0 cos(kω) − sin(kω)
0 sin(kω) cos(kω)

]
Qxk

〉
+ κ2

T∑
k=0

cos(ωk − ω). (4.2.2)

For appropriate collections of matrices (Ak)
T
k=0, (Bk)

T
k=1 and scalars a1 and b1 that de-

pend on the problem data (i.e. the reference directions (xk)
T
k=0, the measured directions

(yk)
T
k=0, the measured spin-rates (ωk)

T
k=0, and the weights κ1 and κ2), the optimization

problem (4.2.2) can be rewritten as

max
Q∈SO(3)
ω∈[0,2π)

a1 cos(ω) + b1 sin(ω) + 〈A0, Q〉+
T∑
k=1

〈Ak, cos(kω)Q〉+ 〈Bk, sin(kω)Q〉. (4.2.3)

This can be thought of as the maximization of a linear functional over

M3,T ={
(cos(ω), sin(ω), Q, cos(ω)Q, sin(ω)Q, . . . , cos(Tω)Q, sin(Tω)Q) ∈ R2 × (R3×3)2T :

Q ∈ SO(3), ω ∈ [0, 2π)} .

In this formulation, the problem data all appear in the linear functional defined by the

scalars a1 and b1 and the matrices (Ak)
T
k=0 and (Bk)

T
k=1.

Following the approach described in Section 2.2 of Chapter 2, we can reformulate

this family of problems in terms of semidefinite optimization if we have a semidefinite

representation of conv(M3,T ). This is because the optimization problem (4.2.3) is

equivalent to the maximization of the same linear functional over conv(M3,T ).
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� 4.2.3 A semidefinite representation of convM3,T

To solve optimization problems of the form (4.2.2) using semidefinite optimization, it is

sufficient to have a semidefinite representation of convM3,T . In this section we present

a semidefinite representation of convM3,T of size 4(T + 1). A representation of this

form exists because SO(3)◦ has a spectrahedral representation of size 4.

To describe this representation concisely, we introduce some additional notation

that is used only in this section and Section 4.8. If W0,W1, . . . ,WT are d× d matrices,

define the corresponding d(T + 1)× d(T + 1) block Toeplitz matrix by

Toep(W−T , . . . ,W−1,W0,W1, . . . ,WT ) =



W0 W1 W2 · · · WT

W−1 W0 W1
. . .

...

W−2 W−1
. . .

. . .
...

...
. . .

. . .
. . . W1

W−T · · · · · · W−1 W0


. (4.2.4)

Note that if Toep(W−T , . . . ,W−1,W0,W1, . . . ,WT ) is symmetric then W−k = W T
k for

k = 0, 1, 2, . . . , T . If S1, S2, . . . , S2T+1 are d × d matrices define the corresponding

d(T + 1)× d(T + 1) block Hankel matrix by

Hank(S1, S2, . . . , S2T+1) =


S1 S2 · · · ST ST+1

S2 ST+1 ST+2

... . .
. ...

ST ST+1 S2T

ST+1 ST+2 · · · S2T S2T+1

 . (4.2.5)

Note that if Hank(S1, S2, . . . , S2T+1) is symmetric then Sk = STk for k = 1, 2, . . . , 2T+1.

Our semidefinite representation of convM3,T can then be described as follows.

Proposition 4.2.1. The convex hull of M3,T has a semidefinite representation of size

4(T + 1) as

convM3,T = {(tr(X1), tr(Y1),A(X0),A(X1),A(Y1), . . . ,A(XT ),A(YT )) :

Toep(XT , . . . , X1, X0, X1, . . . , XT )+

Hank(YT , YT−1, . . . , Y1, 0,−Y1, . . . ,−YT−1,−YT ) � 0}
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where A : S4 → R3×3 is defined by

A(Z) =

Z11 − Z22 − Z33 + Z44 −2Z13 − 2Z24 −2Z12 + 2Z34

2Z13 − 2Z24 Z11 + Z22 − Z33 − Z44 −2Z14 − 2Z23

2Z12 + 2Z34 2Z14 − 2Z23 Z11 − Z22 + Z33 − Z44

 .
We prove this result in Section 4.8. The only fact we use about SO(3) in the proof is

that convSO(3) has a semidefinite representation of the form {A(Z) : Z � 0, tr(Z) =

1} (see Corollary 4.1.6).

� 4.3 Basic properties of convSO(n) and convO(n)

In this section we consider the convex bodies convSO(n) and convO(n) purely from

the point of view of convex geometry leaving the discussion of aspects related to their

semidefinite representations for Section 4.4. In this section we describe their symme-

tries, and how the full space Rn×n of n× n matrices decomposes with respect to these

symmetries, via the (special) singular value decomposition. To a large extent one can

characterize convSO(n) and convO(n) in terms of their intersections with the subspace

of diagonal matrices. These diagonal sections are well-known polytopes—the parity

polytope and the hypercube respectively. The properties of these diagonal sections are

crucial to establishing our spectrahedral representation of convSO(n) in Section 4.4.3

and the lower bounds on the size of spectrahedral representations given in Section 4.5.

All of the results in this section are (sometimes implicitly) in the literature in various

forms. Here we aim for a brief yet unified presentation to make the chapter as self-

contained as possible.

� 4.3.1 Symmetry and the special singular value decomposition

In this section we describe the symmetries of convO(n) and convSO(n).

The group O(n)×O(n) acts on Rn×n by (U, V ) ·X = UXV T . This action leaves the

set O(n) invariant, and hence leaves the convex bodies convO(n) and O(n)◦ invariant.

It is also useful to understand how the ambient space of n×n matrices decomposes under

this group action. Indeed by the well-known singular value decomposition every element

X ∈ Rn×n can be expressed as X = UΣV T = (U, V ) · Σ where (U, V ) ∈ O(n) × O(n),

and Σ is diagonal with Σ11 ≥ · · · ≥ Σnn ≥ 0. These diagonal elements are the singular

values. We denote them by σi(X) = Σii. Note that for most of what follows, we only

use the fact that Σ is diagonal, not that its elements can be taken to be non-negative

and sorted.

Similarly the group

S(O(n)×O(n)) = {(U, V ) : U, V ∈ O(n), det(U) det(V ) = 1}
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acts on Rn×n by (U, V ) ·X = UXV T . This action leaves the sets SO(n) and SO−(n) in-

variant, and hence leaves the convex bodies convSO(n), convSO−(n), SO(n)◦, SO−(n)◦,

convO(n) and O(n)◦ invariant. A variant on the singular value decomposition, known

as the special singular value decomposition [110] describes how the space of n× n ma-

trices decomposes under this group action. Indeed every X ∈ Rn×n can be expressed

as X = U Σ̃V T = (U, V ) · Σ̃ where (U, V ) ∈ S(O(n) × O(n)) and Σ̃ is diagonal with

Σ̃11 ≥ · · · ≥ Σ̃n−1,n−1 ≥ |Σ̃nn|. These diagonal elements are the special singular values.

We denote them by σ̃i(X) = Σ̃ii. Again in what follows we typically only use the fact

that Σ̃ is diagonal for our arguments.

The special singular value decomposition can be obtained from the singular value

decomposition. Suppose X = UΣV T is a singular value decomposition of X so that

(U, V ) ∈ O(n) × O(n). If det(U) det(V ) = 1 this is also a valid special singular value

decomposition. Otherwise, if det(U) det(V ) = −1 then X = UR(RΣ)V T gives a de-

composition where (UR, V ) ∈ S(O(n)×O(n)) and RΣ is again diagonal, but with the

last diagonal entry being negative. As such the singular values and special singular

values of an n × n matrix are related by σi(X) = σ̃i(X) for i = 1, 2, . . . , n − 1 and

σ̃n(X) = sign(det(X))σn(X).

The importance of these decompositions of Rn×n under the action of O(n) × O(n)

and S(O(n) × O(n)) is that they allow us to reduce many arguments, by invariance

properties, to arguments about diagonal matrices.

� 4.3.2 Polytopes associated with convO(n) and convSO(n)

The convex hull of O(n) is closely related to the hypercube

Cn = conv{x ∈ Rn : x2
i = 1, for i ∈ [n]}; (4.3.1)

the convex hull of SO(n) is closely related to the parity polytope

PPn = conv{x ∈ Rn :
∏n
i=1 xi = 1, x2

i = 1, for i ∈ [n]}; (4.3.2)

the convex hull of SO−(n) is closely related to the odd parity polytope

PP−n = conv{x ∈ Rn :
∏n
i=1 xi = −1, x2

i = 1, for i ∈ [n]}. (4.3.3)

In this section we briefly discuss properties of these polytopes and show that they are

the diagonal sections of convO(n), convSO(n) and convSO−(n) respectively.

Facet descriptions The hypercube has 2n facets corresponding to the linear inequality

description

Cn = {x ∈ Rn : −1 ≤ xi ≤ 1 for i ∈ [n]}. (4.3.4)



100 CHAPTER 4. THE CONVEX HULL OF ROTATION MATRICES

The parity polytope PPn has the linear inequality description

PPn =

{
x ∈ Rn : −1 ≤ xi ≤ 1 for i ∈ [n],

∑
i/∈I

xi −
∑
i∈I

xi ≤ n− 2 for I ⊆ [n], |I| odd

}
.

(4.3.5)

This description is due to Jeroslow [98] (see, e.g., [32, Theorem 5.3] for a self-contained

proof). If n ≥ 4, all 2n+2n−1 linear inequalities in (4.3.5) define facets. By symmetry it

suffices to check one inequality of each type. Indeed if we remove the inequality x1 ≤ 1

then (n − 2, 0, . . . , 0) satisfies all the other inequalities but is not in PPn (for n ≥ 4).

Similarly if we remove the inequality −x1 + x2 + · · · + xn ≤ n − 2 then (−1, 1, . . . , 1)

satisfies all the other inequalities but is not in PPn. In the cases n = 2 and n = 3, (4.3.5)

simplifies to

PP2 =
{

[ xx ] ∈ R2 : −1 ≤ x ≤ 1
}

and (4.3.6)

PP3 =
{
x ∈ R3 : x1 − x2 + x3 ≤ 1, −x1 + x2 + x3 ≤ 1,

x1 + x2 − x3 ≤ 1, −x1 − x2 − x3 ≤ 1} , (4.3.7)

showing that PP3 has only four facets.

The polar of the hypercube is the cross-polytope. We denote it by C◦n. It is clear

from (4.3.1) that C◦n has 2n facets and corresponding linear inequality description

C◦n =

{
x ∈ Rn :

∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n]

}
. (4.3.8)

The polar of the parity polytope is denoted by PP◦n. It is clear from (4.3.2) that PP◦n
has 2n−1 facets and corresponding linear inequality description

PP◦n =

{
x ∈ Rn :

∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n], |I| even

}
. (4.3.9)

Similarly

PP−n
◦

=

{
x ∈ Rn :

∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n], |I| odd

}
. (4.3.10)

To get a sense of the importance of these polytopes for understanding convSO(n) it

may be instructive to compare (4.3.5) with (4.1.8), (4.3.6) with (4.1.9), (4.3.7) with

(4.1.10), and (4.3.9) with (4.1.7).

We conclude the discussion of these polytopes with another description of PPn.
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Lemma 4.3.1. If n ≥ 3, the parity polytope can be expressed as

PPn = Cn ∩ (n− 2) · PP−n
◦
.

If n = 3 this simplifies to PP3 = PP−3
◦
. If n = 2, PP2 = C2 ∩ span(1, 1).

Proof. For the general case, we need only examine the facet descriptions in (4.3.4),

(4.3.5), and (4.3.10). If n = 3 the result follows by comparing (4.3.7) with (4.3.10).

The case n = 2 is a restatement of (4.3.6).

Diagonal projections and sections We now establish the link between the hypercube and

the convex hull of O(n), and the parity polytope and the convex hull of SO(n). The

key fact that relates the parity polytope and the convex hull of SO(n) is the following

celebrated theorem of Horn [1].

Theorem 4.3.2 (Horn). The projection onto the diagonal of SO(n) is the parity poly-

tope, i.e. ΠD(SO(n)) = PPn.

Note that we do not need the full strength of Horn’s theorem. We only use the

corollaries that

ΠD(convSO(n)) = conv ΠD(SO(n)) = conv PPn = PPn and (4.3.11)

ΠD(convSO−(n)) = ΠD(R · convSO(n))

= R ·ΠD(convSO(n)) = R · PPn = PP−n . (4.3.12)

We are now in a position to establish the main result of this section (Proposition 4.3.3

to follow). It follows directly from Horn’s theorem and Lemma 2.6.9 from Chapter 2

that describes the interaction between a convex body, invariant under an orthogonal

group action, and the fixed-point subspace of that group action.

Proposition 4.3.3. Let D ⊆ Rn×n denote the subspace of diagonal matrices. Then

ΠD(D ∩ convO(n)) = Cn, ΠD(D ∩O(n)◦) = C◦n,

ΠD(D ∩ convSO(n)) = PPn, ΠD(D ∩ SO(n)◦) = PP◦n,

ΠD(D ∩ convSO−(n)) = PP−n , ΠD(D ∩ SO−(n)◦) = PP−n
◦
.

Proof. First note that by (4.3.11) and (4.3.12) we know that ΠD(convSO(n)) = PPn
and that ΠD(convSO−(n)) = PP−n . Consequently

ΠD(convO(n)) = conv ΠD(SO(n) ∪ SO−(n)) = conv (PPn ∪ PP−n ) = Cn. (4.3.13)
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Let G denote the group of diagonal matrices with non-zero entries in {−1, 1} under

matrix multiplication. Observe that g ∈ G acts on n×n matrices by X 7→ gXgT . This

action is orthogonal with respect to the trace inner product on n×n matries. Further-

more, the fixed-point subspace of the action is precisely D. Since each of convO(n),

convSO(n), convSO−(n) is invariant under conjugation by diagonal sign matrices we

can apply Lemma 2.6.9 from Chapter 2. This result tells us that if C is any of convO(n),

convSO(n) or convSO−(n) then

ΠD(C ∩ D) = ΠD(C) and ΠD(C◦ ∩ D) = ΠD(C ∩ D)◦ = ΠD(C)◦.

Combining this with the characterization of ΠD(C) for each of these convex bodies

from (4.3.11), (4.3.12), and (4.3.13), completes the proof.

� 4.4 Spectrahedral representations of SO(n)◦ and convSO(n)

This section is devoted to outlining the proofs of Theorems 4.1.1, 4.1.2 and 4.1.3, giv-

ing spectrahedral representations of SO(n)◦, O(n)◦ and convSO(n). For the sake of

exposition, we initially focus on SO(2)◦ as in this case all the ideas are familiar. Low-

dimensional coincidences do mean that some issues are simpler in the 2 × 2 case than

in general. After discussing the 2 × 2 case, in Section 4.4.2 we generalize the argu-

ment, deferring some details to Section 4.7. Finally in Section 4.4.3 we construct our

spectrahedral representation of convSO(n).

� 4.4.1 The 2× 2 case

We begin by giving a spectrahedral representation of SO(2)◦. We make crucial use of the

trigonometric identities cos(θ) = cos2(θ/2)− sin2(θ/2) and sin(θ) = 2 cos(θ/2) sin(θ/2).

Recall that elements of SO(2) have the form[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
=

[
cos2( θ2)− sin2( θ2) −2 cos( θ2) sin( θ2)

2 cos( θ2) sin( θ2) cos2( θ2)− sin2( θ2)

]

and that (cos(θ/2), sin(θ/2)) parameterizes the unit circle in R2. Hence SO(2) is the

image of the unit circle {(x1, x2) : x2
1 + x2

2 = 1} under the quadratic map

Q(x1, x2) =

[
x2

1 − x2
2 −2x1x2

2x1x2 x2
1 − x2

2

]
.
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As such, Y ∈ SO(2)◦ if and only if, for all (x1, x2) in the unit circle,

〈Y,Q(x1, x2)〉 =

〈[
Y11 Y12

Y21 Y22

]
,

[
x2

1 − x2
2 −2x1x2

2x1x2 x2
1 − x2

2

]〉

=

[
x1 x2

] [
Y11 + Y22 Y21 − Y12

Y21 − Y12 −Y11 − Y22

][
x1

x2

]
≤ 1.

This is equivalent to the spectrahedral representation

SO(2)◦ =

{
Y :

[
Y11 + Y22 Y21 − Y12

Y21 − Y12 −Y11 − Y22

]
� I

}

which coincides with the n = 2 case of Theorem 4.1.1.

To summarize, the main idea of the argument is that we use a parameterization of

SO(2) as the image of the unit circle under a quadratic map. This parameterization

allows us to rewrite the maximum of a linear functional on SO(2) as the maximum of a

quadratic form on the unit circle which can be expressed as a spectrahedral condition.

We note that a very similar argument works in the case n = 3 to directly produce

the representations of SO(3)◦ and convSO(3) in Theorem 4.1.1 and Corollary 4.1.6

respectively. Indeed the unit quaternion parameterization of rotations gives a parame-

terization of SO(3) as the image of the unit sphere in R4 under a quadratic mapping.

This allows us to rewrite the maximum of a linear functional on SO(3) as the maximum

of a quadratic form on the unit sphere or, equivalently, as a spectrahedral condition.

� 4.4.2 Outline of the general argument

In this section we outline the argument for general n. We do not define all of the

mathematical objects (in particular Spin(n), Cl0(n) and Φ) that play a role in the

argument in this section. Instead we just describe their relevant properties, and give

definitions in Section 4.7.

For the general case, we first need a quadratic parameterization of SO(n). There is a

classical construction of a quadratic map Q : R2n−1 → Rn×n and a subset Spin(n) of the

unit sphere in R2n−1
such that SO(n) = Q(Spin(n)). (We summarize this construction

in Section 4.7, only discussing those aspects relevant for our argument here.)

Unfortunately, for n ≥ 4, Spin(n) is a strict subset of the unit sphere in R2n−1
, so

we cannot simply follow the argument for the n = 2 case verbatim. The key difficulty

is that we need a spectrahedral characterization of the maximum over Spin(n) of the

quadratic form x 7→ 〈Y,Q(x)〉 (for arbitrary Y ). It is not obvious how to do this when

Spin(n) is a strict subset of the sphere.

We achieve this by showing that, for any Y , the maximum of the quadratic form
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x 7→ 〈Y,Q(x)〉 over the entire sphere coincides with its maximum over the strict subset

Spin(n) of the sphere (see Proposition 4.4.4, to follow). To establish this we exploit

additional structure in Spin(n) and certain equivariance properties of Q. The specific

properties we use are stated in Propositions 4.4.1, 4.4.2, and 4.4.3. We prove these in

Section 4.7.

Proposition 4.4.1. There is a 2n−1-dimensional inner product space3, Cl0(n), a subset

Spin(n) of the unit sphere in Cl0(n) and a quadratic map Q : Cl0(n)→ Rn×n such that

Q(Spin(n)) = SO(n).

From now on fix Cl0(n), Spin(n), and Q that satisfy the previous proposition and

are explicitly constructed in Section 4.7. The quadratic mapping Q interacts well with

left and right multiplication by elements of SO(n).

Proposition 4.4.2. If U, V ∈ SO(n) then there is a corresponding invertible linear

map Φ(U,V ) : Cl0(n) → Cl0(n) such that for any x ∈ Cl0(n), UQ(x)V T = Q(Φ(U,V )x)

and Φ(U,V )(Spin(n)) = Spin(n).

Let Ieven denote the collection of subsets of [n] of even cardinality.

Proposition 4.4.3. Given any orthonormal basis u1, . . . , un for Rn, there is a corre-

sponding orthonormal basis (uI)I∈Ieven for Cl0(n) such that

• uI ∈ Spin(n) for all I ∈ Ieven and

• for all i ∈ [n], if x =
∑

I∈Ieven xIuI ∈ Cl0(n) then

〈ui, Q (x)ui〉 =
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉.

The following proposition, the crux of our argument, implies that for any n × n

matrix Y , the maximum of the quadratic form x 7→ 〈Y,Q(x)〉 over the whole sphere

and over the (strict) subset Spin(n), coincide.

Proposition 4.4.4. Given any Y ∈ Rn×n the quadratic form x 7→ 〈Y,Q(x)〉 has a basis

of eigenvectors4 that are elements of Spin(n).

Proof. Suppose Y ∈ Rn×n is arbitrary. Then by the special singular value decomposi-

tion Y can be expressed as Y = UTDV where U and V are in SO(n) and D is diagonal.

Then by Proposition 4.4.2

〈Y,Q(x)〉 = 〈UTDV,Q(x)〉 = 〈D,UQ(x)V T 〉 = 〈D,Q(Φ(U,V )x)〉.

3By choosing a basis we can identify this with R2n−1

equipped with the standard inner product.
4Suppose x 7→M(x) = 〈Mx, x〉 is a quadratic form represented by a self-adjoint linear map M . By

the eigenvectors of the quadratic form we mean the eigenvectors of the associated linear map M .
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Consider the quadratic form z 7→ 〈D,Q(z)〉 and let e1, . . . , en denote the standard basis

for Rn. By Proposition 4.4.3 there is a basis (eI)I∈Ieven such that if z =
∑

I∈Ieven zIeI
then

〈D,Q(z)〉 =
n∑
i=1

Dii〈ei, Q(z)ei〉 =
∑

I∈Ieven

z2
I

(
n∑
i=1

Dii〈ei, Q(eI)ei〉

)
.

Hence z 7→ 〈D,Q(z)〉 has (eI)I∈Ieven as a basis of eigenvectors. Hence the quadratic

form x 7→ 〈Y,Q(x)〉 has Φ−1
(U,V )eI for I ∈ Ieven as a basis of eigenvectors. Since the eI

are in Spin(n) (by Proposition 4.4.3), Φ(U,V ) is invertible, and Φ−1
(U,V ) preserves Spin(n)

(by Proposition 4.4.2), we can conclude that the quadratic form x 7→ 〈Y,Q(x)〉 has a

basis of eigenvectors all of which are elements of Spin(n).

Assuming Propositions 4.4.1 and 4.4.4 we can prove Theorem 4.1.1 using an embel-

lishment of the same argument we used in the 2× 2 case.

Theorem 4.1.1. The polar of SO(n) is a spectrahedron. Explicitly

SO(n)◦ =

{
Y ∈ Rn×n :

n∑
i,j=1

A(ij)Yij � I2n−1

}

where the 2n−1 × 2n−1 matrices A(ij) are defined in (4.1.6).

Proof. Since the image of Spin(n) under Q is SO(n), an n× n matrix Y is in SO(n)◦

if and only if

max
X∈SO(n)

〈Y,X〉 = max
x∈Spin(n)

〈Y,Q(x)〉 ≤ 1.

Since Spin(n) is a subset of the unit sphere in Cl0(n), we have that

max
x∈Spin(n)

〈Y,Q(x)〉 ≤ max
x∈Cl0(n)
〈x,x〉=1

〈Y,Q(x)〉.

The maximum of the quadratic form x 7→ 〈Y,Q(x)〉 over the unit sphere in Cl0(n)

occurs at any eigenvector corresponding to the largest eigenvalue of the quadratic form.

By Proposition 4.4.4 we can always find such an eigenvector in Spin(n), establishing

that

max
x∈Spin(n)

〈Y,Q(x)〉 = max
x∈Cl0(n)
〈x,x〉=1

〈Y,Q(x)〉.

Hence Y ∈ SO(n)◦ if and only if for all x ∈ Cl0(n) such that 〈x, x〉 = 1,

〈Y,Q(x)〉 =
n∑

i,j=1

Yij〈ei, Q(x)ej〉 ≤ 1. (4.4.1)
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In Section 4.7.4 we explicitly describe a choice of coordinates for Cl0(n) such that the

matrix representing the quadratic form x 7→ 〈ei, Q(x)ej〉 in those coordinates is precisely

the matrix A(ij) defined in (4.1.6). Hence (4.4.1) is equivalent to the spectrahedral

representation given in Theorem 4.1.1.

Remark 4.4.5. We briefly describe a more geometric dual interpretation of the argu-

ments that establish Theorem 4.1.1. Throughout this remark let S = {x ∈ Cl0(n) :

〈x, x〉 = 1} be the unit sphere in Cl0(n). We have seen that there is a quadratic

map Q such that SO(n) = Q(Spin(n)) ⊆ Q(S) with the inclusion being strict for

n ≥ 4. The remainder of the proof of Theorem 4.1.1 shows, from this viewpoint,

that convSO(n) = convQ(Spin(n)) = convQ(S), i.e. all the points in S that are

not in Spin(n) are mapped by Q inside the convex hull of Q(Spin(n)). One may

wonder whether Q(S) = convSO(n), i.e. whether the image of the sphere under

Q is actually convex. This is not the case—already for n = 2 we can see that

Q(S) = SO(2) 6= convSO(2).

It is now straightforward to prove Theorem 4.1.2, giving a spectrahedral represen-

tation of O(n)◦ of size 2n. We restate the result here for convenience.

Theorem 4.1.2. The polar of O(n) is a spectrahedron. Explicitly

O(n)◦ =

{
Y ∈ Rn×n :

n∑
i,j=1

A(ij)Yij � I2n−1 ,
n∑

i,j=1

A(ij)[RY ]ij � I2n−1

}
.

where R = diag∗(1, 1, . . . , 1,−1).

Proof. Since O(n)◦ = SO(n)◦ ∩SO−(n)◦ (see (4.1.3)) and we have already constructed

a spectrahedral representation of SO(n)◦, it remains to give a spectrahedral represen-

tation of SO−(n)◦. Since SO−(n) = R · SO(n), it follows that Y ∈ SO−(n)◦ if and

only if 〈Y,RX〉 = 〈RY,X〉 ≤ 1 for all X ∈ SO(n). Hence Y ∈ SO−(n)◦ if and only if

RY ∈ SO(n)◦.

The stated spectrahedral representation of O(n)◦ of size 2n follows from these ob-

servations and Theorem 4.1.1.

� 4.4.3 A spectrahedral representation of convSO(n)

In this section we give a spectrahedral representation of convSO(n) using a descrip-

tion of convSO(n) which is inherited from the corresponding description of the parity

polytope.

Proposition 4.4.6. If n ≥ 3, the convex hull of SO(n) can be expressed as

convSO(n) = (convO(n)) ∩ (n− 2)SO−(n)◦.
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If n = 3 this simplifies to convSO(3) = SO−(3)◦. In the case n = 2,

convSO(2) = (convO(2)) ∩ span

{[
1 0

0 1

]
,

[
0 −1

1 0

]}
.

Proof. Suppose X ∈ Rn×n is arbitrary and n ≥ 3. By the special singular value

decomposition X = U Σ̃V T where (U, V ) ∈ S(O(n) × O(n)) and Σ̃ = diag∗(σ̃) is di-

agonal. Then since SO(n) is invariant under the action of S(O(n) × O(n)), it fol-

lows that X ∈ convSO(n) if and only if Σ̃ ∈ (convSO(n)) ∩ D. Similarly since

convO(n) and SO−(n)◦ are invariant under the action of S(O(n) × O(n)), it fol-

lows that X ∈ (convO(n)) ∩ (n − 2)SO−(n)◦ if and only if Σ̃ ∈ (convO(n)) ∩ D
and Σ̃ ∈ (n− 2)SO−(n)◦ ∩ D.

Since the diagonal section of convSO(n) is the parity polytope, X ∈ convSO(n) if

and only if σ̃ ∈ PPn. Since the diagonal section of convO(n) is the hypercube, σ̃ ∈ Cn

if and only if Σ̃ ∈ (convO(n)) ∩ D. Since the diagonal section of SO−(n)◦ is PP−n
◦
,

σ̃ ∈ (n− 2)PP−n
◦

if and only if Σ̃ ∈ (n− 2)SO−(n)◦ ∩ D.

Finally we use the fact that PPn = Cn ∩ (n − 2)PP−n
◦

(see Lemma 4.3.1). Then

X ∈ convSO(n) if and only if σ̃ ∈ PPn which occurs if and only if σ̃ ∈ Cn and

σ̃ ∈ (n− 2)PP−n
◦
, which occurs if and only if X ∈ (convO(n)) ∩ (n− 2)SO−(n)◦.

In the case n = 3 the description PPn = Cn ∩ (n − 2)PP−n
◦

simplifies to PP3 =

PP−3
◦
. The corresponding simplification propagates through the above argument to give

convSO(3) = SO−(3)◦. The result in the case n = 2 follows from the same argument

but using the description PP2 = C2 ∩ span(1, 1) and the fact that σ̃ ∈ span(1, 1) if and

only if X ∈ span
{

[ 1 0
0 1 ] ,

[
0 −1
1 0

]}
.

Since the description of convSO(n) in Proposition 4.4.6 involves convO(n), we first

give the well-known spectrahedral representation of convO(n).

Proposition 4.4.7. The convex hull of O(n) is a spectrahedron. An explicit spectra-

hedral representation of size 2n is given by

convO(n) =

{
X ∈ Rn×n :

[
0 X

XT 0

]
� I2n

}
. (4.4.2)

Proof. Let Q ∈ O(n) be arbitrary. Then since QTQ = In it follows that[
In −Q
−QT In

]
=

[
In
−QT

] [
In −Q

]
� 0

and so Q is an element of the right hand side of (4.4.2). Since the right hand side

of (4.4.2) is convex, it follows that convO(n) ⊆
{
X ∈ Rn×n :

[
0 X
XT 0

]
� I2n

}
.
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For the reverse inclusion, suppose X is an element of the right hand side of (4.4.2).

By the singular value decomposition there is a diagonal matrix Σ such that X = UΣV T

where U, V ∈ O(n). Conjugating by the orthogonal matrix
[
UT 0
0 V T

]
we see that[

0 X

XT 0

]
� I2n ⇐⇒

[
0 Σ

Σ 0

]
� I2n

which is equivalent to −1 ≤ Σii ≤ 1 for i ∈ [n]. Since ΠD(D ∩ convO(n)) is the

hypercube it follows that Σ ∈ D ∩ convO(n) and so that UΣV T ∈ convO(n).

We now restate (omitting the explicit description of convSO(3)) and prove Theo-

rem 4.1.3.

Theorem 4.1.3. The convex hull of SO(n) is a spectrahedron. Explicitly

conv SO(n) =

{
X ∈ Rn×n :

[
0 X

XT 0

]
� I2n,

n∑
i,j=1

A(ij)[RX]ij � (n− 2)I2n−1

}
.

In the special cases n = 2 and n = 3 we have

convSO(2) =

{[
c −s
s c

]
∈ R2×2 :

[
1 + c s

s 1− c

]
� 0

}
and

convSO(3) =

{
X ∈ R3×3 :

3∑
i,j=1

A(ij)[RX]ij � I4

}
.

Proof. Since we now have a spectrahedral representation of convO(n) (from (4.4.2)) and

of SO−(n)◦ (from the proof of Theorem 4.1.2), by Proposition 4.4.6 their intersection

gives the spectrahedral representation of convSO(n) valid for n ≥ 3. In the case n = 3

Proposition 4.4.6 tells us that convSO(3) = SO−(3)◦ giving the stated simplification

(which can be expressed explicitly as in (4.1.11) by using the definition of the A(ij)

in (4.1.6)). In the case n = 2, from Proposition 4.4.6 we have that

convSO(2) =


[
c −s
s c

]
∈ R2×2 :


1 0 −c s

0 1 −s −c
−c −s 1 0

s −c 0 1

 � 0

 .

This is still a spectrahedral representation of size 4, but the constraint has symmetry—

it is invariant under simultaneously reversing the order of the rows and columns—
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suggesting that it can be block diagonalized [50]. Under the change of coordinates

1

2


1 0 −1 0

0 1 0 1

0 1 0 −1

−1 0 −1 0




1 0 −c s

0 1 −s −c
−c −s 1 0

s −c 0 1




1 0 −1 0

0 1 0 1

0 1 0 −1

−1 0 −1 0


T

=


1 + c s 0 0

s 1− c 0 0

0 0 1 + c s

0 0 s 1− c


(4.4.3)

we see that the size 4 spectrahedral representation in (4.4.3) is actually two copies of

the same size 2 representation, giving the stated result.

� 4.5 Lower bounds on the size of representations

� 4.5.1 Spectrahedral representations

Whenever a convex set has a polyhedral section, we can immediately obtain a simple

lower bound on the possible size of a spectrahedral representation of that convex set in

terms of the number of facets of that polyhedron. The bound is based on the following

result of Ramana [100, Corollary 2.5].

Lemma 4.5.1. If P ⊆ Rp is a polyhedron with f facets and P has a spectrahedral

representation of size m, then m ≥ f .

The following combines Ramana’s result with the simple fact that restricting a

spectrahedral representation of C to an affine subspace U gives a spectrahedral repre-

sentation of C ∩ U of the same size.

Lemma 4.5.2. Suppose C ⊆ Rn has a spectrahedral representation of size m. If U ⊆ Rn

is an affine subspace and C ∩ U is a polyhedron with f facets, then m ≥ f .

Proof. Parameterize the subspace U as U = {Ax + b : x ∈ Rp} where A ∈ Rn×p and

b ∈ Rn. Let C have a spectrahedral representation C = {x :
∑n

i=1A
(i)xi + A(0) � 0}

of size m, so the symmetric matrices A(i) are m × m. Let B(j) =
∑n

i=1A
(i)Aij for

j = 1, 2, . . . , p and let B(0) = A(0) +
∑n

i=1A
(i)bi. Then C ∩ U has a spectrahedral

representation of size m given by C ∩ U = {x ∈ Rp :
∑p

j=1B
(j)xj + B(0) � 0}. Since

C ∩ U has f facets, it follows from Ramana’s result (Lemma 4.5.1) that m ≥ f .

Remarkably this simple technique allows us to establish that our spectrahedral rep-

resentations are of minimum size.

Theorem 4.1.4. If n ≥ 1, the minimum size of a spectrahedral representation of O(n)◦

is 2n. If n ≥ 2, the minimum size of a spectrahedral representation of SO(n)◦ is 2n−1.

If n ≥ 4, the minimum size of a spectrahedral representation of convSO(n) is 2n−1+2n.

The minimum size of a spectrahedral representation of convSO(3) is 4.



110 CHAPTER 4. THE CONVEX HULL OF ROTATION MATRICES

Proof. The diagonal slice of O(n)◦ is the cross-polytope, which (for n ≥ 1) has 2n

facets. Hence, for n ≥ 1, any spectrahedral representation of O(n)◦ has size at least

2n. The diagonal slice of SO(n)◦ is the polar of the parity polytope, which (for n ≥ 2)

has 2n−1 facets. Hence, for n ≥ 2, any spectrahedral representation of SO(n)◦ has size

at least 2n−1. The diagonal slice of convSO(n) is the parity polytope, which for n ≥ 4

has 2n−1 + 2n facets, and for n = 3 has 4 facets. It follows that any spectrahedral

representation of convSO(n) has size at least 2n−1 + 2n for n ≥ 4 and size at least 4

for n = 3.

The spectrahedral representations we construct in Section 4.4 achieve these lower

bounds and so are of minimum size.

� 4.5.2 Equivariant semidefinite representations

As is established in Theorem 4.1.4, our spectrahedral representations are necessarily

of exponential size. While they are useful in practice for very small n (such as the

physically relevant n = 3 case), this is not the case for larger n. Recall from Section 2.4

of Chapter 2 that if C is a spectrahedron, it may be possible to give a much smaller

semidefinite representation of C, i.e. a description of C as the image of a spectrahedron

under a linear map.

It is straightforward to show that if C has a semidefinite representation of size m,

then C◦ also has a semidefinite representation of size m [56]. This simple observa-

tion already yields examples of convex bodies for which there is an exponential gap

between the size of the smallest spectrahedral representation and the size of the small-

est semidefinite representation. For instance, as demonstrated in Example 4.1.5, the

smallest possible spectrahedral representation of O(n)◦ has size 2n and yet it has a

semidefinite representation of size 2n. Since the spectrahedral representations of both

convSO(n) and SO(n)◦ are large, a similar argument cannot yield polynomial-sized

semidefinite representations for convSO(n).

Equivariant semidefinite representations Since the convex sets of interest in this chapter

are highly symmetric, we can try to understand whether there are small semidefinite

representations of these convex sets that respect their symmetries. Recall that we call

such symmetry-respecting semidefinite representations, equivariant semidefinite repre-

sentations (see Definition 2.6.10 from Chapter 2).

In the remainder of this section we show that any semidefinite representation of

convSO(n) that is equivariant with respect to the action of S(O(n) × O(n)), must

have size exponential in n. The argument works by showing that from any semidefinite

representations of convSO(n) that is equivariant with respect to the action of S(O(n)×
O(n)) we can construct a semidefinite representation of the parity polytope that is
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equivariant with respect to a certain group action on Rn. We then apply a recent

result that gives an exponential lower bound on the size of appropriately equivariant

semidefinite representation of the parity polytope.

For convenience we slightly restate, in more concrete language, the definition of an

equivariant semideinite representation (Definition 2.6.10 from Section 2.6).

Definition 4.5.2. Let C ⊆ Rn be a convex body invariant under the action of a group

G by linear transformations. Assume C = π(L ∩ Sm+ ) is a semidefinite representation

of C of size m. The lift is called G-equivariant if there is a group homomorphism

ρ : G→ GL(m) such that

ρ(g)Xρ(g)T ∈ L for all g ∈ G and all X ∈ L and

π(ρ(g)Xρ(g)T ) = g · π(X) for all g ∈ G and all X ∈ L ∩ Sm+ . (4.5.1)

Let Γparity denote the symmetry group of the parity polytope. Here Γparity can

be thought of concretely as the group of evenly signed permutation matrices—signed

permutation matrices where there are an even number of entries that take the value

−1. These act on Rn by matrix multiplication.

In the present setting we are interested in two particular cases of equivariant semidef-

inite representations: S(O(n) × O(n))-equivariant representations of convSO(n), and

Γparity-equivariant representations of the parity polytope. We show in Proposition 4.5.3

to follow that if we could construct a semidefinite representation of convSO(n) that

is S(O(n) × O(n))-equivariant, then we could construct a semidefinite representation

of PPn that is Γparity-equivariant. This is a useful connection to make because Γparity-

equivariant semidefinite representations have been studied in [43]. In particular they

are necessarily of exponential size in n (see Theorem 4.5.4 to follow).

Proposition 4.5.3. If convSO(n) has an equivariant semidefinite representation size

m then PPn has an equivariant semidefinite representation size m.

Proof. Suppose convSO(n) = π(L ∩ Sm+ ) is a S(O(n)×O(n))-equivariant semidefinite

representation convSO(n) of size m and let ρ : S(O(n) × O(n)) → GL(m) be the

associated homomorphism. Since the projection of convSO(n) onto the subspace of

diagonal matrices is PPn (Theorem 4.3.2) it follows that

PPn = (ΠD ◦ π)(L ∩ Sm+ )

is a semidefinite representation PPn of size m. It remains to show that this semidefinite

representation of PPn is Γparity-equivariant. In other words we need to construct a

homomorphism ρ̃ : Γparity → GL(m) satisfying the requirements of Definition 4.5.2.
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First observe that any element of Γparity can be uniquely expressed as as DP where

D is a diagonal sign matrix with determinant one, and P is a permutation matrix.

Furthermore, note that if D1P1 and D2P2 are elements of Γparity, then

(D1P1)(D2P2) = (D1P1D2P
T
1 )(P1P2)

gives a factorization into a diagonal sign matrix D1P1D2P
T
1 and a permutation matrix

P1P2. Hence define φ : Γparity → S(O(n) × O(n)) by φ(DP ) = (DP,P ). Observe that

this is a homomorphism because

φ((D1P1)(D2P2)) = φ((D1P1D2P
T
1 )(P1P2))

= ((D1P1)(D2P2), P1P2) = φ(D1P1) · φ(D2P2).

Define a homomorphism ρ̃ : Γparity → GL(m) by ρ̃ = ρ ◦ φ. For any symmetric matrix

X it is the case that DP ·ΠD(X) = ΠD(DPXP T ). Hence the following establishes that

the lift is Γparity-equivariant:

DP ·ΠD(π(X)) = ΠD(DPπ(X)P T )

= ΠD(φ(DP ) · π(X))
∗
= ΠD(π(ρ(φ(DP ))Xρ(φ(DP ))T ))

= ΠD(π(ρ̃(DP )Xρ̃(DP )T )) by the definition of ρ̃

where the equality marked with an asterisk holds because the lift of convSO(n) is

equivariant.

The following lower bound on the size of Γparity-equivariant semidefinite represen-

tations of the parity polytope is one of the main results of [43].

Theorem 4.5.4. If n ≥ 8, any Γparity-equivariant semidefinite representation of PPn
must have size at least

(
n
dn
4
e
)
.

Combining Proposition 4.5.3 with Proposition 4.5.4 we obtain the following ex-

ponential lower bound on the size of any equivariant semidefinite representation of

convSO(n).

Corollary 4.5.5. If n ≥ 8, any S(O(n)×O(n))-equivariant semidefinite representation

of convSO(n) must have size at least
(
n
dn
4
e
)
.

� 4.6 Summary and open questions

In this chapter we have constructed minimum size spectrahedral representations for

the convex hull of SO(n) and its polar. We have also constructed a minimum-size
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spectrahedral representation of O(n)◦ (the nuclear norm ball). We conclude the chapter

by discussing some natural questions raised by our results.

� 4.6.1 Doubly spectrahedral convex sets

We have seen that both the convex hull of SO(n) and its polar are spectrahedra. The

same is true of the convex hull of O(n) (the operator norm ball) and its polar (the

nuclear norm ball), as established by Sanyal et al. [110, Corollary 4.9]. This is a very

special phenomenon—the polar of a spectrahedron is not, in general, a spectrahedron.

For example, the intersection of the second-order cone {(x, y, z) : z ≥
√
x2 + y2} and

the non-negative orthant is a spectrahedron, but its polar has non-exposed faces and

so is not a spectrahedron [101] (see Section 2.4).

If a convex set C and its polar are both spectrahedra, we say that C is a doubly

spectrahedral convex set. Apart from convO(n) and convSO(n), two distinct families

of doubly spectrahedral convex sets are the following:

Polyhedra Every polyhedron is a spectrahedron, and the polar of a polyhedron is

again a polyhedron. Hence polyhedra are doubly spectrahedral.

Homogeneous cones A convex cone K is homogeneous if the automorphism group

(see Section 2.6) of K acts transitively on the interior of K. Using Vinberg’s

classification of homogeneous cones in terms of T -algebras [40], Chua gave spec-

trahedral representations for all homogeneous cones [23]. Furthermore, K is ho-

mogeneous if and only its dual cone K∗ = −K◦ is homogeneous [40, Proposition

9]. From these two observations it follows that any homogeneous cone is doubly

spectrahedral.

We have seen that the doubly spectrahedral convex sets are a strict subset of all

spectrahedra that includes all polyhedra, all homogeneous convex cones, and convO(n)

and convSO(n).

Problem 4.6.1. Characterize doubly spectrahedral convex sets.

� 4.6.2 Non-equivariant semidefinite representations

In Section 4.5 we showed that our spectrahedral representations of convSO(n) and

SO(n)◦ are necessarily of exponential size and that any S(O(n) × O(n))-equivariant

semidefinite representation of convSO(n) must also have exponential size. Our lower

bound on the size of S(O(n)×O(n))-equivariant semidefinite representation of convSO(n)

used the fact that any Γparity-equivariant semidefinite representation of the parity poly-

tope has exponential size. Nevertheless, the parity polytope is known to have a semidef-

inite representation of size 4(n − 1) (in fact it is a description as a projection of a
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polytope with 4(n − 1) facets) [26, Section 2.6.3] that is not Γparity-equivariant. It is

quite possible that by appropriately breaking symmetry we can find a small semidefinite

representation of convSO(n).

Question 4.6.2. Does convSO(n) have a semidefinite representation with size poly-

nomial in n?

� 4.7 Clifford algebras and Spin(n)

In this section we describe and establish the key properties of the quadratic mapping Q

from Proposition 4.4.1 that underlies our spectrahedral representation of SO(n)◦ given

in Theorem 4.1.1. The mapping Q is most naturally described in terms of an algebraic

structure known as a Clifford algebra, which generalizes some properties of complex

numbers and quaternions. The first part of this section is devoted to describing the

basic properties of Clifford algebras we require. In Section 4.7.2 we define the set Spin(n)

and establish some of its properties. In Section 4.7.3 we describe the mapping Q, and

establish Propositions 4.4.1, 4.4.2, and 4.4.3. Section 4.7.4 gives explicit constructions

of the matrices A(ij) appearing in our spectrahedral representations.

Many of the constructions and properties we describe here are standard and can be

found, for example, in [79, 41]. We highlight those aspects of the development that are

novel as they arise.

� 4.7.1 Clifford algebras

The Clifford algebra Cl(n) is the associative algebra5 (over the reals) with generators

e1, e2, . . . , en and relations

e2
i = −1 and eiej = −ejei for i 6= j. (4.7.1)

Here 1 denotes the multiplicative identity in the algebra.

Standard basis As a real vector space Cl(n) has dimension 2n. A basis for Cl(n) is

given by all elements of the form

eI := ei1ei2 · · · eik

where I = {i1, i2, . . . , ik} is a subset of [n] and i1 < i2 < · · · < ik. By convention

e∅ := 1. Let us call (eI)I⊆[n] the standard basis for Cl(n). With respect to this basis

5An associative algebra is a vector space equipped with an associative bilinear product. That the
generators and relations in (4.7.1) define an associative algebra that is unique up to isomorphism follows
because it can be realized as a quotient of the tensor algebra (see, e.g., [41, Definition 9.4]).
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we can think of an arbitrary element x ∈ Cl(n) as

x =
∑
I⊆[n]

xIeI

where the xI ∈ R. We equip Cl(n) with the inner product 〈x, y〉 =
∑

I⊆[n] xIyI . Clearly

the standard basis is orthonormal with respect to this inner product.

Left and right multiplication Any element x ∈ Cl(n) acts linearly on Cl(n) by left

multiplication and by right multiplication. In other words, given x ∈ Cl(n) there are

linear maps λx, ρx : Cl(n) → Cl(n) defined by λx(y) = xy and ρx(y) = yx for all

y ∈ Cl(n).

Conjugation A straightforward computation shows that with respect to the inner prod-

uct on Cl(n), the adjoint of left multiplication by ei is left multiplication by −ei, i.e.,

λ∗ei = λ−ei . Similarly the adjoint of right multiplication by ei is right multiplication by

−ei. In fact, it is the case that for any x ∈ Cl(n) there is x ∈ Cl(n) such that λ∗x = λx
and ρ∗x = ρx. To see this define a conjugation map x 7→ x on the standard basis by

eI = (−1)|I|eik · · · ei2ei1 where I = {i1, i2, . . . , ik}

and extend by linearity. We use this conjugation map repeatedly in the sequel, usually

via the relations

〈xy, z〉 = 〈λxy, z〉 = 〈y, λ∗xz〉 = 〈y, λxz〉 = 〈y, xz〉 (4.7.2)

and

〈yx, z〉 = 〈ρxy, z〉 = 〈y, ρ∗xz〉 = 〈y, ρxz〉 = 〈y, zx〉. (4.7.3)

Copy of Rn in Cl(n) Throughout this appendix, we use the notation Rn to denote

the n-dimensional subspace of Cl(n) spanned by the generators e1, e2, . . . , en. Elements

of Rn ⊆ Cl(n) satisfy the following coordinate-free version of the defining relations of

Cl(n) given in (4.7.1).

Lemma 4.7.1. If u, v ∈ Rn then uv + vu = −2〈u, v〉1.

Proof. First note that uv+ uv = −2〈u, v〉1 is bilinear in u and v so it suffices to verify

the identity for u = ei and v = ej (for all 1 ≤ i, j ≤ n). That the statement holds

for u = ei and v = ej (for all 1 ≤ i, j ≤ n) is equivalent to the relations (4.7.1) (since

〈ei, ej〉 = δij).

The sphere in Rn We use the notation Sn−1 ⊆ Rn ⊆ Cl(n) to denote the set of

elements x ∈ Rn satisfying 〈x, x〉 = 1. We next state and prove some basic properties

of the elements of Sn−1 ⊆ Cl(n).
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Lemma 4.7.2. If u ∈ Sn−1 ⊆ Cl(n) then uu = 1 = uu. Consequently 〈uy, uz〉 =

〈y, z〉 = 〈yu, zu〉 for all y, z ∈ Cl(n).

Proof. The second statement follows from the first together with (4.7.2) and (4.7.3).

That uu = 1 whenever u ∈ Sn−1 follows from a direct application of Lemma 4.7.1.

The following can be established by repeatedly applying Lemma 4.7.2.

Corollary 4.7.3. If u1, u2, . . . , uk ∈ Sn−1 then 〈u1u2 · · ·uk, u1u2 · · ·uk〉 = 1.

Even subalgebra Consider the subspaces Cl0(n) and Cl1(n) of Cl(n) defined by

Cl0(n) = span{eI : I ⊆ [n], |I| even} and Cl1(n) = span{eI : I ⊆ [n], |I| odd}.

It is straightforward to show that if x, y ∈ Cl0(n) then xy ∈ Cl0(n), and if x, y ∈ Cl1(n)

then xy ∈ Cl0(n). The first of these properties states that Cl0(n) is a subalgebra

of Cl(n), which we call the even subalgebra. With these properties we have that the

product of an even number of elements of Sn−1 is in the even subalgebra.

Lemma 4.7.4. If u1, u2, . . . , u2k ∈ Sn−1 then x = u1u2 · · ·u2k ∈ Cl0(n).

Proof. Since Sn−1 ⊆ Rn ⊆ Cl1(n), each ui ∈ Cl1(n). Hence u2i−1u2i ∈ Cl0(n) for

i = 1, 2, . . . , k. So u1u2 · · ·u2k = (u1u2)(u3u4) · · · (u2k−1u2k) is the product of elements

in Cl0(n) so is itself an element of Cl0(n).

� 4.7.2 Spin(n)

We now define Spin(n) and establish some of its basic properties.

Definition 4.7.5. Spin(n) is the set of all even length products of elements of Sn−1,

i.e.

Spin(n) = {x ∈ Cl(n) : x = u1u2 · · ·u2k where k is a positive integer and

u1, . . . , u2k ∈ Sn−1}.

Although we do not require this fact, it can be shown that in the above definition

it is enough to take k = bn/2c. We note that a common alternative definition [79] is

to take Spin(n) to be the elements of Cl0(n) satisfying xx = 1 and xvx ∈ Rn for every

v ∈ Rn (which defines a real algebraic variety specified by the vanishing of a collection of

quadratic equations). It is fairly straightforward to establish that these two definitions

are equivalent.

The following observation follows directly from Lemma 4.7.4 and Corollary 4.7.3.

Lemma 4.7.6. The set Spin(n) is a subset of the unit sphere in Cl0(n), i.e., Spin(n) ⊆
{x ∈ Cl0(n) : 〈x, x〉 = 1}.
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The next result establishes that Spin(n) is a group under multiplication.

Lemma 4.7.7. If x ∈ Spin(n) then xx = xx = 1. If x, y ∈ Spin(n) then xy ∈ Spin(n).

Proof. That Spin(n) is closed under multiplication is clear from the definition. That

conjugation and inversion coincide on Spin(n) follows from Lemma 4.7.2.

� 4.7.3 The quadratic mapping

We now define and establish the relevant properties of the quadratic mapping Q :

Cl0(n) → Rn×n that plays a prominent role in Section 4.4.2. First define Q̃ : Cl(n) →
Rn×n by

Q̃(x)(u) = ΠRnλxρx(u) = ΠRn(xux).

Note that Q̃(x) is quadratic in x. Then define Q : Cl0(n)→ Rn×n as the restriction of

Q̃ to the subalgebra Cl0(n).

When we express the linear map Q̃(x) as a matrix (with respect to the standard

basis) we see that [Q̃(x)]ij = 〈ei, xejx〉. Furthermore Q̃ (and hence Q) interacts nicely

with the conjugation map.

Lemma 4.7.8. If x ∈ Cl(n) then Q̃(x) = Q̃(x)T .

Proof. Simply observe that [Q̃(x)]ij = 〈ei, xejx〉 = 〈xeix, ej〉 = [Q̃(x)]ji.

The definition of Q̃ is motivated by the fact that if u ∈ Sn−1 then −Q̃(u) is the

reflection in the hyperplane orthogonal to u.

Lemma 4.7.9. Let u ∈ Sn−1. Then whenever v ∈ Rn, −uvu ∈ Rn is the reflection of

v in the hyperplane normal to u. In particular −uvu ∈ Rn.

Proof. Let u ∈ Sn−1. Then by Lemma 4.7.1, if v ∈ Rn then −uv = 2〈u, v〉1+ vu. Since

uu = 1 and u = −u, it follows that

−uvu = 2〈u, v〉u+ vuu = v − 2〈u, v〉u,

which is the reflection in the hyperplane orthogonal to u and is certainly in Rn.

Note that our definition of Q̃ is one possible extension to all of Cl(n) of the map that

sends u ∈ Sn−1 to the reflection in the hyperplane orthogonal to u. It is specifically

chosen so as to be quadratic on all of Cl(n). Our choice is different from the typical

extension used in the literature—the twisted adjoint representation [79]— which is not

quadratic in x on all of Cl(n) and is not suitable for our purposes.
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Lemma 4.7.10. Let x ∈ Cl(n) and u ∈ Sn−1. Then

Q̃(xu) = Q̃(x)Q̃(u) and Q̃(ux) = Q̃(u)Q̃(x)

where the product on the right hand side in each case is composition of linear maps.

Proof. If u ∈ Sn−1, we know from the previous lemma that v 7→ uvu leaves the subspace

Rn (and hence its orthogonal complement) invariant. So by the definition of Q̃ we see

that

Q̃(xu)(v) = ΠRn(xuvux) = ΠRn(xPRn(uvu)x) = Q̃(x)(Q̃(u)(v)).

Similarly since PRn + PRn⊥ = I,

Q̃(ux)(v) = ΠRn(uxvxu)

= ΠRn(uPRn(xvx)u) + ΠRn(uPRn⊥(xvx)u) = Q(u)(Q(x)(v)) + 0

where we have used the fact that uyu ∈ Rn⊥ whenever y ∈ Rn⊥.

We are now in a position to prove Propositions 4.4.1, 4.4.2, and 4.4.3. We restate

them here for convenience.

Proposition 4.4.1. There is a 2n−1-dimensional inner product space, Cl0(n), a subset

Spin(n) of the unit sphere in Cl0(n) and a quadratic map Q : Cl0(n)→ Rn×n such that

Q(Spin(n)) = SO(n).

Proof. The construction of Cl0(n) is given in Section 4.7.1. The set Spin(n) is de-

fined in 4.7.5. That Spin(n) is a subset of the sphere in Cl0(n) is the content of

Lemma 4.7.6. The quadratic mapping Q is defined in Section 4.7.3. It remains to show

that Q(Spin(n)) = SO(n).

Let X ∈ SO(n). By the Cartan-Dieudonné theorem [48] any such X can be ex-

pressed as the composition of an even number (at most n) of reflections in hyperplanes

with normal vectors, say, u1, u2, . . . , u2k ∈ Sn−1. Let x = u1u2 · · ·u2k−1u2k ∈ Spin(n).

Then by Lemma 4.7.9 and Lemma 4.7.10 and the fact that Q is the restriction of Q̃ to

Cl0(n),

X = Q̃(u1)Q̃(u2) · · · Q̃(u2k−1)Q̃(u2k) = Q̃(x) = Q(x) ∈ Q(Spin(n)).

Hence SO(n) ⊆ Q(Spin(n)). On the other hand, if x = u1u2 · · ·u2k−1u2k ∈ Spin(n)

then Q(x) is the product of an even number of reflections in hyperplanes and so is an

element of SO(n), establishing the reverse inclusion.

Proposition 4.4.2. If U, V ∈ SO(n) then there is a corresponding invertible linear
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map Φ(U,V ) : Cl0(n) → Cl0(n) such that for any x ∈ Cl0(n), UQ(x)V T = Q(Φ(U,V )x)

and Φ(U,V )(Spin(n)) = Spin(n).

Proof. By Proposition 4.4.1 there are u, v ∈ Spin(n) such that Q(u) = U and Q(v) = V .

Define Φ(U,V ) : Cl0(n) → Cl0(n) by Φ(U,V )(x) = uxv. Then Φ(U,V ) is invertible with

inverse Φ−1
(U,V )(x) = uxv. By Lemmas 4.7.8 and 4.7.10, for any x ∈ Cl0(n),

UQ(x)V T = Q(u)Q(x)Q(v)T = Q(u)Q(x)Q(v) = Q(uxv).

Finally, if x ∈ Spin(n) then Φ(U,V )(x) = uxv ∈ Spin(n) by Lemma 4.7.7. Hence

Φ(U,V )(Spin(n)) ⊆ Spin(n). For the reverse inclusion, if x ∈ Spin(n) then Φ−1
(U,V )(x) =

uxv ∈ Spin(n) by Lemma 4.7.7. Hence Φ(U,V )(Spin(n)) ⊇ Spin(n), establishing that

Φ(U,V )(Spin(n)) = Spin(n).

Proposition 4.4.3. Given any orthonormal basis u1, . . . , un for Rn, there is a corre-

sponding orthonormal basis (uI)I∈Ieven for Cl0(n) such that

• uI ∈ Spin(n) for all I ∈ Ieven and

• for all i ∈ [n], if x =
∑

I∈Ieven xIuI then

〈ui, Q (x)ui〉 =
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉.

Proof. Let u1, u2, . . . , un ∈ Rn be orthonormal with respect to the usual inner product

on Rn. When thought of as elements of Rn ⊂ Cl(n) these satisfy u2
i = −1 for all

i and uiuj = −ujui when i 6= j (by Lemma 4.7.1). As such we can construct from

u1, u2, . . . , un a basis for Cl0(n) just as we did for the standard basis. Indeed let I =

{i1, . . . , i2k} ⊆ [n] where i1 < i2 < · · · < i2k, and define uI = ui1ui2 · · ·ui2k . This realizes

uI as the product of an even number of elements of Sn−1, showing that uI ∈ Spin(n).

For the second statement, note that if x =
∑

I∈Ieven xIuI and i ∈ [n],

〈ui, Q(x)ui〉 = 〈ui, xuix〉

=
∑

I,J∈Ieven

xIxJ〈ui, uIuiuJ〉

∗
=

∑
I,J∈Ieven

xIxJδIJ〈ui, uIuiuI〉

=
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉

where δIJ = 1 if I = J and zero otherwise, and the equality marked with an asterisk
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follows directly from the coordinate-free version of the defining relations of the Clifford

algebra (Lemma 4.7.1).

� 4.7.4 Matrices of the quadratic mapping

For 1 ≤ i, j ≤ n, let A(ij) : Cl0(n) → Cl0(n) be the self-adjoint linear map such that,

for all x ∈ Cl0(n),

[Q(x)]ij = 〈ei, xejx〉 = 〈x,A(ij)x〉.

First we note that the A(ij) have trace zero.

Lemma 4.7.4. For 1 ≤ i, j ≤ n, tr(A(ij)) = 0.

Proof. For i ∈ [n] and I ∈ Ieven define δ[i∈I] = 1 if i ∈ I and 0 otherwise. Observe that

from the definition of A(ij) and the defining relations of the Clifford algebra,

tr(A(ij)) =
∑

I∈Ieven

〈eI , A(ij)eI〉 =
∑

I∈Ieven

〈ei, eIejeI〉 =
∑

I∈Ieven

(−1)δ[j∈I]〈ei, ej〉.

If i 6= j every term in the sum vanishes. If i = j observe that there are 2n−2

elements of Ieven containing j and 2n−2 elements of Ieven not containing j, hence∑
I∈Ieven(−1)δ[j∈I]〈ej , ej〉 = 0.

For the remainder of the section we show that with respect to the standard basis

(eI)I∈Ieven for Cl0(n), the A(ij) are represented by the 2n−1 × 2n−1 symmetric matrices

described in (4.1.6).

Let Ã(ij) : Cl(n)→ Cl(n) be the self-adjoint linear map such that, for all x ∈ Cl(n),

[Q̃(x)]ij = 〈ei, xejx〉 = 〈x, Ã(ij)x〉. Since

〈ei, xejx〉 = 〈eix, xej〉 = 〈x, λeiρejx〉 = −〈x, λeiρejx〉

it follows that Ã(ij) = −λeiρej . Since A(ij) is the restriction of Ã(ij) to the subspace

Cl0(n) we have that

A(ij) = ΠCl0(n)(−λeiρej )Π
∗
Cl0(n)

. (4.7.4)

It remains to derive the matrices that represent the λei and ρei for i = 1, 2, . . . , n,

as well as the matrix representing ΠCl0(n), in terms of the standard basis (eI)I⊆[n] for

Cl(n) (ordered in a particular way). In what follows, if v ∈ Cl(n) we write [v] for its

coordinate representation as a vector in R2n with respect to the particular ordered basis

we use. We use brackets in a similar way to express an abstractly defined linear map

in these coordinates as a matrix.

To describe the ordered basis, define δ[i∈I] = 1 if i ∈ I and zero otherwise, and

define δ[i/∈I] = 1 if i /∈ I and zero otherwise. We order the basis elements in such a way
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that, in coordinates,

[eI ] =

[
δ[1/∈I]
δ[1∈I]

]
⊗

[
δ[2/∈I]
δ[2∈I]

]
⊗ · · · ⊗

[
δ[n/∈I]
δ[n∈I]

]
.

It is straightforward to verify (by checking that the relations of (4.7.1) are satisfied)

that in these coordinates,

λi := [λei ] =

i−1︷ ︸︸ ︷[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
⊗

[
0 −1

1 0

]
⊗

n−i︷ ︸︸ ︷[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]

and

ρi := [ρei ] =

[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]
︸ ︷︷ ︸

i−1

⊗

[
0 −1

1 0

]
⊗

[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
︸ ︷︷ ︸

n−i

.

Now PCl0(n) : Cl(n)→ Cl(n) is represented in these coordinates by

[PCl0(n)] =
1

2

n︷ ︸︸ ︷[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]
+

1

2

n︷ ︸︸ ︷[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]
.

This can be verified by noting that if |I| is odd, [PCl0(n)][eI ] = 0, and if |I| is even,

[PCl0(n)][eI ] = [eI ]. Defining the 2n × 2n−1 matrix

Peven =
1

2

[
1

1

]
⊗

n−1︷ ︸︸ ︷[
1 0

0 1

]
⊗ · · · ⊗

[
1 0

0 1

]
+

1

2

[
1

−1

]
⊗

n−1︷ ︸︸ ︷[
1 0

0 −1

]
⊗ · · · ⊗

[
1 0

0 −1

]

and checking that it satisfies PevenP
T
even = [PCl0(n)] and that the columns of Peven are

orthonormal, establishes that Peven = [Π∗
Cl0(n)

]. It then follows that in these coordinates

A(ij) = −P TevenλiρjPeven

as stated in (4.1.6).
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� 4.8 Semidefinite representations of a generalized trigonometric moment
curve

The trigonometric moment curve (first studied by Carathéodory [24]) is the following

curve:

{(1, cos(ω), sin(ω), . . . , cos(Tω), sin(Tω)) : ω ∈ [0, 2π)} ⊂ R2T+1. (4.8.1)

In Section 2.2 of Chapter 2 we considered the projection {(cos(ω), sin(ω), sin(2ω)) : ω ∈
[0, 2π)} of this curve to illustrate the idea of reformulating a family of optimization

problems as linear optimization over a convex set.

In this section we study semidefinite representations of the convex hull of the follow-

ing generalization of the trigonometric moment curve to tuples of symmetric matrices

TMR
m,T = {(Z, cos(ω)Z, sin(ω)Z, . . . , cos(Tω)Z, sin(Tω)Z) :

Z ∈ Sm+ , tr(Z) = 1
}
⊂ (Sm)2T+1. (4.8.2)

If m = 1 it is clear that TMR
m,T reduces to the curve given in (4.8.1). We are interested

in semidefinite representations of the convex hull of TMR
m,T in the context of the joint

attitude and spin-rate estimation problem described in Section 4.2. This is because the

convex hull of M3,T , described in Proposition 4.2.1, is a projection of the convex hull

of TMR
4,T (see Section 4.8.3 to follow).

The following is a natural complex Hermitian counterpart of TMR
m,T ,

TMC
m,T =

{
(e−iωTZ, . . . , e−iωTZ,Z, eiωZ, ei2ωZ, . . . , eiTωZ) :

Z ∈ Hm+ , tr(Z) = 1
}
⊂ (Cm×m)2T+1. (4.8.3)

(Throughout this section we use the notation Hm+ for the cone of m × m Hermitian

positive semidefinite matrices.) The main result we use is the following Hermitian

semidefinite representation of the conic hull (see Section 2.3 from Chapter 2) of TMC
m,T .

This appears in [51, Section 6.2] for instance.

Theorem 4.8.1. The conic hull of TMC
m,T is

cone(TMC
m,T ) = {(W−T ,W−T+1, . . . ,WT−1,WT ) :

Toep(W−T ,W−T+1, . . . ,WT−1,WT ) ∈ H(T+1)m
+

}
.

We refer to [62, Theorem 2.1.6] for a detailed proof of this well-known result. The

basic idea is that the dual cone (TMC
m,T )∗ of TMC

m,T consists of the coefficients of
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Hm+ -valued trigonometric polynomials. These have a semidefinite representation via

the matrix version of the Fejér-Riesz theorem [108, 39] (also known as the spectral

factorization theorem). Taking the dual of this semidefinite representation gives the

statement of Theorem 4.8.1.

In Lemma 4.8.2 of Section 4.8.1 we show that conv(TMR
m,T ) is a section of the cone

cone(TMC
m,T ). Combining this with Theorem 4.8.1 immediately gives an Hermitian

semidefinite representation of conv(TMR
m,T ) of size (T + 1)m. In Section 4.8.2 we

show that this particular slice has a special property that allows us to convert our

Hermitian semidefinite representation of size (T + 1)m to a real symmetric semidefinite

representation of the same size, (T + 1)m. We also establish sufficient conditions under

which this phenomenon occurs in general (see Lemma 4.8.4). These conditions seem to

be new, and may be useful in other situations. We give the final form of our semidefinite

representation of conv(TMR
m,T ) in Proposition 4.8.5. In Section 4.8.3 we use it to prove

Proposition 4.2.1 that gives an explicit semidefinite representation of M3,T .

� 4.8.1 Relating conv(TMR
m,T ) and cone(TMC

m,T )

We now show how to recover conv(TMR
m,T ) as a section of cone(TMC

m,T ).

Lemma 4.8.2.

conv(TMR
m,T ) = {(X0, X1, Y1, . . . , XT , YT ) ∈ (Sm)2T+1 : (4.8.4)

(X0, X1 + iY1, . . . , XT + iYT ) ∈ cone(TMC
m,T ), tr(X0) = 1}.

Proof. Suppose Z ∈ Sm+ and ω ∈ [0, 2π) so that

(Z,Z cos(ω), Z sin(ω), . . . , Z cos(Tω), Z sin(Tω) ∈ TMR
m,T .

Then since tr(Z) = 1 and Z cos(kω) + iZ sin(kω) = Zeikω for k = 1, 2, . . . , T it follows

that

(Z,Z cos(ω) + iZ sin(ω), . . . , Z cos(Tω) + iZ sin(Tω)) ∈ TMC
m,T ⊆ cone(TMC

m,T ).

Hence conv(TMR
m,T ) is a subset of the right hand side of (4.8.4).

For the reverse inclusion, suppose (X0, X1 + iY1, . . . , XT + iYT ) ∈ cone(TMC
m,T ) and

tr(X0) = 1. Then there is a positive integer r, and (for j = 1, 2, . . . , r) there are non-

negative scalars λj , there are ωj ∈ [0, 2π), there are WRe
j (real symmetric) and W Im

j

(real skew symmetric) such that WRe
j + iW Im

j ∈ Hm+ , tr(WRe
j + iW Im

j ) = tr(WRe
j ) = 1,

X0 =
r∑
j=1

λj(W
Re
j + iW Im

j ) (4.8.5)
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and for k = 1, 2, . . . , T ,

Xk + iYk =

r∑
j=1

λj(W
Re
j + iW Im

j )(cos(kωj) + i sin(kωj)). (4.8.6)

Since X0 = XT
0 it follows that we also have

X0 =

r∑
j=1

λj(W
Re
j − iW Im

j ) (4.8.7)

and since for k = 1, 2, . . . , T , Xk = XT
k and Yk = Y T

k , we have that

Xk + iYk =
r∑
j=1

λj(W
Re
j − iW Im

j )(cos(kωj) + i sin(kωj)). (4.8.8)

By taking the average of these two decompositions of X0 (from (4.8.5) and (4.8.7)) and

similarly taking the average of the two decompositions we have for each Xk + iYk for

k = 1, 2, . . . , T (from (4.8.6) and (4.8.8)) we see that

X0 =

r∑
j=1

λjW
Re
j and Xk + iYk =

r∑
j=1

λj cos(kωj)W
Re
j + i

r∑
j=1

λj sin(kωj)W
Re
j .

(4.8.9)

Note that WRe
j ∈ Sm+ since WRe

j +iW Im
j ∈ Hm+ and WRe

j −iW Im
j ∈ Hm+ so their average

is real symmetric and positive semidefinite.

Observe that

1 = tr(X0) =
r∑
j=1

λjtr(W
Re
j ) =

r∑
j=1

λj .

Hence (4.8.9) gives a realization of (X0, X1, Y1, . . . , XT , YT ) as a convex combination of

the tuples (WRe
j , cos(ωj)W

Re
j , sin(ωj)W

Re
j , . . . , cos(Tωj)W

Re
j , sin(Tωj)W

Re
j ) ∈ TMR

m,T

as required.

By directly combining the results of Theorem 4.8.1 and Lemma 4.8.2 we obtain the

following Hermitian semidefinite representation of conv(TMR
m,T ) of size (T + 1)m.

Proposition 4.8.3.

conv(TMR
m,T ) = { (X0, X1, Y1, . . . , XT , YT ) ∈ (Sm)2T+1 :

Toep(XT − iYT , . . . , X1 − iY1, X0, X1 + iY1, . . . , XT + iYT ) ∈ H(T+1)m
+ } .
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� 4.8.2 Real symmetric semidefinite representations

We have an Hermitian semidefinite representation of conv(TMR
m,T ) of size (T + 1)m.

It is possible to express any Hermitian semidefinite representation of size d as a real

symmetric semidefinite representation of size 2d. This is because

L ∈ Hd+ if and only if

[
Re [L] −Im [L]

Im [L] Re [L]

]
∈ S2d

+

(a well-known fact that we reestablish in the course of the proof of Lemma 4.8.4 to

follow). The Hermitian semidefinite representation of size (T +1)m in Proposition 4.8.3

has additional special structure. This structure actually allows us to rewrite it as a

real symmetric semidefinite representation of the same size rather than twice the size.

Lemma 4.8.4, which we state and prove next, describes this structure in general.

Lemma 4.8.4. Let L be an affine subspace (over the reals) of Hd. Suppose there is

some orthogonal J ∈ O(d) such that J2 = I and

JLJT = L̄ for all L ∈ L,

i.e. congruence by J restricted to L is entry-wise complex conjugation. Then

{L ∈ L : L ∈ Hd+} = {L ∈ L : Re [L]− JIm [L] ∈ Sd+}.

Proof. First note that L ∈ Hd+ if and only if L̄ ∈ Hd+ which holds if and only if the

block diagonal matrix
[
L 0
0 L̄

]
∈ H2d

+ . Conjugating by a unitary matrix we obtain[
1√
2
I 1√

2
I

i√
2
I − i√

2
I

][
L 0

0 L̄

][
1√
2
I 1√

2
I

i√
2
I − i√

2
I

]∗
=

[
Re [L] Im [L]

−Im [L] Re [L]

]
. (4.8.10)

We have simply recovered the familiar realization of Hd+ as a section of S2d
+ , and have

not yet used any special properties of L. To complete the proof it remains to carefully

choose a 2d× 2d orthogonal matrix Q (depending on J) such that

Q

[
Re [L] Im [L]

−Im [L] Re [L]

]
QT =

[
Re [L]− JIm [L] 0

0 Re [L]− JIm [L]

]
for all L ∈ L.

Observe that J2 = I and JTJ = I imply that J = JT . Since JLJT = L̄ we have that

for all L ∈ L,

Re [L] =
L+ JLJ

2
and Im [L] =

L− JLJ
2i

. (4.8.11)

It follows that for all L ∈ L, Re [L] and Im [L] commute and anti-commute respectively
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with J , i.e.,

JRe [L] = Re [L]J and JIm [L] = −Im [L]J. (4.8.12)

Choosing Q to be the orthogonal matrix Q = 1√
2

[
I J
−J I

]
we obtain[

1√
2
I 1√

2
J

− 1√
2
J 1√

2
I

][
Re [L] Im [L]

−Im [L] Re [L]

][
1√
2
I 1√

2
J

− 1√
2
J 1√

2
I

]T
=

[
Re [L]− JIm [L] 0

0 Re [L]− JIm [L]

]
.

Clearly this last matrix is positive semidefinite if and only if the real symmetric matrix

Re [L]− JIm [L] is positive semidefinite, completing the proof.

We now apply Lemma 4.8.4 to reduce the Hermitian semidefinite representation of

conv(TMR
m,T ) from 4.8.3 to a real symmetric semidefinite representation of conv(TMR

m,T )

of the same size.

Proposition 4.8.5. The convex hull of TMR
m,T has a real symmetric semidefinite rep-

resentation of size (T + 1)m given by

conv(TMR
m,T ) =

{
(X0, X1, Y1, . . . , XT , YT ) ∈ (Sm)T+1 : tr(X0) = 1,

Toep(XT , . . . , X1, X0, X1, . . . , XT )+

Hank(YT , YT−1, . . . , Y1, 0,−Y1, . . . ,−YT−1,−YT ) ∈ S(T+1)m
+

}
.

Proof. Suppose J is the m(T + 1) ×m(T + 1) matrix that is block anti-diagonal with

m × m identity matrices on the block anti-diagonal. More precisely, if 0 ≤ k, ` ≤ T

then the m×m block of J indexed by (k, `) is

[J ]k` =

{
I if k + ` = T

0 otherwise.

Note that L 7→ JLJT has the effect of reversing the block rows and columns of the

matrix L. Specifically

JToep((XT + iYT )∗, . . . , (X1 + iY1)∗, X0, X1 + iY1, . . . , XT + iYT )JT =

Toep(XT + iYT , . . . , X1 + iY1, X0, (X1 + iY1)∗, . . . , (XT + iYT )∗). (4.8.13)

While this has the effect of taking the conjugate transpose of the block entries, in

general this is not enough to apply Lemma 4.8.4. Since, in our situation, Xk = XT
k for

all k = 0, 1, . . . , T and Yk = Y T
k for all 1, 2, . . . , T we have that (Xk+iYk)

∗ = Xk−iYk for

all k = 1, 2, . . . , T . These additional observations show that the right side of (4.8.13)
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is the entry-wise complex conjugate of Toep((XT + iYT )∗, . . . , (X1 + iY1)∗, X0, X1 +

iY1, . . . , XT + iYT ).

We are in a position to apply Lemma 4.8.4 to the Hermitian semidefinite represen-

tation of conv(TMR
m,T ) from Proposition 4.8.3. To do so we first compute

Re [Toep((XT + iYT )∗, . . . ,(X1 + iY1)∗, X0, X1 + iY1, . . . , XT + iYT )] =

Toep(XT , . . . , X1, X0, X1, . . . , XT )

and

−JIm [Toep((XT + iYT )∗, . . . ,(X1 + iY1)∗, X0, X1 + iY1, . . . , XT + iYT )] =

Hank(YT , . . . , Y1, 0,−Y1, . . . ,−YT ).

The stated semidefinite representation of conv(TMR
m,T ) then follows directly from

Lemma 4.8.4.

� 4.8.3 Proof of Proposition 4.2.1

We now prove the correctness of the description of conv(M3,T ) given in Section 4.2.

Proof of Proposition 4.2.1. We begin by recalling some useful facts. First, recall that

in Corollary 4.1.6 we showed that convSO(3) = {A(Z) : Z ∈ S4
+, tr(Z) = 1} where

A : S4 → R3×3 is the linear map defined in the statement of Proposition 4.2.1. Define

the linear map Ã : (S4)2T+1 → R2 × (R3×3)2T+1 by

Ã(X0, X1, Y1, . . . , XT , YT ) = (tr(X1), tr(Y1),A(X0),A(X1),A(Y1), . . . ,A(XT ),A(YT )).

Recall, also, that for any linear map B and any set S, conv(B(S)) = B(conv(S)) (see

Section 2.3 of Chapter 2).

In light of Proposition 4.8.5 (our semidefinite represetation of conv(TMR
m,T )), an

alternative way to write the statement we are trying to prove is that

conv(M3,T ) = Ã(conv(TMR
4,T )).

We use this version of the statement in what follows.

Suppose that Q ∈ SO(3) and ω ∈ [0, 2π). Then since Q ∈ convSO(3) there is some

Z � 0 with tr(Z) = 1 such that A(Z) = Q and so that

(cos(ω), sin(ω), Q,Q cos(ω), Q sin(ω), . . . , Q cos(Tω), Q sin(Tω)) =

Ã(Z,Z cos(ω), Z sin(ω), . . . , Z cos(Tω), Z sin(Tω)).
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Since the left hand side is an arbitrary element ofM3,T and the right hand side is an el-

ement of Ã(TMR
4,T ) we have that conv(M3,T ) ⊆ conv(Ã(TMR

4,T )) = Ã(conv(TMR
4,T )).

To establish the reverse inclusion, suppose that Z ∈ S4
+ (with tr(Z) = 1) and

ω ∈ [0, 2π) and let Q = A(Z) ∈ convSO(3). Then

Ã((Z,Z cos(ω), Z sin(ω), . . . , Z cos(Tω), Z sin(Tω))) =

(cos(ω), sin(ω), Q,Q cos(ω), Q sin(ω), . . . , Q cos(Tω), Q sin(Tω)).
(4.8.14)

Since Q ∈ convSO(3), it follows that the right hand side of (4.8.14) is in conv(M3,T ).

Since the left hand side of (4.8.14) is an arbitrary element of Ã(TMR
4,T ) it follows that

Ã(TMR
4,T ) ⊆ conv(M3,T ). It then follows that Ã(conv(TMR

4,T )) = conv(Ã(TMR
4,T )) ⊆

conv(M3,T ), completing the proof of the reverse inclusion.



Chapter 5

Rounding semidefinite relaxations

for pairwise optimization problems

� 5.1 Introduction

Tractable semidefinite relaxations are used to give globally valid approximations to

difficult optimization problems. For many instances they are exact, in the sense that the

semidefinite relaxation has an optimal solution from which we can efficiently construct

an optimal solution to the original problem. When a semidefinite relaxation fails to be

exact, we would like to use its solution to help us find feasible solutions to the original

problem that are close to optimal. This is the idea of rounding a semidefinite relaxation.

Since the work of Goemans and Williamson [54] giving the best known approxima-

tion algorithm for the max-cut problem, the idea of devising approximation algorithms

for combinatorial optimization problems via constructing semidefinite relaxations and

associated rounding schemes has led to many new approximation algorithms. More re-

cently, this approach has been applied to continuous optimization problems [12, 124, 7].

Many of the semidefinite relaxations proposed are now well understood, being typically

the first level of a hierarchy of semidefinite relaxations based on sums-of-squares [92, 73].

On the other hand, we do not yet have systematic methods to construct and analyze

rounding schemes.

In this chapter we focus on a family of optimization problems that involve many

variables interacting pairwise, each of which takes values in some set X of m×d matrices

that are contractions (Problem 5.2.1 to follow). We consider the problem of designing

rounding schemes for a particular simple semidefinite relaxation of these problems. The

design aim is to maximize the achievable approximation ratio over problem instances

with an objective function defined by a positive semidefinite matrix. Our main result

describes, explicitly, the structure of the optimal rounding schemes when the set X
obeys a certain symmetry property (see Definition 5.2.11 to follow). It generalizes and

unifies many special cases appearing in the literature (see Section 5.4.1 to follow), as

well as providing a systematic way to design rounding schemes for new problems.

129
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Perhaps more importantly, it reduces the problem of designing a rounding scheme

for these problems to a finite dimensional optimization problem related to the geometry

of X . We call this problem the normalized maximum width problem (Problem 5.2.10

to follow). The aim is to find a linear transformation Y with Frobenius norm one so

that the Gaussian width (a natural measure of the size of a set) of Y X is maximized.

We show how to construct a rounding scheme from any feasible point of the normal-

ized maximum width problem. Under this correspondence, the objective value in the

normalized maximum width problem can be directly related with the approximation

ratio achieved by the rounding scheme. Moreover, any optimal point for the normalized

maximum width problem gives a rounding scheme that is optimal in a sense that we

make precise in Section 5.2.1.

� 5.1.1 Notation

We briefly summarize notation used throughout the chapter that is not explicitly defined

elsewhere. Throughout this chapter we write many statements that are valid over the

real numbers R and over the complex numbers C. To do this concisely we use K to

denote a field that is either R or C. If X ∈ Km×d then X∗ ∈ Kd×m is the transpose if

K = R and the transpose of the complex conjugate if K = C. We denote real symmetric

n × n matrices by HnR and complex Hermitian n × n matrices by HnC. We collectively

refer to these as self-adjoint matrices when the field is left unspecified. We denote n×n
symmetric positive semidefinite matrices by HnR,+ and n×n complex Hermitian positive

semidefinite matrices by HnC,+. We use the notation [n] to denote the set {1, 2, . . . , n}.
Recall from Section 2.3 that for X,Y ∈ Km×d we define a real-valued inner product

〈·, ·〉 : Km×d ×Km×d → R by

〈X,Y 〉 = Re [tr(X∗Y )].

We note that if K = C this is the usual Euclidean inner product when we regard Cm×d

as a real 2md-dimensional vector space. Similarly we define the Frobenius norm to be

‖X‖F = 〈X,X〉1/2 = Re [tr(X∗X)]1/2 for any X ∈ Km×d.

� 5.1.2 Chapter Outline

The remainder of the chapter is organized as follows. In Section 5.2 we describe, pre-

cisely, the main problems of interest in the chapter, and state our main result (The-

orem 5.2.12 to follow). To illustrate the result, we apply it to the example of binary

quadratic optimization, showing how it recovers the rounding scheme of Goemans and

Williamson [54] and the associated approximation result of Nesterov [88]. Our main

result is stated in terms of a geometric optimization problem called the normalized

maximum width problem. Section 5.3 is devoted to discussing this problem. The nor-
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malized maximum with problem may be of interest in its own right, and Section 5.3 is

self-contained and could be read independently of the rest of the chapter. Section 5.4

describes related work some examples applying our main result.

Sections 5.5 and 5.6 are devoted to proving our main result (Theorem 5.2.12 to

follow). The main result involves characterizing a quantity we call the positive semidef-

inite integrality gap (see Definition 5.2.4 to follow). Part of the main result involves

establishing an upper bound on this quantity. This is the subject of Section 5.5. The

other part of the main result involves establishing a lower bound on this quantity, via

constructing a rounding scheme. This is the subject of Section 5.6. The proof of the

main result appears explicitly in Section 5.6, drawing on results from earlier sections.

Finally Section 5.7 describes a variation (Theorem 5.7.1 to follow) on our main

result. This variation considers how the approximation guarantees change when we are

only able to approximately compute the optimal rounding scheme.

� 5.2 Problem statements and main result

In this section we explain the basic problems we address in this chapter, and state our

main result.

� 5.2.1 Pairwise quadratic optimization problems and a semidefinite relax-
ation

In this chapter we focus on semidefinite relaxations and associated rounding methods

for a class of quadratic optimization problems over a collection of variables that interact

pairwise.

Problem 5.2.1. Let X ⊂ Km×d (where K = R or K = C) be a compact set of contrac-

tions (i.e. satisfying X∗X � I for all X ∈ X ). Let C ⊂ HndK be a collection of nd× nd
self-adjoint matrices (thought of as n×n matrices consisting of d× d blocks). For each

C ∈ C define the optimization problem

optX (C) := max
X:[n]→X

n∑
i,j=1

〈Cij , X∗iXj〉 (5.2.1)

where Cij denotes the d× d block of C indexed by i and j.

We note that the family of instances C plays no explicit role in the optimization

problem (5.2.1). We include it in the statement to emphasize that for a given set X we

are interested not just in single instances of the corresponding pairwise optimization

problem, but in families of instances described by C. In this chapter we focus on the

case where C = HndK,+ is the cone of positive semidefinite matrices.
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Also observe that the notation X : [n] → X in (5.2.1) just means a collection

X1, X2, . . . , Xn of n elements of X . We use this functional notation because it gener-

alizes nicely to the situation where [n] is replaced with a measure space (as occurs in

Section 5.5 to follow).

With a view towards convex relaxations, we can also think of (5.2.1) as the problem

of solving

optX (C) = max
Z∈GX

〈C,Z〉 (5.2.2)

where we define

GnX := conv




X∗1X1 X∗1X2 · · · X∗1Xn

X∗2X1 X∗2X2 · · · X∗2Xn

...
...

. . .
...

X∗nX1 X∗nX2 · · · X∗nXn

 : X : [n]→ X


to be the convex hull of the set of (generalized) Gram matrices of elements of X .

Semidefinite relaxation

We focus on a single, simple, semidefinite relaxation for (5.2.1) that is valid for all sets

X ⊂ Km×d (for fixed d and K) of contractions. To relaxation is obtained by finding a

simple outer approximation for the set GnX . Indeed observe that

GnX ⊆ {Z ∈ HndK,+ : Zii � I} =: Gn,d,Ksdp .

Note that Gn,d,Ksdp is the feasible region of a semidefinite optimization problem. Hence

optX (C) is always bounded above by the optimal value optd,Ksdp(C) of the following

semidefinite optimization problem:

optd,Ksdp(C) := max
Z∈HndK

n∑
i,j=1

〈Cij , Zij〉 s.t. Z � 0 and Zii � I for i ∈ [n]. (5.2.3)

Again we can express this more compactly as

optd,Ksdp(C) = max
Z∈Gn,d,Ksdp

〈C,Z〉. (5.2.4)

We frequenly omit the parameters d and K from the notation Gn,d,Ksdp and the notation

optd,Ksdp when they are clear from the context.
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� 5.2.2 Key terminology and questions

We now outline the questions we address in this chapter. These questions focus on

the relationships between the original pairwise optimization problem (5.2.1) and its

semidefinite relaxation (5.2.3) both in terms of the optimal objective value and optimal

or near-optimal feasible points for each problem. To describe the problems of interest

concisely and precisely, we define the key notions of integrality gap, randomized round-

ing, and approximation ratio in the present setting. We do so for general families C
of instances, later specializing to the case of positive semidefinite objective functions.

We note that these terms are borrowed from the literature on (discrete) approximation

algorithms where variables are often constrained to be integer-valued, hence the use of

the words ‘integrality’ and ‘rounding’.

Integrality gap

The integrality gap is the worst case (over a family of problem instances) ratio between

the optimal objective value for the original problem (5.2.1) and its semidefinite relax-

ation (5.2.3). Such a ratio only makes sense for families of objective functions for which

the functions optX (·) and optsdp(·) have certain non-negativity properties.

Definition 5.2.2. Given a set X ⊂ Km×d of contractions and a positive integer n, let

C be a subset of HndK . The family C is approximable with respect to X if optX (C) ≥ 0

for all C ∈ C and optsdp(C) > 0 for all C ∈ C \ {0}.

We now define the integrality gap for approximable families of pairwise optimization

problems.

Definition 5.2.3 (Integrality gap). Given a set X ⊂ Km×d of contractions and a family

C of objective functions that is approximable with respect to X , the integrality gap over C
between the original optimization problem (5.2.1) and its semidefinite relaxation (5.2.3)

is

αX (C) := inf
C∈C\{0}

optX (C)

optsdp(C)
. (5.2.5)

The operational meaning of the integrality gap is the following. Suppose we solve

the semidefinite relaxation (5.2.3) as a proxy for the hard optimization problem (5.2.1).

The semidefinite relaxation always gives an upper bound on the optimal value of the

original problem. The integrality gap describes how good (or bad) this upper bound is

for the family of problems C since it satisfies an inequality of the form

αX (C)optsdp(C) ≤ optX (C) ≤ optsdp(C) for all C ∈ C. (5.2.6)

Observe that for any set X of contractions and any C that is approximable with respect

to X we have that 0 ≤ αX (C) ≤ 1. The case where C = HndK,+ is the set of nd × nd
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positive semidefinite matrices is the focus of this chapter, especially in the limit as

n → ∞ (for fixed d). As such, we introduce special terminology and notation for this

case.

Definition 5.2.4. Given a set X ⊂ Km×d of contractions, the positive semidefinite

integrality gap is

αX := lim
n→∞

αX (HndK,+). (5.2.7)

This limit exists because the sequence αX (HndK,+) is non-increasing (since the fam-

ily of objective functions becomes larger as n increases) and bounded below by zero

(since for any positive integer n, HndK,+ is approximable with respect to any set X of

contractions). Given this definition we state the first central problem of this chapter.

Problem 5.2.5 (Integrality gap). Given any set X ⊂ Km×d of contractions find the

corresponding positive semidefinite integrality gap αX .

Rounding

The integrality gap αX (C) carries two pieces of information. First, it tells us that there

is a sequence of difficult instances Cp ∈ C, such that the optimal value of the original

problem is at least a factor of αX (C) smaller than the optimal value of the semidefinite

relaxation. On the other hand, it also tells us that given any problem instance C ∈ C
and a corresponding solution Z to the semidefinite relaxation (5.2.3), it must be possible

to construct a feasible point X̂ : [n]→ X for the original optimization problem (5.2.1)

so that

κ
n∑

i,j=1

〈Cij , Zij〉 ≤
n∑

i,j=1

〈Cij , X̂∗i X̂j〉 (5.2.8)

where κ = αX (C). Indeed if this were not the case, the infimum in (5.2.5) would be

smaller. A map from Gnsdp to feasible points X̂ : [n] → X for the original problem is

called a rounding scheme. Note that a rounding scheme allows us to explicitly map

solutions of the semidefinite relaxation to feasible points of the original optimization

problem that have near-optimal (assuming κ is close to one) value.

Randomized rounding

It is often fruitful to allow randomized rounding schemes. These are maps R that assign

to each element Z ∈ Gnsdp a random variable R(Z) : [n] → X . We assess their quality

by considering inequalities of the form in (5.2.8) in expectation.

Definition 5.2.6. A randomized rounding scheme R achieves an approximation ratio
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of κ(R, C) with respect to C ⊂ HndK if

κ(R, C)
n∑

i,j=1

〈Cij , Zij〉 ≤
n∑

i,j=1

〈Cij ,E[R(Z)∗iR(Z)j ]〉

for all C ∈ C and all Z ∈ Gnsdp.

An alternative view of a randomized rounding scheme R is that it defines a map

FR : Gnsdp → GnX by

FR(Z) = E



R(Z)∗1R(Z)1 R(Z)∗1R(Z)2 · · · R(Z)∗1R(Z)n
R(Z)∗2R(Z)1 R(Z)∗2R(Z)2 · · · R(Z)∗2R(Z)n

...
...

. . .
...

R(Z)∗nR(Z)1 R(Z)∗nR(Z)2 · · · R(Z)∗nR(Z)n


 ∈ GnX . (5.2.9)

Hence if R achieves approximation ratio κ(R, C) then

κ(R, C)〈C,Z〉 ≤ 〈C,FR(Z)〉 ≤ optX (C) (5.2.10)

for all C ∈ C and all Z ∈ Gsdp. Choosing Z to be an optimal point of the semidefi-

nite relaxation with objective function defined by C, we see that κ(R, C)optsdp(C) ≤
〈C,FR(Z)〉 ≤ optX (C). Hence for any randomized rounding scheme, any achievable

approximation ratio is a lower bound on the corresponding integrality gap.

Since our focus is on the case where C = HndK,+ and n is allowed to grow, we need to

understand the approximation ratios of a sequence of rounding schemes.

Definition 5.2.7. A sequence of randomized rounding schemes (Rn) achieves a pos-

itive semidefinite approximation ratio of κ∞ if each rounding scheme Rn in the sequence

achieves an approximation ratio of κ(Rn,HndK,+) (see Definition 5.2.6) and κ(Rn,HndK,+) ≥
κ∞ for all n.

The key constructive question we address in this chapter is the following.

Problem 5.2.8. Given any set X ⊂ Km×d of contractions design a sequence of ran-

domized rounding schemes with positive semidefinite approximation ratio equal to the

positive semidefinite integrality gap αX .

Throughout the chapter we call a rounding scheme optimal if it satisfies the criterion

in Problem 5.2.8. Our main result establishes the structure of optimal rounding schemes

whenever X has an additional symmetry property (Definition 5.2.11 to follow).
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Local randomized rounding schemes

In this chapter we search for such a sequence (Rn) of rounding schemes among a partic-

ular class that we call local randomized rounding schemes. Local randomized rounding

schemes are parameterized by a function X̂ : Kp×d → X (defined up to sets of Gaus-

sian measure zero). Given such a function, and an optimal solution Z ∈ HndK,+ of the

semidefinite relaxation satisfying Zii = I1 for i ∈ [n], we round by carrying out the

procedure described in Algorithm 5.1 to follow.

Algorithm 5.1 The local randomized rounding scheme defined by X̂ : Kp×d → X
applied to a solution Z of the semidefinite relaxation.

Input: A positive semidefinite matrix Z ∈ HndK,+ satisfying Zii = I for i ∈ [n].

1. Sample a zero-mean Gaussian matrix W =
[
W1 W2 · · · Wn

]
∈ Kp×nd such

that the rows of W are i.i.d. with covariance Z.
2. Define the random variable Rn(Z) : [n]→ X by

[Rn(Z)]i = X̂(Wi).

Output: The random variable Rn(Z)

We refer to such schemes as ‘local’ because we apply the same deterministic map X̂

to each of the Wi, rather than allowing a map that arbitrarily combines the Wi.

� 5.2.3 The normalized maximum width problem

Our main results are described in terms of an auxiliary optimization problem that

plays a central role in this chapter. As such, we briefly state and discuss this problem

before stating our main results. Section 5.3 is devoted to a more detailed study of the

problem. The optimization problem takes as input a set X ⊂ Km×d and searches over

linear transformations of this set with Frobenius norm one that maximize a natural

notion of the width of the set.

We begin by defining the appropriate notion of width. Here, and throughout, we

denote by γKp×d the standard Gaussian probability measure on Kp×d. Explicitly this is

the measure with density{
(2π)−pd/2 exp(−1

2tr(U∗U)) if K = R
π−pd exp(−tr(U∗U)) if K = C.

with respect to Lesbegue measure. When the dimensions and the field are clear from

1Such a solution always exists when the objective function is defined by a positive semidefinite
matrix.
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the context, we denote this measure by γ.

Definition 5.2.9. Given a set X ⊂ Kp×d the Gaussian width is

w(X ) := EU∼γ [max
X∈X
〈X,U〉].

In other words, the Gaussian width is the expected maximum of a random (standard

Gaussian) linear functional over the set X . We can also rephrase this in terms of the

support function of X , the convex function defined as

hX (U) := max
X∈X
〈X,U〉. (5.2.11)

The Gaussian width can then be expressed concisely as Eγ [hX ].

We now describe the normalized maximum width problem, the problem with respect

to which all the main results of this chapter are expressed.

Problem 5.2.10 (Normalized maximum width). If X ⊂ Km×d then the normalized

maximum width problem for X is

w?(X ) := sup
p∈N
p≥m

max
Y ∈Km×p
‖Y ‖F=1

w(Y ∗X ). (5.2.12)

We discuss this problem in Section 5.3, including explicitly solving some examples,

and giving a number of reformulations. For now we note only two properties of the

problem. First, one can show (see Lemma 5.3.1) that there is always an optimal Y

for (5.2.12) with p = m and Y � 0. We take the apparently more general formula-

tion (5.2.12) as the definition because the extra flexibility is useful. Second, note that

the function Y 7→ w(Y ∗X ) is convex. Hence the normalized maximum width problem

(for fixed p) involves maximizing a convex function over the unit sphere. Typically such

problems are not easy to solve globally. A main aim of Section 5.3 is to identify families

of sets X for which the normalized maximum width problem can be reformulated as a

convex optimization problem.

� 5.2.4 Symmetry assumption on X

Our main result (Theorem 5.2.12 to follow) applies to sets X ⊂ Km×d of contractions

that satisfy an additional symmetry assumption. The assumption is always satisfied

when d = 1 (see the comments after Definition 5.2.11 to follow). It is only a restriction

for d > 1.

To state the assumption we need some basic terminology about representations of

groups (see Section 2.6 of Chapter 2). Recall from Section 2.6 that a unitary repre-

sentation of a group G on Cd is a homomorphism ρ : G → U(d). A subspace (over
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C2) V of Cd is an invariant subspace if ρ(g)V = V for all g ∈ G. A representation

ρ : G → U(d) is irreducible over C if its only invariant subspaces (over C) are {0}
and Cd. We have introduced these terms for unitary representations on Cd. The same

terminology makes sense for orthogonal representation on Rd, by thinking of them as

unitary representations that act on Cd (by acting separately on the real and imaginary

parts).

We now formally state our symmetry assumption on X .

Definition 5.2.11 (Right symmetry). We call a set X ⊂ Km×d right symmetric if there

is a group G and an irreducible (over C) orthogonal/unitary representation ρ such that

Xρ(g) = X for all g ∈ G.

If X ⊂ Km×1 (i.e. if d = 1) then X is automatically right symmetric. Indeed if

we take G = {e} to be the group with one element, and ρ : G → K to be the trivial

representation ρ(e) = 1, this is an irreducible representation that leaves X invariant. In

Section 5.4 we see numerous non-trivial examples of sets X that are right symmetric.

� 5.2.5 Main result

We are now in a position to state our main result for this chapter. This result char-

acterizes the positive semidefinite integrality gap and describes a corresponding op-

timal rounding scheme for pairwise quadratic optimization problems over a compact

set X ⊂ Km×d of contractions that are right symmetric (see Definition 5.2.11). In

particular it shows that we can construct rounding schemes from feasible points Y of

the normalized maximum width problem in such a way that the approximation ratio

they achieve is related to the objective value w(Y ∗X ) for the normalized maximum

width problem. Furthermore an optimal rounding scheme is obtained by performing

this construction for a maximizer of the normalized maximum width problem.

Theorem 5.2.12. If X ⊂ Km×d (where K = R or K = C) is a compact right symmetric

set of contractions then the following hold.

1. The positive semidefinite integrality gap is αX =
[
w?(X )
d

]2
.

2. If Y is any m × p matrix with ‖Y ‖F = 1 then the local randomized rounding

scheme specified by X̂ : Kp×d → X defined (almost everywhere) by

X̂(U) = arg max
X∈X
〈X,Y U〉, (5.2.13)

achieves an approximation ratio of
[
w(Y ∗X )

d

]2
.

2Here V is closed under addition and multiplication by complex scalars.
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3. If Y is any argument of maximum in the normalized maximum width problem (5.2.12)

the rounding scheme specified in part 2. achieves the optimal approximation ratio

of
[
w?(X )
d

]2
.

We restate and prove Theorem 5.2.12 in Section 5.6. The proof is based on the

results developed in Sections 5.5 and 5.6.

We now illustrate Theorem 5.2.12 by applying it to the case X = {−1, 1}. Section 5.4

gives more examples of applying Theorem 5.2.12 to obtain explicit approximation ratios

for various problems, including all the special cases of this problem (of which we are

aware) that have been previously studied in the literature.

Example 5.2.13. Suppose X = {−1, 1} ⊂ R1×1. Here m = 1 and d = 1. This is a

compact set. It is right symmetric since d = 1 (see the comments after Definition 5.2.11).

The maximum width problem for this set is

w?({−1, 1}) = sup
p∈N
p≥1

max
Y ∈R1×p

‖Y ‖F=1

w(Y ∗{−1, 1}) (5.2.14)

Here we have used the definition of the normalized maximum width problem in (5.2.12).

Rather than working directly with this definition, we make use of the general comment

made after (5.2.12) (and proved in Lemma 5.3.1 to follow) that we can always find an

optimum with p = m and Y � 0. In this case p = m = 1 so we deduce that there is

an optimal Y that is 1 × 1, non-negative, and has Frobenius norm 1. In other words

taking p = 1 and Y = 1 gives an optimal point for (5.2.14). Then by the definition of

Gaussian width (Definition 5.2.9)

w?({−1, 1}) = w(1 · {−1, 1}) = EU∼γR1×1
[ max
X∈{−1,1}

〈X,U〉] = EU∼γR1×1
[|U |].

The expected value of the absolute value of a standard Gaussian random variable is√
2
π , showing that w?({−1, 1}) =

√
2
π .

Substituting this into the first part of Theorem 5.2.12 we see that the positive

semidefinite integrality gap is
[
w?({−1,1})

1

]2
= 2

π (as established in [88]). We now de-

scribe the corresponding optimal rounding scheme by applying parts 2 and 3 of The-

orem 5.2.12 with p = 1 and Y = 1 (which are optimal for (5.2.14)). In this case

the optimal rounding scheme is the local randomized rounding scheme (Algorithm 5.1)

specified by the function X̂ : R1×1 → {−1, 1} defined (almost everywhere) by

X̂(U) = arg max
X∈{−1,1}

〈X, 1 · U〉 = sgn(U)

the mapping that takes value 1 when U > 0 and −1 when U < 0. This is the classical



140 CHAPTER 5. ROUNDING RELAXATIONS FOR PAIRWISE OPTIMIZATION PROBLEMS

hyperplane rounding scheme of Goemans and Williamson [54].

To conclude the section we make a number of general remarks about Theorem 5.2.12.

1. Theorem 5.2.12 characterizes the integrality gap in terms of the normalized max-

imum width of X , and specifies the approximation ratio of each of a family of

rounding schemes (including optimal ones) parameterized by matrices Y with

Frobenius norm one. The integrality gap, and the approximation ratios achieved

by these rounding schemes are constants that are independent of n.

2. Note that there is a unique argument of maximum in Equation (5.2.13) except on

a set of measure zero (for U). Hence the map X̂ is well-defined almost everywhere,

which is all we require.

3. To implement the rounding scheme corresponding to a choice of Y , we need only

be able to sample Gaussian matrices and solve the problem of maximizing a

linear functional over the set X (to evaluate the function X̂). As such, one way

to view our results is that whenever we can maximize a linear functional over X ,

we obtain a constant factor approximation algorithm for any pairwise quadratic

optimization problem (with objective function defined by a positive semidefinite

matrix) over any number of copies of X .

4. If we cannot efficiently maximize a linear functional over X we can still obtain an

overall approximation algorithm if we have access to an approximation algorithm

for (5.2.13) with a multiplicative approximation ratio. We discuss this situation

in Section 5.7. This observation means that whenever we have an approximation

algorithm for maximizing a linear functional over X we obtain a constant factor

approximation algorithm for any pairwise quadratic optimization problem (with

objective function defined by a positive semidefinite matrix) over any number of

copies of X .

� 5.3 The normalized maximum width problem

In this section we focus on the normalized maximum width problem (Problem 5.2.10)

that plays a central role in our main results. Indeed finding explicit solutions to the nor-

malized maximum width problem allows us to design explicit rounding schemes for the

problem class of interest in this chapter with best possible approximation guarantees.

Furthermore, Theorem 5.2.12 tells us that given any feasible point for the normal-

ized maximum width problem we can immediately construct a (possibly non-optimal)

rounding scheme and deduce its associated approximation ratio. As such, even if the

maximum width problem cannot always be solved globally, any feasible point with a
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positive objective value still allows us to construct a rounding schemes with a non-trivial

approximation guarantee.

This section is self-contained, and may be of interest independent of its relationship

to the rounding problems studied in the rest of this chapter. Indeed from this point on

in the section no mention is made of these rounding problems.

The normalized maximum width problem (Problem 5.2.10) involves finding a linear

transformation (with Frobenius norm one) that puts a set into a position where its

Gaussian width is maximized. Extremal positions of convex bodies with respect to

various functionals such as width, volume, etc. often arise in convex geometry (see,

e.g., [52, 53]). Nevertheless we are not aware of any systematic prior study of this

particular problem. We begin by giving a number of simple reformulations of the

normalized maximum width problem. The last formulation in Lemma 5.3.1 (to follow)

is particularly appealing because in that case the constraint set is a compact convex

set. We used this formulation in Example 5.2.13 to simplify the discussion.

Lemma 5.3.1. Given a set X ⊂ Km×d we have that

w?(X ) := sup
p∈N
p≥m

max
Y ∈Km×p
‖Y ‖F=1

w(Y ∗X ) (5.3.1)

= max
Y ∈Km×p′
‖Y ‖F=1

w(Y ∗X ) for all p′ ≥ m (5.3.2)

= max
P∈Hm+
tr(P )=1

w(P 1/2X ). (5.3.3)

Proof. The main observation we need is that if Q ∈ Kp×m has orthonormal columns

then w(QX ) = w(X ). This holds because if U is a standard p × d Gaussian matrix

then Q∗U is a standard m × d Gaussian matrix. Hence using the notation hX for the

support function of X (see (5.2.11)) we see that

w(QX ) = EU∼γKp×d [hQX (U)] = EU∼γKp×d [hX (Q∗U)] = EW∼γKm×d [hX (W )] = w(X ).

With that established the proof is straightforward but a little tedious. Clearly (5.3.1) is

greater than or equal to (5.3.2). For the reverse inequality we show that for any p′ ≥ m,

max
Y ∈Km×p′
‖Y ‖F=1

w(Y ∗X ) = max
Y ∈Hm+
‖Y ‖F=1

w(Y ∗X ). (5.3.4)

To do so, let Y ∈ Km×p′ be optimal for the left hand side problem. Let Y = RV ∗ be its

(reduced) polar decomposition, where R ∈ Hm+ is positive semidefinite and V ∈ Km×p′
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has orthonormal columns. Then w(Y ∗X ) = w(V RX ) = w(RX ) and so R is feasible

for the right hand optimization problem in (5.3.4) and has the same objective value.

On the other hand, let Y ∈ Hm+ be optimal for the right-hand side of (5.3.4). Then

Y
[
Im×m 0m×p′

]
∈ Km×p′ is feasible for the left-hand side of (5.3.4) and has the same

objective value.

We now show that (5.3.1) and (5.3.3) are equal. First observe that if P is optimal

for (5.3.3) then Y = P 1/2 has ‖Y ‖2F = tr(Y ∗Y ) = tr(P ) = 1 is feasible for (5.3.1)

(with p = m), establishing that (5.3.3) is at most (5.3.1). For the reverse inequality,

from (5.3.4) we can see that (5.3.1) always has an optimal solution Y with p = m and

Y ∈ Hm+ . Taking P = Y 2 gives a positive semidefinite matrix with trace one (so feasible

for (5.3.3)) such that w(P 1/2X ) = w(Y X ).

We state and prove some other simple properties of the normalized maximum width

in Section 5.3.2 to follow.

The normalized maximum width problem is qualitatively different based on certain

properties of the convex hull of X . Whether or not the convex hull of X ⊂ Km is a type

of convex body called a zonoid (see Definition 5.3.2 to follow) affects the properties

of the normalized maximum width problem. Similary, whether or not the convex hull

of X ⊂ Km×d is a generalization of a zonoid that we call a contraction zonoid (see

Definition 5.3.6) similarly affects the properties of the normalized maximum width

problem when d > 1.

� 5.3.1 (Contraction) zonoids

Zonoids are a family of convex bodies that are Minkowski sums (or limits of Minkowski

sums) of line segments. We focus on centrally symmetric zonoids. There are many

equivalent characterizations of zonoids (see, e.g. [15]). For our purposes the most useful

is the following characterization of the support functions of zonoids which we take as

the definition (see [120, Theorem 1.2]).

Definition 5.3.2. A convex set Z ⊂ Rm is a centrally symmetric zonoid if there exists

a positive measure µ on Rm such that the support function hZ of Z has a representation

as

hZ(u) =

∫
v∈Rm

|〈u, v〉| dµ(v). (5.3.5)

We remark that in general, there are many positive measures µ associated with a

given centrally symmetric zonoid Z. Nevertheless, given a centrally symmetric zonoid

Z, there is a unique positive measure µ supported on the sphere Sm−1 that is even, i.e.

that satisfies µ(−A) = µ(A) [120, Theorem 1.4].

If Z is a zonoid and we want to keep track of some positive measure µ on Rm such

that (5.3.5) holds, we write Zµ instead of just Z. For any set Z ⊂ Rm we have that
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hZ = hcl(convZ). Hence for a non-convex set Z, the closure of the convex hull of Z is a

zonoid if and only if there is a positive measure µ on Rm such that (5.3.5) holds.

Example 5.3.3 (Zonotopes). A zonoid that is also a polytope is called a zonotope.

Every zonotope in Rm is of the form A[−1, 1]k where A : Rk → Rm is a linear map and

[−1, 1]k is the hypercube in Rk [15]. This satisfies the definition in (5.3.5) by taking the

measure µ on Rm to consist of point masses at each of the columns of A.

Example 5.3.4 (Two-dimensional zonotopes). Every two dimensional centrally sym-

metric polytope is a zonotope, and hence a zonoid [120]. Note that this fails to hold

in higher dimensions. In fact a polytope is a zonotope if and only if all of its two-

dimensional faces are centrally symmetric [120].

Example 5.3.5 (`p norm balls for p ≥ 2). The sets

Bm
p :=

{
x ∈ Rm : (

∑m
i=1 |xi|p)

1/p ≤ 1
}

for 2 ≤ p ≤ ∞

are zonoids. In the case p = 2 this is easy to see from the definition we have given since

for any u ∈ Rm

hBm2 (u) = ‖u‖2 =

√
π

2

∫
v∈Rm

|〈u, v〉| dγRm×1(v).

To see this it is enough to observe that the right-hand side is positively homogeneous

of degree one, invariant under u 7→ Qu for any orthogonal matrix Q, and that for any

unit vector û the right-hand side evaluates to one.

It is not so easy to see from our definition that Bm
p is a zonoid when 2 < p < ∞.

This can be deduced from an alternative characterization of the support functions of

zonoids in terms of positive definite functions (see, e.g., [15]).

We now introduce an analogue of zonoids for subsets of Km×d that generalizes

the properties of zonoids we need. We call these contraction zonoids and define these

convex sets via their support functions. Clearly putting d = 1 in the following definition

recovers the definition of a centrally symmetric zonoid.

Definition 5.3.6. A convex set Z ⊂ Km×d is a contraction zonoid if there is a positive

integer p and a positive measure µ on Km×p such that

hZ(U) =

∫
V ∈Km

‖U∗V ‖∗ dµ(V ) (5.3.6)

where ‖X‖∗ denotes the nuclear norm (i.e. sum of singular values) of a d× p matrix, or

equivalently the support function of StK(d, p).

As for zonoids, even if Z ⊂ Km×d is not convex, if the closure of the convex hull of

Z is a contraction zonoid then hZ has a representation as in (5.3.6). Again we write
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Zµ if the convex hull of Z is a contraction zonoid and we want to keep track of some

measure that is valid for (5.3.6).

Example 5.3.7 (Stiefel manifold). Let StK(d,m) = {X ∈ Km×d : X∗X = I} be the

Stiefel manifold consisting of m × d matrices with K-orthonormal columns. Each of

these sets has support function hStK(d,m)(U) = ‖U‖∗ where ‖U‖∗ is the nuclear norm

or sum of the singular values of the d×m matrix U . Clearly StK(d,m) is a contraction

zonoid because we can take µ to be the atomic measure on Km×m with an atom at the

identity matrix.

The normalized maximum width problem for contraction zonoids

The maximum width problem is qualitatively different for contraction zonoids and sets

that are not contraction zonoids because when the convex hull of X is a contraction

zonoid, the objective function in (5.3.3) is concave in P , and so the normalized maximum

width problem is then a finite dimensional convex optimization problem.

Theorem 5.3.8. If Zµ ⊂ Km×d is a contraction zonoid with associated measure µ on

Km×p then the map f : Hm+ → R defined by f(P ) = w(P 1/2Zµ) is concave.

Proof. Interchanging the order of integration in the definition of f we see that

f(P ) = EU∼γ
[∫

V ∈Km×p
‖V ∗P 1/2U‖∗ dµ(V )

]
=

∫
V ∈Km×p

EU∼γ [‖V ∗P 1/2U‖∗] dµ(V ).

For fixed V ∈ Km×p the quantity V ∗P 1/2U is a p × d Gaussian random matrix with

zero mean and i.i.d. columns each having covariance V ∗PV . Hence

f(P ) =

∫
V ∈Km×p

EW∼γ [‖(V ∗PV )1/2W‖∗] dµ(V )

=

∫
V ∈Km×p

EW∼γ
[
tr
[
(W ∗(V ∗PV )W )1/2

]]
dµ(V ).

Now, the function T 7→ tr[T 1/2] is concave for positive semidefinite T . (One way to see

this is to use Davis’ characterization of concave spectral functions [35] together with the

fact that the permutation invariant function
∑m

i=1 t
1/2
i on the non-negative orthant is

concave.) It then follows that f(P ) is a non-negative combination of concave functions

and so is concave.

The fact that f is a concave function of P , and so the normalized maximum width

problem is a convex optimization problem, means that for contraction zonoids we can
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hope to solve this problem globally using numerical routines. Perhaps more importantly,

if the contraction zonoid has enough symmetry, we can often deduce the solution of the

normalized maximum width problem without doing any computation at all.

Contraction zonoids with symmetry

For zonoids with enough symmetry, we can simplify the normalized maximum width

problem, and in some cases even solve it explicitly. This uses the fact that convex

optimization problems with symmetry have symmetric solutions.

Lemma 5.3.9. Suppose Z is a contraction zonoid in Km×d, G is a subgroup of the

group of m × m orthogonal/unitary matrices, and gZ = Z for all g ∈ G. Then the

normalized maximum width problem (5.3.3) has an optimal solution P that satisfies

g∗Pg = P for all g ∈ G.

Proof. First we observe that the objective function of (5.3.3) is invariant under the

action of G. Indeed for any fixed g ∈ G,

w((g∗Pg)1/2Z) = w(g∗P 1/2gZ) = w(P 1/2Z)

where the first equality holds since g is orthogonal/unitary, and the second holds because

gZ = Z and because w(gX ) = w(X ) for any orthogonal/unitary g and any set X .

Similarly the constraint set P � 0 and tr(P ) = 1 is invariant under P 7→ g∗Pg. Hence

there is an optimal solution that satisfies g∗Pg = P for all g ∈ G.

Example 5.3.10 (`p norm balls for p ≥ 2). Recall from Example 5.3.5 that the unit `p
norm balls in Rm are zonoids for p ≥ 2. These are invariant under the group of signed

permutations. As such, there is a maximizer for P in the corresponding maximum

width problem that satisfies gPgT = P for all signed permutation matrices g. It follows

that P is a multiple of the identity. Since tr(P ) = 1, we can conclude that P = I/m is

a solution of (5.3.3) when X is an `p-norm ball in Rm with p ≥ 2.

Example 5.3.11 (The Stiefel manifolds StK(d,m)). Recall from Example 5.3.7 that the

Stiefel manifolds StK(d,m) consisting of elements of Km×d with orthonormal columns

are contraction zonoids. These are invariant under left multiplication by orthogo-

nal/unitary matrices hence satisfy 5.3.9 with g being the full orthogonal/unitary group.

Hence there is an optimal solution P to (5.3.3) such that g∗Pg = P for all orthogo-

nal/unitary g. As such P = I/m is a solution of (5.3.3) and so w?(StK(d,m)) =
1√
m
w(StK(d,m)).

We conclude this section by establishing some properties of w?(StK(d,m)) that play

an important role in Section 5.5. The following was established (in different language)

by Bandeira, Kennedy, and Singer [7].
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Lemma 5.3.12. Fix a positive integer d. Then

w?(StK(d,m)) ≤ d for all m ≥ d and lim
m→∞

w?(StK(d,m)) = d.

Proof. Recall from Example 5.3.11 that w?(StK(d,m)) = 1√
m
w(StK(d,m)). Since the

support function of the Stiefel manifold is the nuclear norm we have that

w?(StK(d,m)) = EU∼γ
[

1√
m
‖U‖∗

]
= EU∼γ

[
tr
[(

1
mU

∗U
)1/2]]

≤ tr
[(
EU∼γ

[
1
mU

∗U
])1/2]

= tr[Id] = d

where the inequality follows from applying Jensen’s inequality to the concave function

T 7→ tr[T 1/2] (restricted to the positive semidefinite cone).

To see that the limit is actually d we use the fact that 1√
m
‖U‖∗ ≥ dσmin

(
1√
m
U
)

allowing us to use standard results about this the expected smallest singular value of a

Gaussian matrix. In particular Gordan’s theorem (see, e.g., [132, Theorem 5.32]) tells

us that

EU∼γ
[
σmin

(
1√
m
U

)]
≥ 1−

√
d

m
.

Hence EU∼γ [ 1√
m
‖U‖∗] ≥ dEU∼γ [σmin

(
1√
m
U
)

] ≥ d− d
√

d
m → d as m→∞.

� 5.3.2 General sets

For sets that are not contraction zonoids, the maximum normalized width problem

seems to be more complicated. In this section we use a simple method to obtain lower

bounds on the normalized maximum width of a set based on the normalized maximum

width of its subsets. This allows us to lower bound the normalized maximum width of

some sets that are not contraction zonoids such as the unit norm balls for the `1 norm,

the convex body that is perhaps as far as possible from being a zonoid (being the polar of

the hypercube which is the canonical zonotope). We also give characterization of when

P = I/m satisfies the first-order optimality conditions of the normalized maximum

width problem (5.3.3) and show that this holds whenever X has certain symmetry

properties.

A simple lower bound on w?(X )

The following observation gives a surprisingly useful lower bound on the normalized

maximum width.
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Lemma 5.3.13. Let X ⊂ Km×d and let X ′ ⊂ convX . Then w?(X ) ≥ w?(X ′).

Proof. Let Y be optimal for the normalized maximum width problem for X ′, i.e.

w(Y ∗X ′) = w?(X ′). Then Y ∗X ′ ⊆ Y ∗convX and so

w?(X ′) = w(Y ∗X ′)
≤ w(Y ∗convX )

= w(convY ∗X )

= w(Y ∗X )

≤ w?(X )

where we have used the fact that w(convX ) = w(X ) for any set X and the fact that

A conv(X ) = conv(AX ) for any set X and any linear map A.

A simple situation in which this result is useful is when a subset of Rm contains a

line segment, i.e. a set of the form [−v, v] := conv {−v, v} where v ∈ Rm, in its convex

hull.

Example 5.3.14 (Centrally symmetric subsets of Rm×1 with radius one). As an

illustration of the previous result, we consider sets X ⊂ Rm×1 that are centrally

symmetric (i.e. satisfy X = −X ) and have radius one. Then there some unit vec-

tor v ∈ X and so the line segment [−v, v] of length two is a subset of X . Hence

w?(X ) ≥ w?([−v, v]) =
√

2
π .

The result of the previous example applies to the `1-norm ball, the convex body

that is, in some sense, as far as possible from being a zonoid.

Example 5.3.15 (`1-norm ball). In the case of `m1 , the unit ball for the `1-norm in

Rm, h`m1 (u) = maxi∈[m] |ui|. Hence the maximum width problem can be expressed as

the expected maximum absolute value of a Gaussian process on a set of cardinality m

that has covariance of unit trace, i.e.

w?(`
m
1 ) = max

P�0
E[max
i∈[m]

|Ui|] s.t. U ∼ N (0, P ), tr(P ) = 1.

This quantity is clearly bounded below by
√

2
π by Example 5.3.14. In fact, we conjecture

that w?(`
m
1 ) =

√
2
π for all m. This holds for m = 1 and m = 2 because in these cases

`m1 is a zonotope.

We note that taking Y = 1√
m
I in the normalized maximum width problem is far
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from optimal in the case of the `1 norm ball. This is because

w

(
1√
m
`m1

)
= E[max

i∈[m]
|Ui|] s.t. U ∼ N (0, I),

and the expected maximum absolute value of m standard Gaussian random variables

is at most
√

2 log(m). Hence 1√
m
w(`m1 ) ≤

√
2 log(m)

m which is much smaller than the

lower bound of
√

2
π we obtained in the previous paragraph. This calculation suggests

that the solution to the maximum width problem is to project `m1 onto a coordinate

axis (the extreme opposite to taking Y = I/
√
m) although we do not have a proof of

this.

First-order optimality conditions

For general sets that are not contraction zonoids, it is natural to at least understand

what form the stationary points of the normalized maximum width problem might take.

We establish only the simplest result in this direction, giving a characterization of when

P = 1
mI is a stationary point for the reformulation of the normalized maximum width

problem given in (5.3.3) of Lemma 5.3.1.

Proposition 5.3.16. Suppose X ⊂ Km×d. Then P = 1
mI is a stationary point for

max
P

w(P 1/2X ) s.t. P ∈ Hm+ , tr(P ) = 1 (5.3.7)

if and only if there is a non-negative scalar κ such that

EU∼γKm×d [UU
∗hX (U)] = κI.

We prove this result in Section 5.9 to follow. Note that this result does not tell us

the nature of the stationary point. It would be interesting to study the second-order

optimality conditions to obtain conditions under which P = 1
mI is a local maximum

of (5.3.3).

� 5.4 Related work and examples

� 5.4.1 Related work

Many authors, in the contexts of functional analysis [57], systems and control [12],

optimization (see, e.g., [88, 124]), and theoretical computer science (see, e.g., [54])

have considered problems closely related to the dicussion here. In this section we

briefly summarize those contributions directly related to understanding the positive

semidefinite integrality gap, and associated rounding methods.
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In the case where the objective functions are defined by positive semidefinite ma-

trices and X = {−1, 1} the problem of understanding the positive semidefinite inte-

grality gap is often called the ‘positive semidefinite Grothendieck problem’ or the ‘little

Grothendieck problem’ [95]. A number of generalization of the binary problem have

appeared in the literature, all of which are special cases of the results of this chapter.

In the case where X = {−1, 1}, the problem was first studied by Grothendieck [57].

The problem instance that establishes an upper bound of 2
π on the integrality gap in

this case already appears in [57]. An analysis showing that 2
π is also a lower bound

on the integrality gap in the positive semidefinite case is due to Rietz [104]. An algo-

rithmic rounding scheme with approximation ratio that achieves the integrality gap is

due to Nesterov [88]. In the case where X = U(1) is the set of unit complex numbers,

Haagerup [60] (see also the independent work of Ben-Tal, Nemirovski, and Roos [12]

and Zhang and Huang [139]) established a lower bound of π
4 on the integrality gap.

So, Zhang, and Ye [124] established the corresponding upper bound. Furthermore So,

Zhang, and Ye [124] extended the analysis to the case where X is the set of kth roots

of unity, giving a rounding scheme that achieves an approximation ratio of (k sin(π/k))2

4π .

The case where X = Sm−1 is the unit sphere is considered by Briët, Oliveira, and

Vallentin [21]. They give a rounding scheme that achieves an approximation ratio

of 2
m

[
Γ(m+1

2 )
Γ(m2 )

]2

. Briët, Buhrman, and Toner [20] establish a matching upper bound on

the integrality gap. All of these examples are special cases of Theorem 5.2.12 where

Y = I/
√
m.

The problem when X = St(m, d) is the real (or complex) Stiefel manifold is studied

by Bandeira, Kennedy, and Singer [7], where the authors show that the integrality gap

is precisely
(

1
dE[‖G‖∗]

)2
where G is a d×m random matrix with i.i.d. real (or complex)

N (0, 1/m) entries and ‖ · ‖∗ is the nuclear norm (i.e. the sum of the singular values

or, equivalently, the support function of St(m, d)). These results are a special case of

Theorem 5.2.12 again with Y = I/
√
m. We discuss this example in more detail in

Section 5.4.2, to follow. We note that much of the work in this chapter was inspired by

the techniques and problems considered by Bandeira, Kennedy, and Singer [7].

� 5.4.2 Special cases previously studied

We now show how to apply our main result Theorem 5.2.12 to two of the examples

summarized in the related work section (Section 5.4.1). The first is the case of complex

roots of unity from [124]. The second is the case of the Stiefel manifolds from [7] which

contains all of the others as special cases.

Example 5.4.1 (Roots of unity). Suppose X = {1, ei2π/k, . . . , ei2π(k−1)/k} ⊂ C1×1 are

the kth roots of unity. Here we have K = C and m = d = 1. Since d = 1 this set
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is automatically right symmetric. Furthermore, since these are unit complex numbers

they are certainly contractions. Hence the assumptions of Theorem 5.2.12 are satisfied.

We first find an optimal point of the normalized maximum width problem. We know

that the normalized maximum width problem always has an optimal point Y ∈ Hm+ with

Frobenius norm one. Since m = 1, we have that there is an optimal Y that is real and

non-negative and has Frobenius norm one. Hence Y = 1 is optimal for the normalized

maximum width problem. In other words w?(X ) = w(X ). The actual computation of

the Gaussian width of X is carried out in [124]. The value of the Gaussian width of X
(and hence w?(X )) is w(X ) = k sin(π/k)

2
√
π

.

Applying Theorem 5.2.12 we see that the positive semidefinite integrality gap is[
w?(X )

1

]2
= w(X )2 = (k sin(π/k))2

4π . The associated rounding scheme is the local random-

ized rounding scheme (Algorithm 5.1) defined by the map X̂ : C→ X given by

X̂(U) = arg max
X∈X
〈X,U〉.

Concretely, this maps a complex number U to the nearest kth root of unity, i.e.

X̂(U) = ei2π`/k if and only if
π(2`− 1)

k
< arg(U) <

π(2`+ 1)

k

(where the inequalities are to be interpreted modulo 2π). The local randomized round-

ing scheme defined by X̂ is precisely the rounding scheme in [124, Equation 6].

Example 5.4.2 (Stiefel manifolds). Suppose X = StK(d,m) ⊂ Km×d is the set of m×d
matrices with entries in K satisfying X∗X = I. Since the representation of O(d) (or

U(d)) by orthogonal (or unitary) matrices on Kd is irreducible (over C) it follows that

StK(d,m) is right symmetric. Since X∗X = I for all X ∈ StK(d,m) it certainly follows

that X∗X � I for all X ∈ StK(d,m). Hence the assumptions of Theorem 5.2.12 are

satisfied.

We have seen, from Example 5.3.11, that Y = 1√
m
I is optimal for the normalized

maximum width problem when X = StK(d,m). Hence w?(StK(d,m)) = 1√
m
w(StK(d,m)).

Now the support function of the Stiefel manifold is the nuclear norm, or sum of the

singular values of a matrix. Hence the value of the normalized maximum width is

w?(StK(d,m)) =
1√
m
EU∼γKm×d [‖U‖∗],

i.e. up to scaling the expected nuclear norm of a standard Gaussian matrix.

Applying Theorem 5.2.12 we see that the positive semidefinite integrality gap is[
w?(StK(d,m))

d

]2

=
1

d2m
EU∼γ [‖U‖∗]2.



Sec. 5.4. Related work and examples 151

This is the same as the result of Bandeira, Kennedy, and Singer [7] (note that we

use a Gaussian matrix U with standard Gaussian entries accounting for the difference

between this expression and that given in [7]). The associated rounding scheme is the

local randomized rounding scheme (Algorithm 5.1) defined by the map X̂ : Km×d →
StK(d,m) given by

X̂(U) = arg max
X∈StK(d,m)

〈X,U〉.

This map can be described concretely as follows. Let U be an m × d matrix with

singular value decomposition U = V1ΣV ∗2 (here V1 ∈ StK(d,m), Σ is d× d and diagonal

with non-negative entries, and V2 ∈ StK(d, d)). Then arg maxX∈StK(d,m)〈X,U〉 = V1V
∗

2 ,

which recovers the rounding scheme proposed in [7]. We note that this example includes

the cases X = O(d) and X = U(d) by setting d = m. It also generalizes the binary

case, the case of unit complex numbers and the case of the sphere.

� 5.4.3 Pairwise optimization problems on irreducible tautological orbits

We now describe a new family of sets X for which we can construct rounding schemes

(and analyze their approximation properties) using our main result (Theorem 5.2.12).

The family of examples significantly generalizes the examples of orthogonal matrices

and unitary matrices studied by Bandeira, Kennedy, and Singer [7]. As particular

special cases, it includes the case where X = SO(d), the set of d× d rotation matrices

(see Chapter 4), as well as the case where X is a set that is affinely isomorphic to the

set of d× d permutation matrices.

Let G be a group and ρ be an orthogonal/unitary representation on Kd that is

irreducible over C. Let X = ρ(G) ⊂ Kd×d be the image of G under the representation.

We call this a irreducible tautological orbit of G (following the terminology ‘tautological

orbitope’ from [110]). Then ρ(G) is a subset of orthogonal/unitary matrices (and hence

contractions), that is clearly right symmetric with respect to the action of ρ. Hence

any such ρ(G) satisfies the assumptions of Theorem 5.2.12.

To obtain optimal approximation algorithms for these problems, we need to solve the

normalized maximum width problem and be able to implement the resulting rounding

scheme. In general, irreducible tautological orbits are not contraction zonoids (see

Definition 5.3.6), so we cannot automatically deduce that the normalized maximum

width problem reduces to a convex optimization problem for these sets. In fact we do

not know the solution of the normalized maximum width problem for general irreducible

tautological orbits. Nevertheless, the following lemma shows that taking Y = 1√
d
I is at

least a candidate to be optimal for the normalized maximum width problem.

Lemma 5.4.3. Let ρ(G) be an irreducible tautological orbit of a group G. Then P = 1
dI

is a stationary point for the reformulation of the normalized maximum width problem
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from (5.3.3), i.e.

max
P∈Hd+

tr(P )=1

w(P 1/2ρ(G)).

We prove this result in Section 5.9. It uses the fact that irreducible tautological or-

bits are not just right symmetric (as noted above) but also left symmetric (the precise

definition is given in Section 5.9). If P = 1
dI were in fact optimal for the reformula-

tion (5.3.3) of the normalized maximum width problem, then the corresponding choice

of Y in Theorem 5.2.12 would be Y = 1√
d
I.

A benefit of our analysis is that we do not need optimal solutions to the normalized

maximum width problem to construct interesting rounding schemes and analyze their

approximation properties. Any feasible solution (such as taking Y = 1√
d
I in this case)

gives a rounding scheme, the achievable approximation ratio of which we can, in princi-

ple, analyze. To implement the resulting rounding scheme for X = ρ(G) (an irreducible

tautological orbit) with Y = 1√
d
I we need to be able to evaluate the map

X̂(U) = arg max
X∈ρ(G)

1√
d
〈X,U〉. (5.4.1)

We discuss the form of the optimization problem we need to solve for two examples

below. To evaluate the approximation guarantee this rounding scheme achieves, we

need to compute [
1

d
w

(
1√
d
ρ(G)

)]2

=
1

d3
EU∼γKd×d

[
max
X∈ρ(G)

〈X,U〉
]2

. (5.4.2)

Rotation matrices

The pairwise optimization problems that arise in the case where X = SO(3) are an

example of pairwise optimization problems on irreducible tautological orbits. These

problems arise, for instance, in molecular imaging applications [123] and discrete-time

optimal filtering problems for rotation matrix-valued variables [118]. In this case the

optimization problem (5.4.1) that defines the rounding map is known as Wahba’s prob-

lem [135]. We discuss it in detail in Chapter 4.

Permutation matrices

Suppose Sd is the symmetric group of d symbols and ρ is the irreducible (over C) repre-

sentation of Sd on the subspace 1⊥ of Rd consisting of vectors x ∈ Rd with
∑d

i=1 xi = 0.

Concretely, the irreducible tautological orbit ρ(Sd) consists of all matrices of the form

V TPV where P is a d×d permutation matrix and V is a d×(d−1) matrix with columns

an orthonormal basis for 1⊥. This set is affinely isomorphic to the set of permutation
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matrices. Pairwise optimization problems over ρ(Sd) are (up to an additive constant)

the same as pairwise optimization problems over permutation matrices. These arise,

for instance, in the multi-reference alignment problem [6].

The optimization problem (5.4.1) involves maximizing the linear functional V UV T

over permutation matrices, an instance of the classical transportation or bipartite

matching problem [121]. To compute the associated approximation ratio, one needs

to find the expected value of the maximum bipartite matching with weights V UV T

where U is an i.i.d. (d− 1)× (d− 1) standard Gaussian matrix. This is a very natural

problem that may be interesting to study in its own right.

� 5.5 Upper bounds on the positive semidefinite integrality gap

In this section we establish the following upper bound on the positive semidefinite

integrality gap for any set X ⊂ Km×d of right symmetric contractions. This is one

key component in the proof of our main result (Theorem 5.2.12), which is given in

Section 5.6 to follow.

Proposition 5.5.1. If X ⊂ Km×d is a right symmetric set of contractions then the

positive semidefinite integrality gap is at most
[
w?(X )
d

]2
.

Since the integrality gap is defined as an infimum (see Equation 5.2.5) we can

obtain upper bounds on the positive semidefinite integrality gap by evaluating the

ratio optX (C)/optsdp(C) for some objective function defined by C � 0. Rather than

a single nd × nd positive semidefinite matrix, we construct a sequence of matrices Cnp

of increasing dimension nd and rank p such that optX (Cnp )/optsdp(Cnp )→
[
w?(X )
d

]2
as

n, p→∞.

In fact, rather than finite sized matrices Cnp (and hence problem instances indexed

by the finite set [n]), we consider problem instances indexed by a probability space that

are specified by positive semidefinite kernels on that probability space. The idea behind

the construction goes back to the work of Grothendieck [57], and has been repeatedly

reused and slightly generalized by many authors (see, e.g., [124, 20, 7]). This section

can be thought of as a further generalization and simplification of the arguments by

Bandeira, Kennedy, and Singer [7] for the case where X = StK(d,m).

Indeed we define a sequence of positive semidefinite kernels on the measure space

(Kp×d, γKp×d) consisting of Kp×d equipped with the standard Gaussian measure. On

this space define the matrix-valued mapping Cp : Kp×d ×Kp×d → Kd×d by Cp(U, V ) =
1
pU
∗V . Note that Cp is normalized so that EU∼γ [tr(Cp(U,U))] = d. The corresponding

instance of a pairwise quadratic optimization problem on X is to solve

optX (Cp) := sup
X:Rp×d→X

EU∼γ [EV∼γ [〈Cp(U, V ), X(U)∗X(V )〉]]. (5.5.1)
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It may be instructive to compare this with the expression for a finite problem in-

stance (5.2.1). One can see (5.5.1) as a limit of a finite instance of a pairwise op-

timization problem on X obtained by replacing the expectations (i.e. integrals) with

their definitions as the limit of finite sums. Similarly we can define optsdp(Cp) as the

appropriate limit of a sequence of semidefinite optimization problems.

Towards establishing Proposition 5.5.1, our upper bound on the integrality gap, we

characterize the optimal value in (5.5.1) in terms of the normalized maximum width of

X .

Proposition 5.5.2. For any integer p ≥ m,

poptX (Cp) = sup
X:Rp→X

‖EU∼γ [X(U)U∗]‖2F = w?(X )2. (5.5.2)

Proof. We begin by establishing the right-hand equality. To show this we use the well-

known variational characterization of the Frobenius norm as ‖W‖F = max‖Y ‖F=1〈Y,W 〉
(which can be deduced from the Cauchy-Schwarz inequality, for example) to write

sup
X:Rp×d→X

‖EU∼γ [X(U)U∗]‖F = sup
X:Rp×d→X

max
‖Y ‖F=1

EU∼γ [〈Y,X(U)U∗〉]

= max
‖Y ‖F=1

sup
X:Rp×d→X

EU∼γ [〈X(U), Y U〉].

For fixed Y , the supremum over X : Rp×d → X is achieved by maximizing the function

inside the expectation pointwise, that is by taking X(U) ∈ arg maxX∈X 〈X,Y U〉 for

each U ∈ Rp×d. Substituting this choice of X back into the objective function we

obtain

max
‖Y ‖F=1

EU∼γ [〈arg max
X∈X
〈X,Y U〉, Y U〉] = max

‖Y ‖F=1
EU∼γ [max

X∈X
〈X,Y U〉]

= max
‖Y ‖F=1

EU∼γ [max
X∈X
〈Y ∗X,U〉]

= w?(X )

(where for the last equality we have used Lemma 5.3.1). This establishes the right-hand

equality in (5.5.2). The left-hand equality in (5.5.2) holds because

poptX (Cp) = sup
X:Rp×d→X

EU∼γ [EV∼γ [〈U∗V,X(U)∗X(V )〉]]

= sup
X∈Rp×d→X

EU∼γ [EV∼γ [〈X(U)U∗, X(V )V ∗〉]]

= sup
X∈Rp×d→X

‖EU∼γ [X(U)U∗]‖2F .
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We now consider the optimal value of the semidefinite relaxation for the sequence

(Cp) of instances. This tells us about the denominator of the ratio that defines the

integrality gap.

Lemma 5.5.3. For any positive integer p ≥ d,

poptd,Ksdp(Cp) ≥ poptStK(d,p)(Cp) = w?(StK(d, p))2.

Proof. The first equality holds because optsdp(C) ≥ optX (C) for every C and every

set X ⊂ Kp×d of contractions (and so, in particular, for X = StK(d, p)). The second

equality is established in Proposition 5.5.2.

This observation is useful because we have a good understanding of the quantity

w?(StK(d, p)). We restate this result from Section 5.3.1.

Lemma 5.3.12. For any positive integer d,

w?(StK(d, p)) ≤ d for all p ≥ d and lim
p→∞

w?(StK(d, p)) = d.

We are now in a position to establish the upper bound on the positive semidefinite

integrality gap stated as Proposition 5.5.1 at the start of this section.

Proof of Proposition 5.5.1. Since each Cp is positive semidefinite, we have that

inf
C�0,C 6=0

optX (C)

optsdp(C)
≤ inf

p≥m

optX (Cp)

optsdp(Cp)
.

Then by applying Lemma 5.5.3 and Lemma 5.3.12,

inf
p≥m

optX (Cp)

optsdp(Cp)
≤ inf

p≥m

w?(X )2

w?(StK(d, p))2
=

[
w?(X )

d

]2

.

� 5.6 Designing optimal rounding schemes

Given a set X ⊂ Km×d of contractions we now consider the problem of constructing

a sequence of rounding schemes that achieves the best possible approximation ratio.

Since the approximation ratio is a lower bound on the integrality gap, we know from

Proposition 5.5.1 that it cannot exceed
[
w?(X )
d

]2
. In this section we design a sequence

of randomized rounding schemes for any right symmetric set X of contractions that is
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optimal since it achieves an approximation ratio of
[
w?(X )
d

]2
. This construction allows

us to establish our main result, Theorem 5.2.12, which we restate and prove at the end

of this section.

Our basic strategy is to search over local randomized rounding schemes (see Sec-

tion 5.2.2) to find a rounding scheme with the largest approximation ratio. We aim

to do this by finding a lower bound on the achievable approximation ratio for an arbi-

trary local randomized rounding scheme, and then maximizing this lower bound. This

strategy works when d = 1, but for d > 1 we need an additional assumption on X (i.e.

that X is right symmetric) to carry it out. We also restrict our search over rounding

schemes to local randomized rounding schemes that are also equivariant with respect to

the group action on X (see Definition 5.6.2 to follow). We then find a lower bound on

the approximation ratio achieved by any equivariant local randomized rounding scheme.

We optimize this lower bound to obtain the best possible equivariant local randomized

rounding scheme. We find that it achieves an approximation ratio of
[
w?(X )
d

]2
and so

is, in fact, optimal among all randomized rounding schemes.

We note that the discussion in this section could be presented in a different way.

Indeed the argument would work perfectly well if we simply proposed the family of

rounding schemes described in the statement of Theorem 5.2.12 and analyzed the ap-

proximation ratio they achieve directly (using the fact that they are equivariant). We

have chosen to present the material in the way we have in an effort not just to show

that Theorem 5.2.12 is true, but also to explain where our optimal rounding schemes

come from.

Achievable approximation ratio

Consider an arbitrary sequence of local randomized rounding schemes (Rn) specified by

a function X̂ : Kp×d → X (see Section 5.2.2). Recall that with any such rounding scheme

Rn we define a mapping FRn : Gnsdp → GnX from the feasible region of the semidefinite

relaxation to GnX by (5.2.9). By using (5.2.10) we can obtain a lower bound on the

positive semidefinite approximation ratio achieved by computing the largest constant κ

such that

κ〈C,Z〉 ≤ 〈C,FRn(Z)〉

for all C � 0, all Z ∈ Gsdp, and all n ∈ N. By using the fact that the positive semidefinite

cone is self-dual (i.e. 〈X,Y 〉 ≥ 0 for all Y � 0 holds if and only if X � 0) we obtain the

equivalent problem:

max
κ

κ s.t. FRn(Z)− κZ � 0 for all Z ∈ Gnsdp and all n ∈ N. (5.6.1)
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From now on we use (5.6.1) to give a lower bound on the approximation ratio achievable

by the sequence (Rn) of local randomized rounding schemes specified by X̂.

All the results of this section follow from the next somewhat technical lemma. The

idea is to obtain an expression something like FRn(Z) − κZ � 0 for all Z ∈ Gsdp, but

we are not quite able to do this in such generality. The approach taken here has its

origins in the proof method of Rietz [104] and its generalization in [7].

Lemma 5.6.1. Define matrices

AX̂ = EU∼γ [X̂(U)U∗]/d ∈ Km×d, BX̂ = EU∼γEV∼γ [X̂(U)∗X̂(V )V ∗U ]/d ∈ Kd×d

and B̃X̂ = blkdiag (BX̂ , . . . , BX̂) ∈ Knd×nd. Then for all Z � 0 such that Zii = I for

i ∈ [n],

FRn(Z)− ZB̃∗
X̂
− B̃X̂Z + ‖AX̂‖

2
FZ � 0. (5.6.2)

Proof. We establish (5.6.2) by showing that the i, j block entry has a factorization as

[FRn(Z)]ij − ZijB∗X̂ −BX̂Zij + ‖AX̂‖
2
FZij = E[(X̂(Wi)−AX̂Wi)

∗(X̂(Wj)−AX̂Wj)]

(5.6.3)

where W1,W2, . . . ,Wn are the random variables in the definition of FRn (i.e. in Algo-

rithm 5.1). In particular the Gaussian matrices W1,W2, . . . ,Wn are defined by taking

W ∈ Kp×nd to have are i.i.d. Gaussian rows with mean zero and covariance Z, and then

taking the Wi to satisfy

W =
[
W1 W2 · · · Wn

]
.

Because the rows of W are i.i.d. it is straightforward to check that E[W ∗i ww
∗Wj ] = Zij

for all unit vectors w ∈ Kp.

With these preliminary facts established, we now show that (5.6.3) holds. To do

this we just expand the expectation on the right hand side and simplify each term.

• We note that E[X̂(Wi)
∗X̂(Wj)] = [FRn(Z)]ij by the definition of the rounding

scheme Rn and the map FRn .

• We claim that E[X̂(Wi)
∗AX̂Wj ] = BX̂Zij . To see this we decompose Wj into

a component independent of Wi and a component in the direction of Wi. This

decomposition is

Wj = (WiZij) + (Wj −WiZij). (5.6.4)

The matrices WiZij and (Wj −WiZij) are independent because because for each

unit vector w ∈ Kp we have

E[W ∗i ww
∗(Wj −WiZij)] = Zij − ZiiZij = 0 (since Zii = I).
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Hence using the expression for Wj in (5.6.4) we see that

E[X̂(Wi)
∗AX̂Wj ] = E[X̂(Wi)

∗AX̂Wi]Zij − E[x(Wi)
∗AX̂(Wj −WiZij)].

Since Wi is a standard Gaussian matrix, the first of these terms is, by the def-

initions of AX̂ and BX̂ , equal to BX̂Zij . The second vanishes because Wi and

Wj −WiZij are independent and have zero mean.

• Similarly E[W ∗i A
∗
X̂
X̂(Wj)] = [BX̂Zji]

∗ = Z∗jiB
∗
X̂

= ZijB
∗
X̂

.

• Finally E[W ∗i A
∗
X̂
AX̂Wj ] = ‖AX̂‖

2
FZij . To see this decompose A∗

X̂
AX̂ as

A∗
X̂
AX̂ =

p∑
k=1

σ2
kwkw

∗
k

where σk are the singular values of AX̂ and wk are the associated (unit) right

singular vectors. Then

E[W ∗i A
∗
X̂
AX̂Wj ] =

p∑
k=1

σ2
kE[W ∗i wkw

∗
kWj ] = ‖AX̂‖

2
FZij .

We have shown that FRn(Z)− ZB̃∗
X̂
− B̃X̂Z + ‖AX̂‖

2
FZ � 0 which is almost in the

form FRn(Z)−κZ � 0 from which we could deduce a lower bound on the approximation

ratio. Indeed if d = 1 then BX̂ is a scalar and so B̃X̂ is a multiple of the identity and we

can deduce a lower bound on the approximation ratio. To proceed in a similar fashion

for the general d case, we impose additional assumptions on the problem to ensure that

BX̂ (and hence B̃X̂) is a scalar multiple of the identity.

� 5.6.1 Equivariant local randomized rounding

The key additional assumption we impose is that X ⊂ Km×d is right symmetric with

respect to a group G and an orthogonal/unitary representation ρ (see Definition 5.2.11).

We also further restrict our attention to local randomized rounding schemes that respect

the symmetries of X in a sense made precise by Definition 5.6.2 to follow. While this

is a restriction, we will show, in our proof (to follow) of Theorem 5.2.12 that when X
is right-symmetric there is an optimal rounding scheme that has this form.

Definition 5.6.2. Suppose X ⊂ Km×d is right symmetric with respect to the group

G and orthogonal/unitary representation ρ. The local randomized rounding scheme

defined by X̂ : Kp×d → X is equivariant if X (U)ρ(g) = X (Uρ(g)) for all g ∈ G.
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Under these assumptions, we can deduce that the matrix BX̂ is a multiple of the

identity. To do so, we use a fundamental result of representation theory, known as

Schur’s lemma. For completeness we state and prove the version of Schur’s lemma we

require.

Lemma 5.6.3. Suppose ρ is a unitary representation of a group G on Cd that is

irreducible over C. Let A : Cd → Cd satisfy

Aρ(g) = ρ(g)A

for all g ∈ G. Then there is some α ∈ C such that A = αI.

Proof. Let α ∈ C be any eigenvalue of A and let U ⊆ Cd denote the corresponding (non-

zero) eigenspace. Then for any u ∈ U we have that (αI−A)(ρ(g)u) = ρ(g)(αI−A)u = 0.

Hence U is an invariant subspace of Cd. Since U is non-zero by assumption and ρ is

irreducible over C it follows that U = Cd and so A = αI.

With Schur’s lemma established, to see that BX̂ should be a multiple of the identity,

it is enough to show that it commutes with an irreducible representation.

Lemma 5.6.4. Suppose X is right symmetric with respect to G and ρ, and X̂ is equiv-

ariant with respect to G and ρ. Then

ρ(g)BX̂ = BX̂ρ(g) for all g ∈ G

and so BX̂ = ‖AX̂‖
2
F I.

Proof. For the first assertion note that for all g ∈ G

ρ(g)(dBX̂) = EU,V [ρ(g)X̂(U)∗X̂(V )V ∗U ]

= EU,V [(X̂(U)ρ(g)∗)∗X̂(V )ρ(g)∗ρ(g)V ∗U ]

= EU,V [X̂(Uρ(g)∗)∗X̂(V ρ(g)∗)(V ρ(g)∗)∗U ]

= EŨ ,Ṽ [X̂(Ũ)∗X̂(Ṽ )Ṽ ∗Ũ ]ρ(g)

= (dBX̂)ρ(g).

where the first equality is the definition of BX̂ , the second holds because ρ(g) is orthog-

onal/unitary, the third holds because X̂ is equivariant, and the last holds by making the

substitution Ũ = Uρ(g)∗ and Ṽ = V ρ(g)∗ and using the fact that the joint distribution

of U, V and Ũ , Ṽ are the same since ρ(g) is orthogonal/unitary.

Since ρ is irreducible over C (by assumption) it follows from Schur’s lemma that

BX̂ = βI for some scalar β ∈ C. In fact by taking the trace of both sides of BX̂ = βI
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we have that

β =
tr(BX̂)

d
=

1

d2
EU,V [tr(X̂(U)∗X̂(V )V ∗U)]

=
1

d2
tr(EV [X̂(V )V ∗]EU [X̂(U)U∗]∗) = ‖AX̂‖

2
F .

By combining Lemmas 5.6.1 and 5.6.4, we have a lower bound on the approximation

ratio achieved by any equivariant rounding scheme.

Proposition 5.6.5. If X ⊂ Km×d is right symmetric and X̂ : Kp×d → X is equivariant

then the corresponding equivariant local randomized rounding achieves an approximation

ratio of at least

‖AX̂‖
2
F =

[
‖EU∼γ [X̂(U)U∗]‖F

d

]2

. (5.6.5)

We have already encountered the quantity appearing on the right hand side in Equa-

tion (5.6.5). (Up to scaling) this appears in Section 5.5 as the function to be optimized

to compute optX (Cp). Using the same idea as in the proof of Proposition 5.5.2 we now

maximize this bound over equivariant functions X̂ : Kp×d → X to obtain an optimal

equivariant local randomized rounding scheme. This is the content of the second part

of our main result. As such, we now restate and prove that result.

Theorem 5.2.12. If X ⊂ Km×d (where K = R or K = C) is a right symmetric set of

contractions then the following hold.

1. The positive semidefinite integrality gap is αX =
[
w?(X )
d

]2
.

2. If Y is any m × p matrix with ‖Y ‖F = 1 then the local randomized rounding

scheme specified by any function X̂ : Rp×d → X satisfying

X̂(U) ∈ arg max
X∈X
〈X,Y U〉, (5.6.6)

achieves an approximation ratio of
[
w(Y ∗X )

d

]2
.

3. If Y is any argument of maximum in the normalized maximum width problem (5.2.12)

the rounding scheme specified in 2. achieves the optimal approximation ratio of[
w?(X )
d

]2
.

Proof. The fact that αX ≤
[
w?(X )
d

]2
was established in Proposition 5.5.1. We establish

the reverse inequality at the end of the proof.
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We have seen in Proposition 5.6.5 that for any equivariant map X̂ : Kp×d → X
a lower bound on the approximation ratio achieved by the corresponding equivariant

local randomized rounding scheme is given by

[
‖EU∼γ [X̂(U)U∗]‖F

d

]2

=
1

d2

 max
Y ∈Km×p
‖Y ‖F=1

EU∼γ [〈X̂(U), Y U〉]


2

.

As such, to find an optimal equivariant rounding scheme it is enough to solve

sup
X̂:Kp×d→X

max
Y ∈Km×p
‖Y ‖F=1

EU∼γ [〈X̂(U), Y U〉] s.t. X̂(Uρ(g)) = X̂(U)ρ(g) for all g ∈ G.

First we consider solving the problem without the equivariance constraint on X̂, i.e.

solving

sup
X̂:Kp×d→X

max
Y ∈Km×p
‖Y ‖F=1

EU∼γ [〈X̂(U), Y U〉] = max
Y ∈Km×p
‖Y ‖F=1

sup
X̂:Kp×d→X

EU∼γ [〈X̂(U), Y U〉].

We have seen in the proof of Proposition 5.5.2 that for fixed Y with ‖Y ‖F = 1 any X̂

satisfying

X̂(U) = arg max
X∈X
〈X,Y U〉

is optimal for the inner optimization problem and achieves a value of w(Y ∗X ). Note

that this map is equivariant because

X̂(Uρ(g)) = arg max
X∈X
〈X,Y Uρ(g)〉 = arg max

X∈X
〈Xρ(g)∗, Y U〉 = [arg max

X∈X
〈X,Y U〉]ρ(g)

where the last equality uses the right symmetry of X . Hence, for any fixed Y with

‖Y ‖F = 1 we have constructed an equivariant local randomized rounding scheme. It

achieves an approximation ratio of

1

d2

 max
Y ′∈Km×p
‖Y ′‖F=1

EU∼γ [〈arg max
X∈X
〈X,Y U〉, Y ′U〉]


2

≥
[
w(Y ∗X )

d

]2

where the last inequality holds by choosing Y ′ = Y in the maximum over Y ′. This

completes the proof of the second part of the statement.

The third part of the statement simply follows by optimizing over the choice of Y in

the second part of the statement. Finally since we have a randomized rounding scheme
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that achieves an approximation ratio of
[
w?(X )
d

]2
it follows that αX ≥

[
w?(X )
d

]2
. This is

the reverse inequality on the positive semidefinite integrality gap required to complete

the proof.

� 5.7 Approximating the optimal rounding scheme

To implement the rounding schemes that arise from Theorem 5.2.12, we need to be able

to solve optimization problems of the form

max
X∈X
〈X,U〉,

i.e. to maximize a linear functional over the set X . This is computationally tractable

for many cases of interest (such as when X consists of permutation matrices or rotation

matrices, as discussed in Section 5.4). In other cases this optimization problem itself

may be hard. In this section we assume we only have access to an algorithm that given

U ∈ Km×d produces a feasible point X̃(U) ∈ X satisfying

β

[
max
X∈X
〈X,U〉

]
≤ 〈X̃(U), U〉 ≤ max

X∈X
〈X,U〉

for some positive constant 0 < β ≤ 1. In other words we have a β-approximation

algorithm for the maximization of a linear functional over X . The idea is to use this β-

approximation algorithm as part of a local randomized rounding scheme and understand

how β enters in the achievable approximation ratio. As before we assume that X ⊂
Km×d is right symmetric with respect to ρ and G. We correspondingly assume that the

available β-approximation algorithm defined by U 7→ X̃(U) is equivariant in the sense

that X̃(Uρ(g)) = X̃(U)ρ(g) for all g ∈ G.

Before, for a fixed Y ∈ Km×d with ‖Y ‖F = 1 we considered the equivariant local

randomized rounding scheme parameterized by the equivariant function X̂ : Kp×d →
X where X̂(U) = arg maxX∈X 〈X,Y U〉. This achieved an approximation ratio of[
w(Y ∗X )

d

]2
. Now we analyze the rounding scheme parameterized by the equivariant

function U 7→ X̃(Y U). Doing so we obtain a variation on Theorem 5.2.12 that applies

in this setting.

Theorem 5.7.1. Let X ⊂ Km×d be a right-symmetric (w.r.t. G and ρ) subset of con-

tractions. Let U 7→ X̃(U) satsify

β

[
max
X∈X
〈X,U〉

]
≤ 〈X̃(U), U〉 ≤ max

X∈X
〈X,U〉

for all U ∈ Km×d and X̃(Uρ(g)) = X̃(U)ρ(g) for all g ∈ G. The equivariant local ran-
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domized rounding scheme parameterized by the equivariant map U 7→ X̃(Y U) achieves

an approximation ratio of
[
βw(Y ∗U)

d

]2
. By choosing Y to be the argument of maximum

in the normalized maximum width problem for X we obtain a rounding scheme that

achieves and approximation ratio of
[
βw?(X )

d

]2
.

Proof. Since the local randomized rounding scheme defined by X̂(U) = X̃(Y U) is

equivariant, it follows from 5.6.5 that it achieves an approximation ratio of

∥∥AX̂∥∥2

F
=

[
‖EU∼γX̃(Y U)U∗‖F

d

]2

.

Now observe that if ‖Y ‖F = 1 then∥∥∥EU∼γ [X̃(Y U)U∗]
∥∥∥
F
≥ E[〈Y U, X̃(Y U)〉]

≥ βEU∼γ
[
max
X∈X
〈X,Y U〉

]
= βw(Y ∗X ).

Hence the local randomized rounding scheme defined by X̂(U) = X̃(Y U) achieves an

approximation ratio of at least
[
βw(Y ∗X )

d

]2
. Choosing Y to be an argument of maximum

in the normalized maximum width problem for X we obtain a rounding scheme with

an approximation ratio of at least
[
βw?(X )

d

]2
.

� 5.8 Summary and future directions

In this chapter we considered a class of optimization problems where each of the n

variables is constrained to lie in a set X ⊂ Km×d, and where the objective function is

linear in the quantities X∗iXj for 1 ≤ i, j ≤ n. For this class we analyzed the integrality

gap (with respect to objective functions defined by positive semidefinite matrices) of a

simple semidefinite relaxation that is valid whenever X consists only of contractions.

Our main result (Theorem 5.2.12) exactly characterizes the integrality gap, and shows

how to construct rounding schemes that achieve an approximation ratio equal to the

integrality gap, in the case where X satisfies an additional symmetry assumption.

For this specific family of problems we now discuss some possible future research

directions. It would be very interesting to understand the situation where X is not

right symmetric. It is very likely that in this case, the gap instances (i.e. the difficult

objective functions that produce the tightest upper bounds on the integrality gap) are

more complicated because they should exploit the asymmetry of X (from the right).

Nevertheless it may be possible to extend the techniques we use in this chapter to
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understand this case. Second, it is important to be able to explicitly compute integrality

gaps for interesting sets X , or develop good techniques for finding lower bounds on the

integrality gaps. While exact values are of considerable interest, tools to numerically

solve the normalized maximum width problem and to estimate the approximation ratio

achieved by the associated rounding scheme would be useful.

In this chapter we only studied the case where the objective functions correspond to

positive semidefinite matrices. The problem is significantly more difficult to understand

in the case where the objective function is an arbitrary bilinear form in variables from

X . Even in the case where X = {−1, 1} and with the simplest possible semidefinite

relaxation, the integrality gap and an optimal rounding scheme remain elusive (see,

e.g., [19]). It is possible that thinking about more general sets X may reveal which

structures in the problem are due to binary variables, and which are due to working

with arbitrary bilinear forms. The problem has been studied for X being the sphere

and O(d) and U(d). The only situation where an optimal rounding scheme is known is

for U(d) in the limit as d→∞ [61, 84].

The semidefinite relaxation that we analyze is very simple. Tighter relaxations are

available for a variety of problems of this type (see, e.g., [118] in the case X = SO(d)).

Such relaxations impose more constraints that should be satisfied by elements of GX .

Designing rounding schemes that can exploit more general moment constraints than

those appearing in our basic semidefinite relaxation could open the door to being able to

automatically design rounding schemes for semidefinite relaxations for a much broader

variety of problems.

� 5.9 Proofs of stationarity results

In this section, we establish the following characterization of when P = 1
mI is a sta-

tionary point for the normalized maximum width problem. This is restated from Sec-

tion 5.3.2. Recall that hX is the support function of X .

Proposition 5.3.16. Suppose X ⊂ Km×d. Then P = 1
mI is a stationary point for

max
P

w(P 1/2X ) s.t. P ∈ Hm+ , tr(P ) = 1 (5.9.1)

if and only if there is a non-negative scalar κ such that

EU∼γKm×d [UU
∗hX (U)] = κI.

Before establishing this result, we use it to prove the following generalization of

Lemma 5.4.3 (which dealt with the case where X is an irreducible tautological orbit).

The generalization (Lemma 5.9.1 to follow) uses the notion of a set X ⊂ Km×d being



Sec. 5.9. Proofs of stationarity results 165

left-symmetric, which means that there is a group G and an irreducible (over C) or-

thogonal/unitary representation ρ : G→ Km such that ρ(g)X = X for all g ∈ G. This

is the same as the definition for X being right-symmetric (Definition 5.2.11) except that

now the representation ρ acts on the left.

Lemma 5.9.1. If X ⊂ Km×d is left-symmetric then P = 1
mI is a stationary point of

max
P

w(P 1/2X ) s.t. P ∈ Hm+ , tr(P ) = 1.

Proof. It is enough, by Proposition 5.3.16 to show that if X is left-symmetric then there

is some non-negative κ such that

M := EU∼γKm×d [UU
∗hX (U)] = κI. (5.9.2)

Since X is left symmetric there is a group G and an irreducible (over C) orthogo-

nal/unitary representation ρ such that ρ(g)X = X for all g ∈ G. We now show that

the matrix M on the left-hand side of (5.9.2) commutes with ρ(g) for all g ∈ G. To do

so we first note that since ρ(g)X = X for all g ∈ G we have that

hX (ρ(g)∗W ) = hρ(g)X (W ) = hX (W )

for all W ∈ Km×d and all g ∈ G. Now, for any g ∈ G we have that

ρ(g)EU∼γKm×d [UU
∗hX (U)] = EU∼γKm×d [(ρ(g)U)(ρ(g)U)∗hX (U)]ρ(g)

= EW∼γKm×d [WW ∗hX (ρ(g)∗W )]ρ(g)

= EW∼γKm×d [WW ∗hX (W )]ρ(g)

where the first equality uses the fact that ρ(g)∗ρ(g) = I, the second uses the fact

that the Gaussian measure is invariant under left multiplication by orthogonal/unitary

matrices, and the third uses the left-symmetry of X . Since M commutes with ρ(g) for

all g ∈ G and ρ is irreducible over C, it follows from Schur’s lemma (Lemma 5.6.3)

that M = κI for some κ ∈ C. Since M is a non-negative combination of the positive

semidefinite matrices UU∗, it follows that M is also positive semidefinite, and so that

κ is non-negative.

Proof of Lemma 5.4.3. Lemma 5.4.3 is the special case of Lemma 5.9.1 when X = ρ(G)

is an irreducible tautological orbit. It holds because any irreducible tautological orbit

is left-symmetric.

We now turn our attention to establishing Proposition 5.3.16.
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Proof of Proposition 5.3.16. Let f(P ) = logw(P 1/2X ) and let βK = 1 if K = R and

βK = 2 if K = C. Note that we can rewrite f in terms of a Gaussian integral as

f(P ) = log

(∫
U∈Km×d

hP 1/2X (U) exp

(
−βK

2
tr(U∗U)

)
dU

)
− mdβK

2
log

(
2π

βK

)
= log

(∫
V ∈Km×d

hX (V ) exp

(
−βK

2
tr(V ∗P−1V )

)
dV

)
−

mdβK
2

log

(
2π

βK

)
− βK

2
log det(P ).

Here the first equality holds from the definition of the standard Gaussian measure, and

the second holds by making the change of variables V = P 1/2U in the integral. If P

is strictly positive definite then the gradient of tr(V ∗P−1V ) is precisely −P−1V V ∗P−1

and the gradient of log det(P ) is P−1. So taking the gradient of f with respect to P we

obtain

∇f(P ) = −βK
2
P−1 +

βK
2

∫
V ∈Km×d P

−1V V ∗P−1hX (V ) exp
(
−βK

2 tr(V ∗P−1V )
)
dV

Z(P )
(5.9.3)

where

Z(P ) =

∫
V ∈Km×d

hX (V ) exp

(
−βK

2
tr(V ∗P−1V )

)
dV

is a positive scalar-valued function since hX (V ) is positive for almost all V . Making

the change of variables U = P−1/2V in the integral on the right-hand side of (5.9.3) we

obtain

∇f(P ) = −βK
2
P−1 +

1

Z(P )

βK
2

∫
U∈Km×d

P−
1
2UU∗P−

1
2h

P
1
2X

(U) exp

(
−βK

2
tr(U∗U)

)
dU

= −βK
2
P−1 +

1

Z(P )

βK
2
P−

1
2EU∼γKm×d [UU

∗h
P

1
2X

(U)]P−
1
2 .

Now on the interior of the positive semidefinite cone, the only active constraint for

the optimization problem (5.9.1) is the constraint tr(P ) = 1. Thus introducing the

appropriate Lagrange multiplier we see that a positive definite point P is stationary

for (5.9.1) if and only if there exists some scalar λ such that

∇f(P ) = −βK
2
P−1 +

1

Z(P )

βK
2
P−1/2EU∼γKm×d [UU

∗hP 1/2X (U)]P−1/2 = λI.
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Now, if P = 1
mI is a stationary point then there exists λ ∈ R such that

−βKm
2

I +
βKm

2Z(I/m)
EU∼γKm×d [UU

∗hX/
√
m(U)] = λI.

This implies that

EU∼γKm×d [UU
∗hX (U)] =

√
mEU∼γKm×d [UU

∗hX/
√
m(U)] = κI (5.9.4)

for some real κ (where we have used the fact that the support function of X is positively

homogeneous, i.e. htX = thX for all non-negative t). Since UU∗ is positive semidefinite

for all U , it follows that the left hand side of (5.9.4) is a positive semidefinite matrix

and so that κ ≥ 0.

Conversely, suppose that

EU∼γKm×d [UU
∗hX (U)] = κI =

√
mEU∼γKm×d [UU

∗hX/
√
m(U)]

for some non-negative κ. Then taking P = 1
mI we see that

∇f(I/m) = −βKm
2

I +
βKκ

2Z(I/m)
I

and so we can take the Lagrange multiplier λ = −βKm
2 + βK

√
mκ

2Z(I/m) to establish that

P = I/m is a stationary point.
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Chapter 6

A convex approach to learning

Gaussian latent tree models

� 6.1 Introduction

The central problem of statistical modeling is to find a simple probabilistic model that

approximates (in an appropriate sense) observations of quantities of interest. Insisting

on simple models avoids overfitting and (depending on the model class) may mean that

subsequent inference tasks can be performed more efficiently. From the viewpoint of

probabilistic graphical models, simpler models are typically those for which many non-

trivial conditional independence relations hold among the variables. These relations

can be encoded in a graph, and if this graph has low treewidth many inference queries

can be performed efficiently1.

Even if a collection of random variables has many non-trivial conditional indepen-

dence relations, the marginal distribution on a subset of variables often has none at

all. Put another way, even if there does not seem to be any interesting conditional

independence relations among a collection of observed random variables, we could just

be observing a subset of variables in a model with more variables and a much simpler

structure. This observation suggests modeling given data as observations of a subset

of the variables in a larger, simple model with additional latent variables. In some

situations these latent variables may have natural interpretations, as true unobserved

effects that explain correlation among the data. In general they may not have such

clear interpretations, but still allow us to work with more expressive models that are of

low complexity and may allow for efficient inference.

Particularly interesting are latent variable models where the latent variables have a

hierarchical dependence structure. Models with this flavor range from ‘deep Boltzmann

machines’ (see, e.g., [109]) to the multiresolution models used in applications such as

geophysics and oceanography [137]. These models are able to capture correlations oc-

1This is the case, at least, when all the variables are jointly Gaussian or all the variables take finitely
many values
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curring at multiple scales in the data, while (in some cases) maintaining computational

tractability.

The simplest hierarchical latent variable models are latent tree models. Here the

overall model consists of a collection of (not necessarily scalar) random variables that are

Markov with respect to a tree (see Section 6.2). The observed variables are often (but

not necessarily) the variables corresponding to the leaves of the tree. These models have

the distinct advantage that inference tasks can typically be carried out via naturally

asynchronous and distributed message-passing algorithms on the tree, with complexity

that is linear in the number of vertices in the tree (but depends also on the complexity

of ‘local’ inference queries at each node).

In this chapter we focus on latent tree models where all the variables are jointly

Gaussian and where we observe the leaf-indexed variables of the tree model. Our

overall aim is to develop tractable methods to learn the parameters, the dimensions of

the latent variables, and the tree structure of a Gaussian latent tree model given only

second-order statistics among the leaf-indexed variables.

For the purposes of analysis, we are interested in a planted version of the problem,

where we assume there is a true underlying tree model with low-dimensional latent

variables and we aim to (approximately) recover it. On the other hand, even if we

have no reason to believe that our data come from a tree model we may still want

to approximate it as such for computational reasons. With this in mind, we aim to

develop global methods that always produce valid Gaussian latent tree models, and do

not rely on the underlying data having any particular structure. In this setting, our

aim is to balance the quality of the approximation with complexity of the latent tree

model, which is dominated by the largest dimension of a latent variable.

� 6.1.1 Basic approach and main contributions

We now explain the basic approach taken in the chapter and our main contributions.

The key observation we use is that the covariance matrices among the leaf-indexed

variables in a Gaussian tree model are characterized by admitting a structured matrix

decomposition of the form Σ =
∑

v∈V Xv with one term for every vertex of the tree. The

terms Xv in the decomposition are all positive semidefinite, the supports of the terms

encode the combinatorial structure of the tree, and the ranks of certain linear combina-

tions of elements of the Xv encode the dimensions of the latent variables. We call such a

decomposition of a positive semidefinite matrix a latent tree covariance decomposition

(LTCD), a notion defined precisely in Section 6.3 to follow.
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Figure 6.1: There are many valid latent tree models corresponding to the covariance
among the leaves of a tree model. Our method for finding the tree structure involves
first finding a latent tree model with one ‘large’ (higher-dimensional) latent variable, as
shown on the left. It then searches for additional hierarchical structure in this latent
variable (as shown in the center diagram) until no more structure can be found (as
shown on the right).

Known tree structure

If the tree structure is fixed and assumed known, then the supports of all the terms in an

LTCD are fixed and known. As such, the set of all possible LTCDs of a given positive

semidefinite matrix X with respect to a fixed tree is a convex set defined by linear

equality constraints and positive semidefiniteness conditions (see Section 6.3). This

means that instead of searching over explicit parameterizations of Gaussian latent tree

models (Markov with respect to our fixed tree), we can search for LTCDs. Instead of

explicitly fixing the dimensions of the latent variables in a parameterization, we search

for LTCDs for which the appropriate linear combinations of the terms have low rank, as

these correspond to Gausian latent tree models with low-dimensional latent variables.

By minimizing different convex functions as surrogates for the rank function, we obtain

different convex optimization-based methods to attempt to construct LTCDs.

Our first contribution is to propose and analyze a convex optimization-based method

that aims to perform LTCDs with respect to a fixed, given, tree structure. We estab-

lish sufficient conditions on an underlying Gaussian latent tree model that ensure our

method can exactly recover the model parameters (including dimensions of the latent

variables) from the covariance among the leaf-indexed variables. The conditions are

geometric in nature, and are expressed in terms of the principal angles between cer-

tain subspaces of the observation space associated with each variable in the latent tree

model.

Unknown tree structure

Our second contribution is to propose and analyze a method to recover the tree structure

(in addition to the dimensions of the latent variables and the model parameters) in the

case in which we are only given the covariance among the leaf-indexed variables. Our
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method uncovers the unknown tree structure in stages from the leaf to the root. At each

stage we solve a convex optimization problem, extract additional partial information

about the tree structure from its solution, and then use this information to define a

more refined convex optimization problem, allowing us to progress to the next stage.

The main idea behind the method is that the covariance among the leaf-indexed

variables of a Gaussian tree model has many LTCDs with respect to many trees (see

Figure 6.1). Indeed if a matrix has an LTCD with respect to one rooted tree, it also

has an LTCD with respect to any tree obtained by contracting into a single variable, an

entire rooted subtree of the original tree. The extreme case of this is to group together

all of the non-leaf vertices, in which case the observed covariance has an LTCD with

respect to a star-shaped tree. Our method proceeds by first performing an LTCD of

the given leaf-covariance with respect to this star-shaped tree. We do this using our

convex optimization-based method for constructing LTCDs. We can recover the next

layer of the tree from the column space of the root-indexed term in the decomposition

as it tells us how the leaves are connected to their parents. We then repeat the process,

each time finding an LTCD with respect to a more refined tree based on the additional

structure we have uncovered, until there is no remaining structure in the root-indexed

latent variable.

Throughout our discussion of recovering the tree structure, we restrict attention to

trees where all the leaves are at the same distance from the root. When the under-

lying Gaussian model is non-singular, we show that our procedure correctly recovers

all of these structures under very similar conditions to those that ensure our convex

optimization-based method works when the tree structure is given.

� 6.1.2 Related work

The simplest Gaussian latent tree model is the factor analysis model, introduced by

Spearman in 1904 [125]. In the system identification literature this model is referred to

as the ‘Frisch scheme’ [70] after the Norwegian economist Ragnar Frisch. The problem

of fitting the model parameters of a factor analysis model remains a challenge, and

is an actively studied problem (see, e.g., [13] for a recent survey of new algorithmic

approaches). As with most latent variable models, the dominant approach in practice

is to use the expectation maximization algorithm (EM) [37]. Being based on local

optimization, this approach offers few guarantees, (although see, e.g., [5] for recent

developments in understanding EM). Furthermore, approaches based on EM do not

naturally extend to more complicated latent tree models where the tree structure itself

is unknown.

In the multiscale signal processing literature, Gaussian latent tree models are re-

ferred to as Multiscale Auto-Regressive (MAR) processes [11]. The stochastic real-
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ization problem for MAR processes involves studying which models can arise as the

marginal distribution among the observed variables (typically leaves) of MAR pro-

cesses. This problem is considered, for instance, in [33, 68, 47]. In these works the

tree structure and dimensions of the latent variables are fixed, a priori. The work of

Daoudi et al. [33] focuses on establishing connections between the realization problem

and wavelets. In [68], a method based on the idea of canonical correlations is proposed

to fit MAR processes to data. A related, yet more computationally efficient, approach

appears in [47], but is restricted to so-called internal models, a strict subset of all MAR

processes [67]. These methods are inherently local in nature, aiming to fit parame-

ters in such a way that certain subsets of variables are decorrelated according to the

constraints imposed by the tree structure and the fixed state dimensions.

Convex optimization-based matrix decomposition methods for learning Gaussian

latent variable models date at least to the 1940 work of Ledermann [75]. Ledermann

gave a characterization of when the minimum trace factor analysis heuristic (a special

case of the method we propose in Section 6.4) recovers factor analysis models with a

single, one-dimensional, latent variable. Much more recently, Chandrasekaran, Parrilo,

and Willsky [27] propose and carefully analyze a convex optimization-based matrix de-

composition approach to a more complex latent variable modeling problem. In that

work the aim is to decompose the inverse covariance of the observations as a sparse

positive semidefinite matrix minus a low-rank positive semidefinite matrix, correspond-

ing to a sparse graphical model structure among the observed variables, and a single

low-dimensional latent variable. In contrast, latent tree models focus on uncovering

structure among the latent variables, while assuming the simplest possible structure

among the observed variables.

Recently, methods have been developed to learn the tree structure of latent tree

models from data. Choi et al. [31] developed an approach based on the fact that the

information distances among the observed variables in a latent tree model must form

a tree metric. From this observation, the authors develop a method based on quartet

tests to learn the latent tree structure when the latent variables are scalar Gaussians

or discrete random variables with a common finite alphabet. They extend this to a

more global method that first learns a tree model among the observed variables, and

then adds latent structure to the tree via quartet tests. Notably, the methods of Choi

et al. can deal with the case where any subset of the variables is observed, not just the

leaves. These ideas are extended to the case where the latent variables are non-scalar

by Anandkumar et al. [4] who developed a spectral generalization of the quartet tests

of Choi et al. [31].
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� 6.1.3 Outline

The remainder of the chapter is organized as follows. Section 6.2 summarizes terminol-

ogy and notational conventions, establishes some useful linear algebraic facts that are

used repeatedly in the chapter, and describes basic facts about Gaussian tree models,

including the structure of their covariance matrices. In Section 6.3 we examine Gaussian

latent tree models, and relate them to LTCDs, which are certain structured matrix de-

compositions (see Definition 6.3.4). The main result of the section is Theorem 6.3.9. It

characterizes the covariance among a subset of the variables of a Gaussian tree model in

terms of such a matrix decomposition. In Section 6.4 we propose a convex optimization-

based method to perform LTCDs when the tree structure is given but the dimensions of

the latent variables are not given. Section 6.4.2 is focused on establishing conditions on

an underlying Gaussian latent tree model under which our convex optimization method

can exactly decompose the covariance among the leaves, allowing us to recover the full

tree model. We conclude the section with a discussion of alternative objective functions

in our convex optimization problem that are complicated to analyze but may lead to

better results in practice. In Section 6.5 we no longer assume that the tree structure

is known. We show that the convex optimization methods from Section 6.4 actually

reveal information about the tree structure in the optimal dual variables. We propose

a method that, by solving a sequence of convex optimization problems, uncovers the

tree structure and performs an LTCD to recover the model parameters.

� 6.2 Preliminaries

In this section we first introduce notation and terminology related to trees and matrices

used throughout the chapter. The second part of the section introduces Gaussian tree

models with a focus on the structure of their covariance matrices.

� 6.2.1 Trees

An undirected tree T = (V, E) is a connected acyclic graph with vertex set V and edge

set E . The leaves of a tree T are the vertices of degree one. There is a unique path

joining any pair of vertices u, v ∈ V. A rooted tree is an undirected tree T together

with a distinguished vertex called the root. A choice of root induces a natural partial

order, the tree order, on the vertices of a tree, with u � v if and only if the path from

the root to u passes through v. The length of the path joining vertices u and v is

the distance d(u, v) from u to v. A vertex u is the parent of v, denoted u = P(v), if

u � v and d(u, v) = 1. The children of v, denoted C(v), are those vertices with parent

v. The set of ancestors of v is {u ∈ V : u � v} and the set of descendants of v is

D(v) := {u ∈ V : u � v}. For any pair of vertices u, v ∈ V there is a least upper bound
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u ∨ v ∈ V that is furthest from the root among all common ancestors of u and v. See

Figure 6.2 for a diagram showing this notation.

Trees and collections of subsets

Often, in what follows, we are interested in a tree with additional structure. In addition

to a tree we usually have n scalar variables that are partitioned among the k leaves of

the tree (where k ≤ n). As such, the structure of interest consists of a tree with k leaves

together with a partition of [n] into k disjoint sets. For example, the tree on the right

in Figure 6.2 has k = 8 leaves and n = 10. The k = 8 shaded sets form a partition of

[10]. Suppose we have established this correspondence between leaves L of a tree and

a partition of [n]. Let the sets in the partition be (S`)`∈L. Then we can think of the

entire tree structure just in terms of subsets of [n]. We associate with a vertex w in

the tree, the subset Sw obtained by taking the (disjoint) union of the sets S` over all

leaves ` that are descendants of w. For example, the vertex labeled w on the left in

Figure 6.2 corresponds to the subset Sw = {1, 2, 3, 4}. This is because the leaves that

are descendants of w correspond to the sets {1, 2}, {3}, {4} and the union of these sets

is {1, 2, 3, 4}. Similarly, since all of the leaves are descendants of the root r, the set

corresponding to the root is ∪`∈LS` = [10].

This view of trees via subsets is notationally very useful throughout the chapter.

The following terminology captures which collections of subsets correspond to trees.

Definition 6.2.1. A collection (Sv)v∈V of subsets of [n] forms a tree if there exists a

rooted tree T = (V, E) so that for all vertices u that are not leaves,

Su =
⋃̇

v∈C(u)
Sv (6.2.1)

where ∪̇ denotes disjoint union.

With any partially ordered set there is a standard way to construct a directed acyclic

graph, called the Hasse diagram [126, Chapter 3], of the partial order. In the present

context, the vertices of the diagram are labeled with the sets Sv. A set Su is a parent of

Sv if Su ) Sv and there does not exist another set Sw between Su and Sv in the sense

that Su ) Sw ) Sv. The Hasse diagram of the following collection of fourteen subsets

of [10] is shown on the right in Figure 6.22

{1, 2}, {3}, {4}, {5}, {6}, {7}, {8, 9},{10}, {1, 2, 3},
{1, 2, 3, 4}, {5, 6}, {8, 9, 10}, {7, 8, 9, 10}, {1, 2, 3, . . . , 10}.

2It is conventional not to explicitly show the orientation of the edges in a Hasse diagram.
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r

w t u ∨ v

u

v

P(v)

C(t)

D(w)

{1, 2, 3, . . . , 10}

{1, 2, 3, 4} {5, 6} {7, 8, 9, 10}

{1, 2, 3} {8, 9, 10}{4} {5} {6} {7}

{1, 2} {3} {8, 9} {10}

Figure 6.2: On the left is a rooted tree illustrating various notational conventions
used throughout the paper. The eight leaves are shaded. On the right is the Hasse
diagram (see the discussion following Definition 6.2.1) of a collection of fourteen subsets
of {1, 2, 3, . . . , 10}. This collection of subsets forms the rooted tree (in the sense of
Definition 6.2.1) appearing on the left. The leaves are shaded to aid comparison of
the two diagrams. Correspondences between the tree and the collection of subsets are
explained under the heading ‘Trees and collections of subsets’ in Section 6.2.1.

Concretely, a collection of subsets of [n] forms a tree if its Hasse diagram is a tree

T = (V, E) and the condition (6.2.1) is satisfied with respect to that tree.

� 6.2.2 Matrices and linear algebra

General notation

Let Rn denote real vectors with n components, Rn×m denote n × m matrices with

real entries, and Sn the space of symmetric n × n matrices. We equip Rn with the

standard inner product 〈x, y〉 =
∑n

i=1 xiyi. We equip Sn with the trace inner product

〈X,Y 〉 = tr(XY ).

If x ∈ Rn and I ⊆ [n] we say that x is supported on I if xi 6= 0 implies i ∈ I. If

I ⊆ [n] we use the notation RI to denote the coordinate subspace of Rn consisting of

vectors supported on I. We use the notation SI to denote the subspace of Sn consisting

of symmetric matrices X such that if Xij 6= 0 then i, j ∈ I.

We denote the column space of an n×m matrix A by col(A) ⊆ Rn. Given a subspace
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U ⊆ Rn we define its support to be

supp(U) :=
⋂
I⊆[n]

RI⊇U

I

i.e. I is the inclusion-wise minimal set on which every element of U is supported.

Observe that if X ∈ Sn and I = supp(col(X)) then I is the inclusion-wise minimal

subset of [n] such that Xij 6= 0 whenever i, j ∈ I.

If U is a subspace of Rn let PU : Rn → Rn be the orthogonal projector onto U , i.e. the

positive semidefinite linear map such that col(PU ) = U , P 2
U = PU and tr(PU ) = dim(U).

Similarly let πU : Rn → U be the linear map such that πUπ
∗
U is the identity map on U

and PU = π∗UπU . If I ⊆ [n] and RI is the associated coordinate subspace, we use the

shorthand PI and πI instead of PRI and πRI to simplify the notation. Furthermore,

if X is an n × n matrix and I, J ⊆ [n] we use the shorthand XIJ := πIXπ
∗
J if it is

convenient to do so.

Positive semidefinite matrices

Let Sn+ denote n × n positive semidefinite matrices and if I ⊆ [n] denote by SI+ the

|I| × |I| positive semidefinite matrices with rows and columns indexed by I. We write

B � A if B −A ∈ Sn+ for some n.3 The following simple observation about the column

spaces of positive semidefinite matrices is used at various points throughout the chapter.

Lemma 6.2.2. If A and B be symmetric matrices satisfying B � A � 0 then col(B) ⊇
col(A).

Proof. If M is any positive semidefinite matrix then col(M) = {x : 〈Mx, x〉 > 0}∪ {0}.
Since B � A � 0, if x ∈ col(A) \ {0} then 〈Bx, x〉 ≥ 〈Ax, x〉 > 0 and so x ∈ col(B) \
{0}.

� 6.2.3 Gaussian tree models

Let T = (V, E) be a tree and (xv)v∈V a collection of jointly Gaussian random variables

with mean zero4. Suppose xv takes values in Rnv for each v ∈ V. We call Rnv the state

space of xv and call nv the dimension of xv. The collection (xv)v∈V is Markov with

respect to T if whenever {u, v} /∈ E and w /∈ {u, v} is on the (unique) path between u

and v, the variables xu and xv are conditionally independent given xw. We say such a

collection of Gaussian random variables follows a Gaussian tree model.

3Recall that we also use the notation u � v for the partial order on the vertices of a rooted tree.
The intended interpretation will be clear from the context.

4We make this assumption throughout to simplify the exposition.
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If (xv)v∈V follows a Gaussian tree model with associated tree T = (V, E) (rooted

at r) and dimensions (nv)v∈V then it has a parameterization as a generative process as

follows. Let (Qv)v∈V be nv × nv positive semidefinite matrices and let (Av)v∈V\{r} be

nv × nP(v) real matrices. If (xv)v∈V is defined via the root-to-leaves generative process

xr ∼ N (0, Qr) and xv|xP(v) ∼ N (AvxP(v), Qv) (6.2.2)

then (xv)v∈V follows a Gaussian tree model with tree T = (V, E) (rooted at r) and

dimensions (nv)v∈V . Furthermore, every Gaussian tree model can be obtained this way.

We can express (6.2.2) more explicitly in state space form as

xr = wr and xv = AvxP(v) + wv for all v 6= r (6.2.3)

where wv ∼ N (0, Qv) for all v ∈ V.5 We do not require that the covariance of the

entire tree model (xv)v∈V be strictly positive definite in this parameterization. This

additional flexibility is important in this chapter.

Covariance of Gaussian tree models

We now describe Σ, the covariance of the collection of random variables (xv)v∈V . We

first do so explicitly in terms of (Av)v∈V\{r} and (Qv)v∈V . We then rewrite this de-

scription in a more compact way so that the notation is more concise in subsequent

sections.

If v ∈ V then from (6.2.2) it is clear that

Σvv := E[xvx
T
v ] = Qv +AvΣP(v)A

T
v .

Recursively applying this formula we see that if v = v1, v2, . . . , vk, vk+1 = r is the path

from v to the root r then

Σvv = Qv1 +Av1Qv2A
T
v1 + (Av1Av2)Qv3(Av1Av2)T + · · ·+

(Av1Av2 · · ·Avk)Qvk+1
(Av1Av2 · · ·Avk)T .

From this we can see that the covariance of a single variable xv depends only on its

ancestors. If v, w ∈ V, let v ∨ w denote their least common ancestor (see Figure 6.2).

Let the path from v to w be v = v1, v2, . . . , vk, vk+1 = v ∨ w = w`+1, w`, . . . , w2, w1.

Then the covariance between v and w is given by

Σvw = (Av1Av2 · · ·Avk)Σv∨w v∨w(Aw1Aw2 · · ·Aw`)
T

5We emphasize that in (6.2.3) the index of the updated state xv and the noise wv are the same.
This is different from a typical state space description of the form xk+1 = Axk + wk, where the index
of the updated state xk+1 and the noise wk are different.
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and so only depends on the ancestors of v ∨ w, i.e. the common ancestors of v and w.

We now introduce notation to describe Σ, the covariance of the (xv)v∈V , more

concisely. Given matrices (Av)v∈\{r} with Av ∈ Rnv×nP(v) define a block matrix N by

Nvu =

{
Av if u = P(v)

0 otherwise.
(6.2.4)

If we order the vertices of the tree in a perfect elimination ordering6 then N is block

strictly upper triangular. Define a block matrix Φ by Φ := (I−N)−1. It can be verified

(by computing (I − N)Φ, for instance) that the block entries of Φ are given by the

products of the Av along directed paths in T , i.e. by

Φvu =


0 if u and v are incomparable

I if u = v

AvΦP(v)u if v ≺ u.

(6.2.5)

Observe that Φvu ∈ Rnv×nu describes a transition map from the state space for xu to

the state space for xv. In this notation it is straightforward to check that

Σvw := E[xvx
T
w] =

∑
u�v∨w

ΦvuQuΦT
wu (6.2.6)

because xv and xw can only be correlated via their common ancestors. Again if we order

V in a perfect elimination ordering then Φ is upper triangular with identity matrices

on the block diagonal. Let Q be the block diagonal matrix with the Qv on the block

diagonal, ordered in the same way as Φ. Then the covariance of the corresponding

Gaussian tree model is

Σ = (I −N)−1Q(I −N)−T = ΦQΦT =
∑
v∈V

ΦVvQvΦ
T
Vv (6.2.7)

where ΦVv is the block column of Φ indexed by v. This is consistent with (6.2.6)

because the column of Φ indexed by v is only supported on the blocks corresponding

to the descendants of v.

To clarify this notation we now describe an example. We return to this example in

Section 6.3.

Example 6.2.3. Consider the rooted tree shown on the left in Figure 6.3. Suppose

the collection of matrices Av1 , Av2 , Aw1 , Aw2 , . . . , Aw5 and Qr, Qv1 , Qv2 , Qw1 , . . . , Qw5

6For a tree, a perfect elimination ordering is an ordering of the vertices such that for any vertex u,
the only neighbor of u occurring after u in the ordering is its parent (see, e.g., [107]).
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r

v1 v2

w1 w2 w3 w4

w5

{w1, w2, w3, w4, w5}

{w1, w2} {w3, w4}

{w1} {w2} {w3} {w4}

{w5}

Figure 6.3: On the left is the tree structure for Examples 6.2.3 and 6.3.2. On the
right is the Hasse diagram of the collection (D(u) ∩ L)u∈V of subsets of leaves of the
tree on the left. Note that, for example, the vertex v1 on the left corresponds to the
set D(v1) ∩ L on the right.

parameterize a Gaussian tree model with respect to this tree. Then the covariance Σ

of the model has a factorization as ΦQΦT . Writing this explicitly we obtain

I

Av1 I

Av2 0 I

Aw1Av1 Aw1 0 I

Aw2Av1 Aw2 0 0 I

Aw3Av2 0 Aw3 0 0 I

Aw4Av2 0 Aw4 0 0 0 I

Aw5 0 0 0 0 0 0 I





Qr
Qv1

Qv2
Qw1

Qw2

Qw3

Qw4

Qw5


×



I

Av1 I

Av2 0 I

Aw1Av1 Aw1 0 I

Aw2Av1 Aw2 0 0 I

Aw3Av2 0 Aw3 0 0 I

Aw4Av2 0 Aw4 0 0 0 I

Aw5 0 0 0 0 0 0 I



T

(where any missing entries are zeros). Each column of the matrix on the left corresponds
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to ΦVu for some vertex u ∈ V. For example,

ΦVr =



I

Av1
Av2
Aw1Av1
Aw2Av1
Aw3Av2
Aw4Av2
Aw5


and ΦVv2 =



0

0

I

0

0

Aw3

Aw4

0


.

� 6.3 Gaussian latent tree models and matrix decompositions

A collection of jointly Gaussian random variables follows a Gaussian latent tree model if

they can be realized as the marginal distribution among a subset of variables in a Gaus-

sian tree model. In this section we first discuss notions of minimality and singularity for

Gaussian latent tree models, and see that these are quite distinct. We then characterize

the marginal covariance among the leaf-indexed variables of a Gaussian tree model in

terms of structured matrix decompositions. We are particularly interested in Gaussian

latent tree models with low-dimensional latent variables. The dimensions of the latent

variables appear as the ranks of linear combinations of the matrices appearing in the

corresponding matrix decompositions.

� 6.3.1 Minimality and singularity

In this section we discuss two aspects of latent tree models. The first is minimality,

whether the dimensions of the latent variables can be reduced while maintaining the

same marginal distribution among the observed variables and the same Markov struc-

ture among all the variables. The second is singularity, whether the joint distribution of

all the variables in the model is singular. We present a simple example (Example 6.3.1

to follow) that shows that these notions are different.

Minimality

Suppose (xv)v∈V is Markov with respect to T = (V, E) and is parameterized by (Av)v∈V\{r}
and (Qv)v∈V . The marginal distribution at the leaf-indexed variables follows (by defi-

nition) a latent tree model with respect to T . The joint model can fail to be a minimal

realization with respect ot T in one of two ways.

1. The marginal covariance Σvv at some variable v ∈ V could be singular. In this

case there are parts of the state space at v on which xv is deterministically zero.

We can reparameterize the latent variable to create a new realization in which xv
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has a lower dimensional state space without affecting the marginal distribution at

the leaves. We do this by taking U = col(Σvv), replacing Av with πUAv, replacing

Aw with Awπ
∗
U for w ∈ C(v), and replacing Qv with πUQvπ

∗
U . The new state

space has dimension dim(U) and the marginal covariance is now π∗UΣvvπU which

is non-singular.

2. The map ΦLv from the state space at v to the observation space could fail to be

injective (i.e. have a non-trivial nullspace). In this case there are some parts of

the state space at v that have no effect on the observed variables, and so need

not be represented. We do this explicitly by taking U to be the nullspace of ΦLv,

replacing Av with πU⊥Av, replacing Aw with Awπ
∗
U⊥

for w ∈ C(v), and replacing

Qv with π∗
U⊥
QvπU⊥ .

Given a tree model, applying these operations (where possible) reduces it to a minimal

one. Our objective, overall, is to construct latent tree models. The methods we describe

always produce minimal models (via the construction in Theorem 6.3.9 to follow).

If either Σvv is singular or ΦLv is not injective then the column space of

ΦLvΣvvΦ
T
Lv

has dimension that is smaller than the dimension of the state space (the inner dimension

in the factorization of this matrix). As such, the dimensions of the column spaces of

the matrices ΦLvΣvvΦ
T
Lv (for all latent variables v) tell us the dimensions of the state

spaces in a corresponding minimal model. The column spaces of these matrices play an

important role in this chapter. We revisit them in Definition 6.3.3 to follow.

We have seen that failures of minimiality occur because of rank deficiencies in quan-

tities related to a single latent variable. These can be fixed by making local coordinate

changes. Since these coordinate changes are local to each latent variable they do not

affect the overall Markov structure of the model.

Singularity

A quite distinct phenomenon occurs when the overall latent tree model has singular

covariance. We call these singular models. It is often not possible to fix this without

breaking the Markov structure among the variables. Indeed it is quite possible for the

overall model to be singular even when

1. the model is minimal and

2. the marginal covariance among all of the leaf variables is non-singular.

The following example gives a simple illustration of this.
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Example 6.3.1. Consider a tree with three vertices, a root r and two leaves u and v.

Define a Gaussian tree model via

xr = wr, xu =

[
1 −1

0 0

]
xr + wu, and xv =

[
1 1

0 0

]
xr + wv

where wr, wu, and wv each have mean zero and covariances, respectively,

Qr =

[
1 0

0 2

]
, Qu = Qv =

[
0 0

0 1

]
.

We claim that the model is minimal and that the marginal covariance among the leaves

is non-singular, and yet the joint model is singular.

The joint covariance of the entire model is (by (6.2.7))

Σ =



1 0

0 1

1 −1 1 0

0 0 0 1

1 1 0 0 1 0

0 0 0 0 0 1





1 0

0 2

0 0

0 1

0 0

0 1





1 0

0 1

1 −1 1 0

0 0 0 1

1 1 0 0 1 0

0 0 0 0 0 1



T

which is singular since the left and right matrices are invertible and the matrix in the

middle is singular. On the other hand, the model is minimal. The marginal covariances

at the leaves u and v are

Σuu = Σvv =

[
3 0

0 1

]
which are clearly non-singular. The marginal covariance at the root is

Σr =

[
1 0

0 2

]

which is also non-singular. Furthermore, the map

ΦL r =


1 −1

0 0

1 1

0 0


is injective. Hence the model is minimal. Finally, the joint covariance of the leaf-indexed
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variables is, by a straightforward calculation

[
Σuu Σuv

Σvu Σvv

]
=


3 0 −1 0

0 1 0 0

−1 0 3 0

0 0 0 1


which is non-singular.

Such models, that are minimal and yet singular, arise naturally when connecting

wavelets and ideas in multi-scale signal processing (see, e.g., [46, 33]). As such, we do

not want to rule them out. We revisit issues related to singular and non-singular mod-

els at the end of Section 6.3.2 to follow in connection with the matrix decomposition

parameterization of latent tree models developed in that section. Furthermore, differ-

ences between singular and non-singular models are important in Section 6.5 in which

we analyze a method to learn the tree structure associated with a Gaussian latent tree

model.

� 6.3.2 Latent tree covariance decompositions

Recall from Section 6.2 that the covariance of a Gaussian tree model has a decomposition

as

Σ =
∑
v∈V

ΦVvQvΦ
T
Vv.

The terms in this decomposition are all positive semidefinite. Furthermore, the column

space of ΦVv has support contained in the coordinate subspace corresponding to D(v),

the descendants of v. As such, the supports of the terms encode the tree structure.

Suppose, now, we observe only the variables indexed by L ⊂ V, the leaves of the

tree. The covariance among the observed variables is simply the principal submatrix

ΣLL of Σ indexed by L. Then the marginal covariance has a similar decomposition to

the full covariance as

ΣLL =
∑
v∈V

ΦLvQvΦ
T
Lv. (6.3.1)

Before discussing the key properties of this decomposition, we consider an example.

Example 6.3.2. Continuing from Example 6.2.3, we now consider the submatrix of

Σ that is indexed by the leaves of the tree on the left in Figure 6.3, i.e. the vertices
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w1, w2, . . . , w5. This submatrix ΣLL has the following factorization
Aw1Av1 Aw1 0 I

Aw2Av1 Aw2 0 0 I

Aw3Av2 0 Aw3 0 0 I

Aw4Av2 0 Aw4 0 0 0 I

Aw5 0 0 0 0 0 0 I




Qr
Qv1

Qv2
Qw1

Qw2

Qw3

Qw4

Qw5


×


Aw1Av1 Aw1 0 I

Aw2Av1 Aw2 0 0 I

Aw3Av2 0 Aw3 0 0 I

Aw4Av2 0 Aw4 0 0 0 I

Aw5 0 0 0 0 0 0 I



T

(where again the missing entries are zeros). We obtain the corresponding matrix de-

composition (6.3.1) by expanding this as a sum of block outer products. Such a decom-

position takes the explicit form

ΣLL =


Aw1Av1
Aw2Av1
Aw3Av2
Aw4Av2
Aw5


Qr

Aw1Av1
Aw2Av1
Aw3Av2
Aw4Av2
Aw5



T

+


Aw1

Aw2

0

0

0


Qv1


Aw1

Aw2

0

0

0



T

+


0

0

Aw3

Aw4

0


Qv2


0

0

Aw3

Aw4

0



T

+


I

0

0

0

0


Qw1


I

0

0

0

0



T

+


0

I

0

0

0


Qw2


0

I

0

0

0



T

+


0

0

I

0

0


Qw3


0

0

I

0

0



T

+


0

0

0

I

0


Qw4


0

0

0

I

0



T

+


0

0

0

0

I


Qw5


0

0

0

0

I



T

.

We now describe the important features of the decomposition (6.3.1).
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Positivity

Each term in the decomposition (6.3.1) is of the form ΦLvQvΦ
T
Lv and so is positive

semidefinite.

Support

The column space of a term ΦLvQvΦ
T
Lv in the decomposition (6.3.1) has support con-

tained in the coordinate subspace corresponding to D(v) ∩ L. This is because if ` ∈ L
then Φ`v 6= 0 if and only if ` is also a descendant of v. In Example 6.3.2 we see that

the third term in the decomposition, i.e. ΦLv2Qv2ΦT
Lv2 , has column space contained in

the coordinate subspace corresponding to the leaves w3 and w4. From Figure 6.3 these

are the leaves that are also descendants of v2, i.e. D(v2) ∩ L = {w3, w4}.
The collection of sets D(v) ∩ L for v ∈ V forms the rooted tree (in the sense of

Definition 6.2.1) with respect to which the Gaussian model is parameterized. To see

this, suppose we construct the Hasse diagram (see Section 6.2.1) of this collection of

sets ordered by inclusion. Doing so we obtain the original tree. For instance, suppose

we take the tree shown on the left in Figure 6.3 and form the collection (D(v) ∩ L)v∈V
of subsets of the leaves. The corresponding Hasse diagram of the sets is shown on the

right in Figure 6.3 and is clearly is the same as the original tree structure on the left.

Subspaces corresponding to the latent variables

We can change basis in the state space of a latent variable (and appropriately change

parameterization) without affecting the covariance at the leaves. Indeed any informa-

tion we can hope to extract about a latent variable xv from observations of the leaves

must be invariant under such coordinate changes in the latent state spaces. One such

quantity is the matrix ΦLvΣvvΦ
T
Lv. We have seen in Section 6.3.1 that the dimension of

the column space of this matrix reflects the dimension of the corresponding latent vari-

able in a minimal realization. This is intuitive because the column space of ΦLvΣvvΦ
T
Lv

is the subspace of the observation space that can be affected by the random variable

xv.

Since the column spaces of the ΦLvΣvvΦ
T
Lv for v ∈ V capture important structural

information about the latent variables, and play an important role in the rest of the

chapter, we introduce specific notation and terminology for them.

Definition 6.3.3. Suppose (xv)v∈V is Gaussian tree model with covariance Σ, and

suppose we observe the leaf-indexed variables. Define the subspace corresponding to

v ∈ V to be Uv := col(ΦLvΣvvΦ
T
Lv).

We next explain how these subspaces arise in the decomposition (6.3.1). In par-

ticular we relate the subspaces Uv with the column spaces of certain matrices in the
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decomposition (6.3.1).

First, suppose we are in the situation where all of the Qv are positive definite. Then

the column space of ΦLvΣvvΦLv is the same as the column space of ΦLvQvΦ
T
Lv. Hence

the subspaces Uv appear directly as the column spaces of the terms in the decomposi-

tion (6.3.1).

Things are more subtle in the general case where some of the Qv may be singular.

In this case the column space of the term ΦLvQvΦ
T
Lv of the decomposition (6.3.1) is a

strict subspace of Uv. As such, we cannot recover Uv from this single term of the de-

composition. Nevertheless we can write the matrix ΦLvΣvvΦ
T
Lv as a linear combination

of submatrices of the terms in the decomposition (6.3.1). In the course of the proof of

Theorem 6.3.9 (in Section 6.7.1) we show that

ΦLvΣvvΦ
T
Lv =

∑
u�v

PL∩D(v)(ΦLuQuΦT
Lu)PL∩D(v).

This is a sum of (appropriately zero-padded) submatrices of terms in the decomposi-

tion (6.3.1). In particular its entries are linear in the terms of the decomposition. This

shows that, in general, it should be possible to extract the subspaces Uv given only the

terms of the decomposition (6.3.1).

Definition of a latent tree covariance decomposition

Thus far in this section we have seen that the marginal covariance among the leaves of a

Gaussian tree model admits a particular decomposition (6.3.1). We have seen that the

terms of the decomposition are positive semidefinite and the supports of their column

spaces form a tree. Definition 6.3.4, to follow, describes those matrices that admit

a decomposition into positive semidefinite terms with column spaces the supports of

which form a tree.

Furthermore, we have seen that the decomposition (6.3.1) contains information

about the structure of the tree and the subspaces Uv which encode important struc-

tural information about the latent variables such as their minimal dimensions. Defini-

tion 6.3.4, to follow, also describes how these structures appear in the more abstract

matrix decomposition setting.

The following definition plays a central role in the chapter, as it gives an alternative

description (see Theorem 6.3.9 to follow) of the possible matrices that can appear as the

marginal covariance among the leaf-indexed variables of a Gaussian latent tree model.

Definition 6.3.4. Let V be a finite set and X ∈ Sn+ be a positive semidefinite matrix.

A decomposition X =
∑

v∈V Xv is a latent tree covariance decomposition (LTCD) of X

if

• Xv � 0 for all v ∈ V
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• there is a collection (Sv)v∈V of distinct subsets of [n] such that

– the (Sv)v∈V form a tree (see Definition 6.2.1)

– Sv ⊇ supp(col(Xv)) for all v ∈ V.

Associated with an LTCD we define

• the subspaces of the decomposition by

Uv := col
(∑

u�v PSvXuPSv

)
⊆ RSv for all v ∈ V; (6.3.2)

• the dimensions of the decomposition by nv := dim(Uv) for all v ∈ V; and

• the structure of the decomposition to be the collection (Sv)v∈V of subsets of [n].

The most important part of the definition is the notion of the dimension of an

LTCD. Indeed any positive semidefinite matrix has an LTCD (see Examples 6.3.5). On

the other hand, if a matrix has an LTCD where all of the dimensions are small, then

this is a very special structure that can be exploited algorithmically.

Examples of LTCDs

Since Definition 6.3.4 is rather complicated, we illustrate it with some examples.

Example 6.3.5 (Trivial LTCDs). Every n × n positive semidefinite matrix X has an

LTCD with one term X = Xr. In this case the structure of the decomposition is

Sr = [n] (which forms a rooted tree consisting of a single vertex), the subspace of the

decomposition is Ur = col(X), and the dimension is nr = rank(X).

In Examples 6.3.6, 6.3.7, and 6.3.8 to follow we work with explicit LTCDs of 5× 5

matrices. It should not be obvious how to systematically come up with decompositions

such as these. The problem of constructing LTCDs given just the sum of the terms and

the structure of the tree is the subject of Section 6.4 to follow.

Example 6.3.6 (An LTCD of a 5 × 5 matrix). Consider the following decomposition
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u = r

v1 v2

w1 w2 w3 w4

w5

u

v1 = r v2

w1 w2 w3 w4

w5

Figure 6.4: The rooted trees on the left and on the right are the same except for the
choice of root (which is indicated with a double circle in each case). On the left, the
root is the vertex labeled u = r. On the right, the root is the vertex labeled v1 = r.
Note that this different choice of root reverses the orientation of the edge between u
and v1. Example 6.3.7 shows how these different choices of root give rise to different
LTCDs.

of a 5× 5 positive definite matrix (where omitted entries are zero).
6 −5 2 2 −6

−5 7 −2 −2 6

2 −2 6 3 −3

2 −2 3 5 −3

−6 6 −3 −3 10

 =


1

2

3

2

1

+


1 −1

−1 1

2 2

2 2

+


4 −4 2 2 −6

−4 4 −2 −2 6

2 −2 1 1 −3

2 −2 1 1 −3

−6 6 −3 −3 9

 .

If we treat each of the diagonal blocks in the three matrices on the right hand side as

separate terms, then we can think of this as a decomposition into eight terms (five from

the diagonal matrix, two from the block diagonal matrix in the middle, and one from

the full matrix). Each is positive semidefinite. Furthermore, if we list the supports of

column spaces of these terms we obtain the following list of subsets of {1, 2, 3, 4, 5}:

{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {1, 2, 3, 4, 5}.

It is straightforward to check that these sets form the rooted tree shown on the left in

Figure 6.4. Hence we have identified that this is a valid LTCD. Suppose we index the
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terms in the decomposition in the same way that we labeled the vertices of the tree

on the left in Figure 6.4. Hence the structure of the LTCD is Sw1 = {1}, Sw2 = {2},
Sw3 = {3}, Sw4 = {4}, Sw5 = {5}, Sv1 = {1, 2}, Sv2 = {3, 4}, and Su = {1, 2, 3, 4, 5}.

We now describe the subspaces associated with two of the terms in the decomposition

using (6.3.2). Indeed we have that the column space Uu of the term in the decomposition

corresponding to the root is

Uu = col(Xu) = col




4 −4 2 2 −6

−4 4 −2 −2 6

2 −2 1 1 −3

2 −2 1 1 −3

−6 6 −3 −3 9



 = span




2

−2

1

1

−3




.

By (6.3.2), the subspace Uv1 is the column space of the matrix

Xv1 + PSv1XuPSv1 =


1 −1

−1 1

+ P{1,2}


4 −4 2 2 −6

−4 4 −2 −2 6

2 −2 1 1 −3

2 −2 1 1 −3

−6 6 −3 −3 9

P{1,2}

=


5 −5

−5 5


and so Uv1 = span

{[
1 −1 0 0 0

]T}
. Both Uu and Uv1 are one-dimensional

subspaces of R5, hence the corresponding dimensions are nu = dim(Uu) = 1 and nv1 =

dim(Uv1) = 1.

The next two examples deal with different issues related to non-uniqueness of

LTCDs. The first illustrates that the same matrix typically has different LTCDs corre-

sponding to different choices of root.

Example 6.3.7 (Multiple LTCDs based on choices of root). Consider the two rooted

trees shown in Figure 6.4. The LTCD in Example 6.3.6 has structure that forms the

rooted tree on the left in Figure 6.4. It also follows from Theorem 6.3.9 to follow, that

the same matrix has a different LTCD with structure that forms the rooted tree on the
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right in Figure 6.4. A corresponding alternative decomposition is
6 −5 2 2 −6

−5 7 −2 −2 6

2 −2 6 3 −3

2 −2 3 5 −3

−6 6 −3 −3 10

 =


1

2

3

2

1

+
1

5

 1 1 −3

1 1 −3

−3 −3 9

+

 2 2

2 2

+
1

5


25 −25 10 10 −30

−25 25 −10 −10 30

10 −10 4 4 −12

10 −10 4 4 −12

−30 30 −12 −12 36

 .

Example 6.3.8 (Multiple LTCDs based on grouping terms). Another way a matrix

can have multiple LTCDs is by grouping terms in the sum in such a way that the

resulting decomposition is still a valid LTCD. For example, by grouping all the terms

corresponding to non-leaf vertices in Example 6.3.6 we obtain another valid LTCD
6 −5 2 2 −6

−5 7 −2 −2 6

2 −2 6 3 −3

2 −2 3 5 −3

−6 6 −3 −3 10

 =


1

2

3

2

1

+


5 −5 2 2 −6

−5 5 −2 −2 6

2 −2 1 1 −3

2 −2 1 1 −3

−6 6 −3 −3 9

 .

This LTCD has structure Sw1 = {1}, Sw2 = {2}, Sw3 = {3}, Sw4 = {4}, Sw5 = {5}, Sr =

{1, 2, 3, 4, 5} which forms a star-shaped tree with five leaves and the center being the

root r. In this case

Ur = col




5 −5 2 2 −6

−5 5 −2 −2 6

2 −2 1 1 −3

2 −2 1 1 −3

−6 6 −3 −3 9



 = span




1

−1

0

0

0

 ,


2

−2

1

1

−3




is now two-dimensional. This idea of constructing LTCDs by grouping terms is im-

portant in Section 6.5 as it gives a way to incorporate partial knowledge of the tree

structure into a decomposition.
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� 6.3.3 LTCDs and Gaussian latent tree models

Our main interest in LTCDs is that they give a useful alternative characterization of the

possible covariances among the leaf-indexed variables of a Gaussian latent tree model.

This characterization shows both how to construct an LTCD from a Gaussian tree

model but also, and more importantly, how to take an LTCD with given dimensions

and structure and construct from it a Gaussian latent tree model with tree and state

dimensions related to the structure and dimensions of the LTCD. We provide a proof

of this result in Section 6.7.1.

Theorem 6.3.9. If X is positive definite and has an LTCD with subspaces (Uv)v∈V ,

dimensions (nv)v∈V , and structure (Sv)v∈V (that forms a tree T ) then X can be realized

as the covariance among the leaf-indexed variables of a Gaussian tree model (with state

dimensions (nv)v∈V and tree T ) parameterized by:

Av = πUvπ
∗
UP(v)

for v ∈ V \ r (6.3.3)

Qv = πUvXvπ
∗
Uv for v ∈ V. (6.3.4)

Conversely, if X can be realized as the covariance among the leaf-indexed variables of

a Gaussian tree model with state dimensions (nv)v∈V and tree T then X has an LTCD

with dimensions (mv)v∈V (which satisfy mv ≤ nv for all v ∈ V) and structure (Sv)v∈V
(which forms the tree T ).

The inequality mv ≤ nv for all v ∈ V in the statement of Theorem 6.3.9 is related

to the discussion of minimal models in Section 6.3.1. Indeed suppose we take a non-

minimal parameterization of a latent tree model with given leaf-covariance, compute

the corresponding LTCD, and then use (6.3.3) and (6.3.4) to construct a new explicit

parameterization that realizes the same leaf covariance. The parameterization we have

constructed is in fact minimal, and hence may have smaller state dimension mv than

the state dimensions nv of the parameterization with which we started.

LTCDs for singular and non-singular models

Given an LTCD of a positive definite matrix X, the corresponding Gaussian tree model

constructed by Theorem 6.3.9 may be a singular Gaussian model. This is useful because

there are situations where we want to recover singular models (see Section 6.3.1). In

this section we briefly discuss the difference between singular and non-singular models

from the point of view of LTCDs.

Definition 6.3.10. An LTCD of a positive definite matrix X is singular if the joint

covariance of the Gaussian tree model defined by (6.3.3) and (6.3.4) is singular. If an

LTCD is not singular we call it non-singular.
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Suppose that the matrices (Av)v∈V\{r} and (Qv)v∈V parameterize a Gaussian tree

model. This model is non-singular if and only if all of the Qv are positive definite.

In Lemma 6.3.11 to follow, we reformulate this simple characterization into one about

the relationship between the subspaces Uv and the columns spaces of the terms in an

LTCD. To provide some intuition for Lemma 6.3.11 we first describe its main point

working with an explicit parameterization.

The subspaces (Uv)v∈V are the column spaces of ΦLvΣvvΦ
T
Lv (see Definition 6.3.3),

whereas the terms in the LTCD can be written in our explicit parameterization as the

matrices ΦLvQvΦ
T
L. Since Σvv = Qv+AvΣP(v)P(v)A

T
v , if all the Qv are positive definite,

then so are all of the Σvv. It follows that the column spaces of the matrices

ΦLvΣvvΦ
T
Lv and ΦLvQvΦ

T
Lv

are the same for all v ∈ V. The column space of the term on the left is the subspace

Uv. In the language of LTCDs, the column space of the term on the right is the column

space of the term Xv in the matrix decomposition corresponding to the latent variable

v.

To summarize, we have seen that if the model is non-singular then

Uv = col(ΦLvQvΦ
T
Lv) for all v ∈ V.

In the general (possibly non-singular) case, it is only necessary that Uv ⊇ col(ΦLvQvΦ
T
Lv).

We now formally state the characterization of those LTCDs that correspond to non-

singular models. We provide a proof in Section 6.7.1. We remark that we make no use of

the second item in Lemma 6.3.11 in this chapter. It is included only to aid comparison

with the work in [112] and [114].

Lemma 6.3.11. Suppose X � 0 has an LTCD X =
∑

v∈V Xv with subspaces (Uv)v∈V
and structure (Sv)v∈V . Then the following are equivalent:

1. the LTCD X =
∑

v∈V Xv is non-singular;

2. col(Xv) ⊇ col(PSvXP(v)PSv) for all v ∈ V \ r;

3. col(Xv) = Uv := col
(∑

u�v PSvXuPSv

)
for all v ∈ V.

We conclude this section with an example of a singular LTCD. By explicit compu-

tations we show that the third item in Lemma 6.3.11 fails for this example. We also

apply the procedure in Theorem 6.3.9 for constructing a parameterization of a Gaussian

latent tree model from an LTCD and see that it produces a singular model.

Example 6.3.12 (A singular LTCD). This example arises by slightly modifying Exam-

ple 6.3.6 (which was a non-singular LTCD) so that the column spaces no longer satisfy
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the appropriate constraints for a non-singular model. Our focus is on explicitly seeing

why the following LTCD corresponds to a singular Gaussian latent tree model:
3 −3 1 1 −3

−3 7 −2 −2 6

1 −2 6 3 −3

1 −2 3 5 −3

−3 6 −3 −3 10

 =


1

2

3

2

1

+


1 −1

−1 1

2 2

2 2

+


1 −2 1 1 −3

−2 4 −2 −2 6

1 −2 1 1 −3

1 −2 1 1 −3

−3 6 −3 −3 9

 .

Here the supports of the terms in the decomposition are the same as in Example 6.3.6.

As such, they form the rooted tree shown on the left in Figure 6.4, and we label the

terms according the vertices of that tree. In this case we have that

Xr = Xu =


1 −2 1 1 −3

−2 4 −2 −2 6

1 −2 1 1 −3

1 −2 1 1 −3

−3 6 −3 −3 9

 and that Xv1 =


1 −1

−1 1

 .

From this we can see that col(Xv1) = span{
[
1 −1 0 0 0

]T
}. We now compute

Uv1 = col
(
Xv1 + PSv1XrPSv1

)
= col




1 −1

−1 1

+


1 −2

−2 4





= span




1

−1

0

0

0

 ,


1

−2

0

0

0




.

We can see that col(Xv1) 6= Uv1 so Lemma 6.3.11 tells us that it this must correspond

to a singular model. Let us see this explicitly by computing part of a parameterization
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of this model via (6.3.4). Indeed we can compute the orthogonal projector onto the

two-dimensional subspace Uv1 to obtain

πUv1 =

[
1 0 0 0 0

0 1 0 0 0

]
.

Then applying (6.3.4) we see that

Qv1 = πUv1Xv1π
∗
Uv1

=

[
1 −1

−1 1

]

which is clearly singular.

� 6.4 Finding LTCDs given the tree structure

Suppose we are given a matrix X̂ and a tree T = (V, E) and our aim is to approximately

realize X̂ as the leaf covariance of a Gaussian model that is Markov with respect to T
and has small state dimensions. From Theorem 6.3.9 we know that we can, instead,

search for a matrix X that is close to X̂ and that has an LTCD with structure (Sv)v∈V
that forms the tree T and has small dimensions. With this shift of perspective from

Gaussian tree models to more abstract matrix decompositions, from now on we change

notation to use X for the matrix we are decomposing where we would have used ΣLL
in Sections 6.2 and 6.3.

A natural convex optimization-based approach to performing approximate LTCDs

is to design a convex regularizer X 7→ R(X; (Sv)v∈V) that induces X to have such a

decomposition. To approximate X̂, we could then solve

min
X

γR(X; (Sv)v∈V) + L(X, X̂) (6.4.1)

for some convex loss function L that penalizes error between X and X̂ and some choice

of regularization parameter γ > 0. (We use L(X, X̂) = 1
2‖X−X̂‖

2
F throughout for con-

creteness.) Of course, we want R(X; (Sv)v∈V) to do much more than simply regularize.

We would also like it to produce an LTCD of X with structure (Sv)v∈V having small

dimensions. In this section we describe and analyze a convex optimization problem that

aims to produce such LTCDs of X with a given structure (Sv)v∈V and small dimen-

sions. The optimal value function then has an interpretation as a convex regularizer

R(X; (Sv)v∈V).

To find an LTCD of X with dimensions (nv)v∈V that are all small it is natural to
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try to minimize a non-negative combination of the dimensions

nv = rank
(∑

u�v PSvXuPSv

)
where the expression on the right is from (6.3.2). As such, one would expect the

following rank minimization problem to find an LTCD of X with dimensions that are

small, if such a decomposition exists:

min
(Zv)v∈V

∑
v∈V

κv rank

∑
u�v

[π∗SuZuπSu ]SvSv

 s.t.


Zv ∈ SSv+ for all v ∈ V∑
v∈V

π∗SvZvπSv = X.

(6.4.2)

Note that the constraint set in (6.4.2) is a convex set. Furthermore, since we are fixing

the support of the variables in the LTCD we parameterize them as π∗SvZvπSv where

Zv ∈ SSv+ rather than using n×n variables Xv that are constrained to have many zeros.

Since the only non-convex part of (6.4.2) is the objective, it makes sense to replace

the rather complicated function (A1, A2, . . . , Ak) 7→ rank(A1 + A2 + · · · + Ak) with a

convex function f(A1, A2, . . . , Ak) designed to penalize collections (A1, A2, . . . , Ak) of

matrices where A1 +A2 + · · ·+Ak has high rank. Fixing a choice of convex surrogate

f for rank, we obtain a convex optimization problem

min
(Zv)v∈V

∑
v∈V

κv f
( (

[π∗SuZuπSu ]SvSv
)
u�v

)
s.t.


Zv ∈ SSv+ for all v ∈ V∑
v∈V

π∗SvZvπSv = X (6.4.3)

the solutions of which are always valid LTCDs with structure (Sv)v∈V .

The remainder of this section is structured as follows. In Section 6.4.1 we use the

trace as a surrogate for rank(·) in (6.4.3) and discuss basic properties of the result-

ing semidefinite optimization problem. In Section 6.4.2 we provide conditions on the

subspaces of an LTCD of X under which the solution of the semidefinite optimization

problem always recovers the underlying LTCD.

� 6.4.1 Minimum trace covariance decomposition

It is well-known that the convex envelope of rank(A) restricted to {X : 0 � X � I} is

tr(A) [45]. Based on this justification, in this section we use

f(A1, A2, . . . , Ak) = tr(A1 +A2 + · · ·+Ak)



Sec. 6.4. Finding LTCDs given the tree structure 197

in (6.4.3) as a surrogate for rank(A1 + A2 + · · · + Ak). Doing so yields a semidefinite

optimization problem that we call minimum trace covariance decomposition (MTCD):

min
(Zv)v∈V

∑
v∈V

κv tr

∑
u�v

[π∗SuZuπSu ]SvSv

 s.t.


Zv ∈ SSv+ for all v ∈ V∑
v∈V

π∗SvZvπSv = X. (6.4.4)

By restricting our choice of the weights κv and using the linearity of the trace, we can

simplify the form of the objective in (6.4.4). Our aim is to rewrite it as
∑

v∈V λvtr(Zv),

i.e. as a linear combination of the quantities tr(Zu) for u ∈ V. This is only possible if

we put certain restrictions on the κv and corresponding restrictions on the λv.

Definition 6.4.1. A collection (λv)v∈V of scalars indexed by the vertices of a rooted

tree T is order-preserving if u � v implies λu > λv. A collection (λv)v∈V is constant on

children if λv = λw whenever v and w have a common parent u. In this case we write

λC(u) for this common value and define λC(w) = 0 whenever w ∈ L.

The restriction that λu > λv whenever u � v can be thought of as penalizing the

rank of terms in the decomposition more as we go towards the root. One could justify

this from a model-complexity perspective since terms indexed by vertices nearer the

root have larger support, so increasing the rank of those terms increases the number of

parameters more than increasing the rank of terms with small support.

We now describe the way in which the objective of (6.4.4) simplifies. We provide a

proof in Section 6.7.2.

Lemma 6.4.2. Suppose (λv)v∈V is a collection of positive scalars that is order-preserving

and constant on children. If κv := λv − λC(v) for all v ∈ V then the κv are all positive

and ∑
v∈V

κvtr

∑
u�v

[π∗SuZuπSu ]SvSv

 =
∑
v∈V

λvtr(Zv).

MTCD reformulated As such, we assume that the (λv)v∈V are positive, order-preserving,

and constant on children and focus on the following reformulation of MTCD:

R(X; (Sv)v∈V) := min
(Zv)v∈V

∑
v∈V

λvtr(Zv) s.t.


Zv ∈ SSv+ for all v ∈ V∑
v∈V

π∗SvZvπSv = X. (6.4.5)

Dual of MTCD The dual of MTCD (6.4.5) can be obtained, e.g., by applying conic

duality (see (2.4.2) and (2.4.3) of Chapter 2). It is

max
Y
〈X,Y 〉 s.t. YSvSv � λvI for all v ∈ V. (6.4.6)
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Moreover since the dual is strictly feasible (take, e.g., Y = −I since all the λv are

positive) and its objective function is bounded above by (maxv∈V λv) tr(X) it follows

from Theorem 2.4.2 in Chapter 2 that strong duality holds.

This means that the optimal value function R(X; (Sv)v∈V) for (6.4.5) and the op-

timal value function of (6.4.6) are the same. The optimal value function of (6.4.6),

as a function of X, is the support function of the constraint set, and so is convex

(see (2.3.5) of Chapter 2). Hence R(X; (Sv)v∈V) is a convex function of X. We can

think of X 7→ R(X; (Sv)v∈V) as a convex regularizer that aims to induce its argument

to have an LTCD with low dimensions and structure (Sv)v∈V .

� 6.4.2 Exact recovery

In this section we provide sufficient conditions on an underlying LTCD of a given

matrix, with given structure, that ensure that minimum trace covariance decomposition

(MTCD) recovers that underlying LTCD.

Definition 6.4.3. Fix an LTCD of X =
∑

v∈V Xv with a given structure (Sv)v∈V . We

say that MTCD recovers the LTCD of X if (Zv)v∈V is the unique optimal solution to

MTCD and

π∗SvZvπSv = Xv for all v ∈ V.

The optimality conditions of MTCD give us a way to certify that a given LTCD

is indeed optimal by explicitly constructing a feasible point for the dual problem that

satisfies additional complementarity conditions.

Proposition 6.4.4. Suppose X ∈ Sn is positive definite and has an LTCD X =∑
v∈V Xv with structure (Sv)v∈V . Suppose, further, that all the λv are positive and

order-preserving. Then MTCD recovers the LTCD of X if and only if there exists a

symmetric matrix Y such that for all v ∈ V,

〈Y x, x〉 ≤ λv‖x‖2 for all x ∈ RSv and (6.4.7)

〈Y x, x〉 = λv‖x‖2 for all x ∈ col(Xv) ⊆ RSv . (6.4.8)

We give a proof in Section 6.7.2. Most of the argument involves establishing that

MTCD has a unique solution. The required conditions on the matrix Y are just obtained

from the standard optimality conditions for semidefinite optimization. We have written

them in terms of the quadratic form 〈Y x, x〉 rather than in terms of the symmetric

matrix Y only because this makes the notation simpler in subsequent parts of this

section.
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The star-shaped case

Suppose that the supports (Sv)v∈V form a star-shaped tree, so that (Sv)v∈L partition

[n] and Sr = [n]. We consider this case separately for two reasons. First, our results

for the general case depend crucially on our understanding of the star-shaped case.

Second, this case has been previously studied, for instance, in [113] and so explaining it

separately makes it easier to establish connections to the terminology and results used

in previous work.

If X has an LTCD with star-shaped structure (Sv)v∈V and dimensions (nv)v∈V then

it has a decomposition as

X =
∑
v∈L

Xv +Xr

where Xr has rank nr and
∑

v∈LXv is block diagonal with respect to the partition

(Sv)v∈L of [n]. As discussed in Section 6.1.2 this special case corresponds to the clas-

sical factor analysis model. The corresponding specialization of MTCD is known as

(constrained) minimum trace factor analysis [122]. The discussion in this section relies

on the results of [113] that studies such block diagonal and low-rank matrix decompo-

sitions and recovery properties of MTCD specialized to this case. The main results of

that work are stated in terms of a property that relates the subspace col(Xr) and the

partition (Sv)v∈L of [n].

Definition 6.4.5. A subspace U ⊆ Rn is realizable with respect to the partition (Sv)v∈L
of [n] if and only if there exists Y such that

1. 〈Y x, x〉 = 0 for all x ∈ RSv and all v ∈ L;

2. 〈Y x, x〉 ≤ ‖x‖2 for all x ∈ Rn and

3. 〈Y x, x〉 = ‖x‖2 for all x ∈ U .

We remark that this differs from [113, Definition 5.2] by the transformation Y 7→
I − Y . The parameterization in Definition 6.4.5 is more convenient for our purposes.

We now give some intuition behind this definition. Suppose U is realizable with

respect to a partition (Sv)v∈L of [n]. Then Definition 6.4.5 tells us that U comes

equipped with a particular linear functional Y that separates symmetric matrices with

column space U and those with column space given by any of the coordinate subspaces

RSv . Indeed if col(Xr) = U and col(Xv) = RSv then the matrix Y in Definition 6.4.5

satisfies 〈Y,Xr +Xv〉 = tr(Xr) (by parts 1 and 3 of the definition). This is a necessary

condition if we hope to uniquely decompose sums of matrices with these column spaces.

Indeed one can construct a linear functional with this property whenever U ∩RSv = {0}
for all v ∈ L. It is the addition of part 2 of the definition that makes Y useful.
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Intuitively, it tells us that with respect to Y , matrices with column space U are not only

distinguished from those with column space RSv (for any v), but are also distinguished

from matrices with any other column space (in a way that makes them easy to find via

convex optimization).

In the star-shaped case, if X = Xr +
∑

v∈LXv is an LTCD of X then realizability

of col(Xr) is sufficient for MTCD to recovers the LTCD of X.

Lemma 6.4.6. Suppose (Sv)v∈V form a star-shaped tree with root r. Suppose X has

an LTCD with structure (Sv)v∈V and suppose the subspace corresponding to the root

is Ur = col(Xr). If Ur is realizable with respect to (Sw)w∈L then MTCD recovers the

LTCD of X.

Proof. Simply note that if Ur is realizable with respect to (Sw)w∈L then the matrix Y

in Definition 6.4.5 satisfies the optimality conditions of Proposition 6.4.4.

This means that sufficient conditions for realizability (with respect to a partition

of [n]) translate into sufficient conditions for exact recovery of the decomposition in

the star-shaped case. Two such sufficient conditions are given in [113], one in terms

of the angles between certain subspaces, the other based on the notion of ‘balanced’

subspaces [36]. In this chapter we only make use of the simpler angle-based condition,

as it is easier to work with in the general setting.

Definition 6.4.7. Let U, V be subspaces of Rn. The principal angle between U and V

is the angle 0 ≤ θ(U, V ) ≤ π/2 such that

cos(θ(U, V )) = max
x∈U

max
y∈V

〈x, y〉
‖x‖‖y‖

.

It is straightforward to see that an alternative description of the cosine of the prin-

cipal angle between subspaces U and V is

cos(θ(U, V )) = ‖πUπ∗V ‖ (6.4.9)

where the norm used here is the spectral norm, i.e. the largest singular value. The main

result of [113] is the following sufficient condition for realizability of a subspace.

Proposition 6.4.8 ([113, Corollary 5.11]). Let U be a subspace of Rn and (Sv)v∈L a

partition of [n]. If cos(θ(U,RSv))2 < 1/2 for all v ∈ L then U is realizable with respect

to (Sv)v∈L.

To get a sense for what Proposition 6.4.8 means, we mention two examples from [113],

both dealing with the case where |Sv| = 1 for all v ∈ L. First, suppose the number of

leaves is fixed at n and we consider how large the dimension of the subspace U can be
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so that the principal angle between U and each one-dimensional coordinate direction is

greater than π/4. For this to hold we must have dim(U) ≤ n/2. Moreover, with high

probability a random subspace of dimension n(1/2− ε) (for small positive ε) makes an

angle of at least π/4 with any coordinate direction. In the other extreme direction, if

U has dimension one, we can ask how small n, the number of leaves, can be so that

U still makes an angle of greater than π/4 with each coordinate axis. If n = 2 this is

impossible, but it is possible for n ≥ 3. That is, for an LTCD with respect to a star

shaped tree to satisfy the condition of Proposition 6.4.8 the tree must have at least

three leaves.

The general case

We now turn to the case where X has an LTCD with arbitrary structure. Our aim

is to give sufficient conditions on the underlying decomposition of X that ensure the

semidefinite optimization problem MTCD (6.4.5) recovers that decomposition. By the

optimality conditions of Proposition 6.4.4 the problem reduces to finding a dual certifi-

cate Y satisfying (6.4.7) and (6.4.8). We can simplify the task of constructing a global

dual certificate Y by constructing such a Y as a sum of local dual certificates Yv that

depend only on the relationship between a non-leaf vertex and its children. This is the

sense in which understanding the star-shaped case is enough to understand the general

tree case.

The next result shows how to construct a global dual certificate from local ones,

and is the main technical lemma of this section. We note that we again require the

assumption that the (λv)v∈V are positive, order-preserving and constant on children.

Lemma 6.4.9. Let X � 0 have an LTCD with subspaces (Uv)v∈V and structure

(Sv)v∈V . Suppose the (λu)u∈V are positive, order-preserving and constant on children.

Suppose that, for every v ∈ V, πSvUv ⊆ RSv is realizable with respect to the parti-

tion (Su)u∈C(v) of RSv and let Yv ∈ SSv be the associated matrix in the definition of

realizability (Definition 6.4.5). Then

Y =
∑
v∈V

(λv − λC(v))π
∗
SvYvπSv .

satisfies the optimality conditions (6.4.7) and (6.4.8) and so MTCD recovers the LTCD

of X.

Proof. We provide a proof in Section 6.7.2.

By combining the sufficient condition for a subspace to be realizable (Proposi-

tion 6.4.8) with the fact that we can obtain global dual certificates from local ones
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(Lemma 6.4.9) we arrive at the main result of this section. It gives a geometric con-

dition on the subspaces (Uv)v∈V of an LTCD of X that ensure it can be recovered by

MTCD.

Theorem 6.4.10. Suppose X � 0 and X =
∑

v∈V Xv is an LTCD of X with structure

(Sv)v∈V and subspaces (Uv)v∈V . Suppose the (λv)v∈V are chosen to be positive, order-

preserving, and constant on children. If the subspaces (Uv)v∈V satisfy

cos(θ(UP(w), Uw))2 < 1/2 for all w ∈ V \ {r}

then MTCD recovers the LTCD of X.

Proof. Whenever u ∈ V \ L and v is a child of u then by a simple technical result

that exploits certain relationships between the supports and subspaces of an LTCD

(Lemma 6.7.3, in Section 6.7.2) we have that

1/2 > cos(θ(Uu, Uv))
2 = cos(θ(πSuUu, πSuRSv))2.

Hence by Proposition 6.4.8 we have that whenever u /∈ L, πSuUu is realizable with

respect to the partition (Sv)v∈C(u) of Su. Then it follows from Lemma 6.4.9 that MTCD

recovers the LTCD of X.

Theorem 6.4.10 says that MTCD can recover any LTCD where the state space of

any latent variable (when viewed from the leaves) makes an angle of more than π/4 with

the state space of any of its children (again when viewed from the leaves). A condition

of this form is very natural, as we expect it to be difficult to distinguish a parent and a

child if their state spaces look similar from the point of view of the observation space.

In the case where all the latent variables are one-dimensional, we note that for Uv to

make and angle of more than π/4 with UP(v) for every u it is necessary that every

(non-leaf) vertex have at least three children. Indeed it becomes easier to satisfy the

angle condition of Theorem 6.4.10 as the number of children each vertex has in a tree

grows (with the dimensions of the variables being fixed).

� 6.5 Uncovering the tree structure

In Section 6.4 we assumed a tree structure was given to us. Our aim was to take a

matrix X that admits an LTCD with that structure and small dimensions, and recover

it by solving a convex optimization problem. In this section we no longer assume the

structure is given. Our aim is to take an n × n matrix X that admits an LTCD with

some (unspecified) structure and small dimensions, and recover the decomposition and

the structure.
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V0

V1

r′
r′

Figure 6.5: Trees corresponding to partial LTCDs at different scales of a constant
depth tree.

There is one minor structural assumption we make about the tree that we now

clarify. If we observe n scalar variables, we assume we are given a partition of [n] into

k disjoint sets. This partition tells us that the tree has k leaves and how to associate

the n observed variables with the k leaves. In most previous work on this topic, it is

silently assumed that the observed variables are scalar, and so that this initial partition

is just {{1}, {2}, . . . , {n}}. Our more general setting forces us to make this assumption

explicit. We briefly discuss approaches to removing the reliance on an initial partition

in Section 6.6.2.

With this assumption clarified, we now sketch our approach to finding the tree

structure. Our approach is based on uncovering the tree in stages from the leaves to

the root. If we know part of the tree structure, but do not know a connected subtree

that contains the root, we can think of the remaining unknown part of the tree as a

consisting of a single root node r′ (see Figure 6.5). This grouping of variables still yields

an LTCD (much as in Example 6.3.8), which we can try to recover using MTCD. We

describe this in further detail in Section 6.5.2. The additional observation we exploit

is that the column space of the term Xr′ in this new decomposition has additional

structure. Indeed if the underlying model is non-singular then the column space of

Xr′ decomposes into pieces that are supported on coordinate subspaces. This block

structure contains information about the unknown structure in the tree.

Any optimal variable Y for the dual of MTCD obeys a complementarity condition

with respect to Xr′ and so contains information about the column space of Xr′ . In

fact, any block structure in the column space of Xr′ is more readily available in these

dual variables than in Xr′ itself. Indeed we show that if MTCD recovers the LTCD of

X then the dual always has an optimal solution that is block diagonal with this block

structure. To find the block structure in a robust way, we propose a method based on

regularizing the dual of MTCD to induce block diagonal solutions.
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r

Figure 6.6: The tree on the left does not have constant depth. This is because
no matter which variable is chosen as the root, the leaves will not all be at the same
distance from the root. For instance if we choose the vertex labeled r as the root,
the left-most leaf is at distance two from r and the right-most leaf is at distance three
from r. If all of the non-leaf vertices are grouped together as a single vertex, the result
(shown on the right) is a constant depth tree.

� 6.5.1 Constant depth trees

In this section, we restrict our attention to rooted trees where all the leaves are at

the same distance from the root. We call these constant depth trees. Any tree can be

thought of as a constant depth tree by possibly grouping together many of the non-leaf

nodes. Clearly this may significantly change the tree structure (see, e.g., Figure 6.6).

One convenient aspect of working only with constant depth trees is that we can

organize the vertices into scales based on their distance from the leaves (or equivalently

from the root). If T = (V, E) is a constant depth tree we define V0 := L and Vk = {v ∈
V : C(v) ∈ Vk−1}. and call this set of vertices scale k. We also define V≤k :=

⋃
0≤m≤k Vk

to be the vertices with scale at most k. We define V≥k,V<k, and V>k in a similar way.

Suppose (Sv)v∈V is a collection of subsets of [n] that forms a constant depth tree

with r = Vd. Then for each 0 ≤ k ≤ d the sets (Sv)v∈Vk form a partition of [n].

Furthermore, if k1 > k2 then the partition (Sv)v∈Vk2 refines the partition (Sv)Vk1 in the

sense that if v ∈ Vk1 then Sv is a disjoint union of sets Sw with each w ∈ Vk2 .

� 6.5.2 Partial LTCDs

Suppose X � 0 has an LTCD X =
∑

v∈V Xv with structure (Sv)v∈V (that forms a

rooted, constant depth, tree T ) and subspaces (Uv)v∈V . Suppose, however, that we

only have access to part of the structure of the LTCD. Specifically suppose there is

some scale 0 < k ≤ d such that we know (Sv)v∈V<k , the structure of the tree from the

leaves to scale k − 1, but we do not know the structure of the tree at or above scale

k. As such, we define a new tree by grouping all nodes in V≥k into a single root node

denoted r′ and connecting r′ to all vertices at scale k − 1. Correspondingly we define

Sr′ = [n] and V ′ = V<k ∪ {r′}. With this construction established, we see that X has
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an LTCD with structure (Sv)v∈V ′ . Explicitly this decomposition is given by

X = Xr′ +
∑
v∈V<k

Xv where Xr′ :=
∑
u∈V≥k

Xu.

We call this the partial LTCD at scale k.

The next result (which we prove in Section 6.7.3) investigates the column space of

Xr′ in the partial LTCD at scale k.

Lemma 6.5.1. Suppose that X � 0 has an LTCD with subspaces (Uv)v∈V and structure

that forms a rooted tree T of constant depth d. Then the corresponding partial LTCD

at depth k < d has

col(Xr′) ⊆
⊕
v∈Vk

Uv.

Suppose, in addition, that the LTCD of X is non-singular. Then the partial LTCD at

scale k is non-singular and

col(Xr′) =
⊕
v∈Vk

col(Xv) =
⊕
v∈Vk

Uv.

In the statement of Lemma 6.5.1 (and subsequently) if U1, U2, . . . , Uk ⊂ Rn are

subspaces such that Ui ∩ Uj = {0} for all i 6= j we use the notation
⊕k

i=1 Ui to mean

the sum of the subspaces U1 + · · ·+Uk. The notation applies here because the subspaces

Uv for v ∈ Vk are actually supported on disjoint coordinate subspaces, and so certainly

satisfy Uv ∩ Uv′ = {0} for all v, v′ ∈ Vk.
Lemma 6.5.1 tells us that in the non-singular case, the column space of Xr′ has

additional structure that tells us about the (unknown) kth scale of the tree. In particular

the column space ofXr′ decomposes as a sum of subspaces that are supported on disjoint

coordinate subspaces. If we can recover these coordinate subspaces from Xr′ then we

can uncover the structure of the next scale of the tree. The following result (which we

prove in Section 6.7.3) describes two ways to recover these coordinate subspaces. It

forms the basis of our methods to find the entire tree structure.

If T = (V, E) is a constant depth tree we say that a collection (λv)v∈V of scalars is

constant on scales if λu = λv whenever u, v ∈ Vk for some k. We use the notation λk
to denote this common value at scale k.

Theorem 6.5.2. Suppose X � 0 is n×n and has a non-singular LTCD with structure

(Sv)v∈V that forms a constant depth tree. Suppose, also, that the LTCD can be recovered

by MTCD (with scalars (λv)v∈V that are positive, order preserving, and constant on

scales). If λk denotes the common value of λv for v ∈ Vk, then for each scale k > 0 the

following hold.
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1. The partial LTCD at scale k can be recovered by partial MTCD at scale k, i.e. the

unique optimum of

min
(Zv)v∈V′

∑
v∈V<k

λvtr(Zv) + λktr(Zr′) s.t.

{
X =

∑
v∈V ′ π

∗
Sv
ZvπSv

Xv � 0 for all v ∈ V ′
(6.5.1)

satisfies π∗SvZvπSv = Xv for all v ∈ V<k and Zr′ = Xr′.

2. If Zr′ is optimal for (6.5.1) then the orthogonal projector Pcol(Zr′ )
is block diagonal

with respect to the partition (Sv)v∈Vk of [n].

3. The dual of (6.5.1),

max
Y
〈X,Y 〉 s.t.

{
YSvSv � λvI for all v ∈ V<k
Y � λkI,

(6.5.2)

has an optimal solution that is block diagonal with respect to the partition (Sv)v∈Vk
of [n].

Theorem 6.5.2 tells us that (under certain conditions), if we know the tree structure

up to scale k−1 then we can recognize the tree structure at scale k in two different ways:

by inspecting the block structure of Pcol(Zr′ )
, or by finding a block diagonal optimal

solution (among the many optimal solutions) to the dual (6.5.2). If all we want to do is

recognize when this structure appears, computing Pcol(Zr′ )
is much simpler than finding

a block diagonal solution to the dual. The advantage of considering dual solutions is

that we are working directly with the decision variables of the optimization problem.

Hence we can try to induce block diagonal dual solutions by appropriately regularizing

the dual problem. Doing so is particularly useful in the approximate decomposition

setting because it allows us to bias our search for approximate LTCDs towards those

where the term Xr′ has a column space with certain block decomposition properties.

This forms the basis of our method (described in Section 6.5.4) to perform approximate

LTCDs and uncover the tree structure.

� 6.5.3 A first procedure to recover constant depth trees

Theorem 6.5.2 tells us how to extract the tree structure at scale k from the tree structure

at scale k − 1. By repeatedly applying the result we see that for non-singular models,

under the same conditions we need to recover an LTCD when the tree is known, we

can also recover the tree structure. An explicit procedure to do this is given in Al-

gorithm 6.1. It takes as input an n × n positive definite matrix X and a partition

(Sv)v∈V0 of [n] corresponding to the support of the leaf-indexed variables. (Recall, from
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the introductory discussion of Section 6.5, that we always assume such a partition is

given.) It produces a collection (Sv)v∈V of subsets of [n] that form a constant depth

tree as well as an LTCD of X with structure (Sv)v∈V .

Algorithm 6.1 Recovering tree structure using block-diagonal orthogonal projectors

Input: X � 0, (Sv)v∈V0
Sr′ ← [n]
k ← 0
repeat

k ← k + 1 . increment scale
Zr′ ← mtcd(X; (Sv)v∈(Vk∪r′)) . compute partial LTCD
(Sv)v∈Vk ← blocks(Pcol(Zr′ )

, (Sv)v∈Vk−1
) . get next scale from blocks of Pcol(Z′r)

until |Vk| = 1 . stop when Pcol(Zr′ )
has no interesting block structure

Algorithm 6.1 makes use of two sub-procedures. The first, Zr′ ← mtcd(X; (Sv)v∈Vk∪r′)

involves solving (6.5.1) with input X and structure (Sv)v∈Vk∪r′ and returning the

optimal solution for Zr′ . The second, blocks, involves computing the block diag-

onal structure of Pcol(Zr′ )
with respect to the partition (Sv)v∈Vk−1

of [n]. Indeed

(Sv)v∈Vk ← blocks(A, (Sv)v∈Vk−1
) can be implemented as follows.

1. Form a graph with vertex set Vk−1 and an edge between u, v ∈ Vk−1 if and only

if the corresponding block ASu,Sv is a non-zero matrix.

2. Find the connected components of this graph and let Vk index these connected

components.

3. For each v ∈ Vk, if {u1, . . . , up} ⊆ Vk−1 is the corresponding connected component

then define Sv :=
⋃p
i=1 Sui .

Observe that blocks(A, (Sv)v∈Vk−1
) always produces a partition of [n] that is refined

by (Sv)v∈Vk−1
. The procedure blocks is illustrated on a specific example in Figure 6.7.

It is clear that, under the assumptions of Theorem 6.5.2, Algorithm 6.1 recovers

the tree and the LTCD of X. We now discuss the differences between the conditions

needed for recovery when the tree is known, compared with the conditions required

for the procedure in Algorithm 6.1 to recover the LTCD and the tree structure. The

differences are that Theorem 6.5.2 only holds when X has a non-singular LTCD and

when the tree has constant depth. The assumption that the LTCD is non-singular

seems essential to our approach, since the column space of Xr′ simply does not have

the same block structure in the singular case.
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{ { { { {S1 S2 S3 S4 S5

AS1S1 AS1S4

AS2S2 AS2S3 AS2S5

AS3S2 AS3S3 AS3S5

AS4S1 AS4S4

AS5S2 AS5S3 AS5S5



S1 S4

S2 S3

S5

Figure 6.7: An illustration of aspects of the blocks procedure applied to a 13× 13
matrix with the corresponding input partition being Vk−1 = {S1, S2, S3, S4, S5} where
S1 = {1, 2, 3}, S2 = {4, 5}, S3 = {6, 7}, S4 = {8, 9, 10, 11}, S5 = {12, 13}. The sparsity
pattern of the matrix A is shown on the left (we explain the additional red higlights
in the following sentences). The input partition specifies that we should think of A
as a block matrix, with the block entries being the submatrices ASiSj . The non-zero
entries in the block matrix are shown in the matrix on the top right. Observe that
AS2S2

, AS2S3
, AS3S2

and AS3S3
are all non-zero, since the corresponding blocks of A

(highlighted by red squares) are all non-zero matrices. On the bottom right is the
graph obtained by putting an edge between Si and Sj if and only if the matrix ASiSj
is non-zero. Constructing this graph is the first step of blocks. Observe that the
vertices of this graph are labeled by the elements of Vk−1. This graph has two connected
components, {S1, S4} and {S2, S3, S5}. Hence Vk consists of two elements S6 and S7

(step two of blocks). There are given by S6 = S1 ∪ S4 = {1, 2, 3, 8, 9, 10, 11} and
S7 = S2 ∪ S3 ∪ S5 = {4, 5, 6, 7, 12, 13} (step three of blocks).
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� 6.5.4 Finding both a tree structure and an approximate LTCD

While Algorithm 6.1 can recover the tree structure (under appropriate assumptions)

we do not expect natural variants of it to work in the approximate decomposition set-

ting. Directly inspecting PZr′ in Algorithm 6.1 only allows us to recognize when it is

block diagonal and extract the associated block structure. There is no mechanism in

Algorithm 6.1 that encourages partial LTCDs where the column space of Zr′ has the ap-

propriate block structure. Such a mechanism is unnecessary in the exact decomposition

setting, but crucial in the approximate decomposition setting.

Part 3 of Theorem 6.5.2 suggests that finding block diagonal solutions to the dual of

MTCD gives an alternative way to recover the tree structure in the exact decomposition

setting. The following is a partial converse to part 3 of Theorem 6.5.2. It tells us

that if X has an LTCD that can be recovered by MTCD and the dual has a block

diagonal solution that obeys a strict complementarity condition, then the term Xr in

the decomposition can be further decomposed in a non-trivial way. We prove this result

in Section 6.7.3.

Proposition 6.5.3. Suppose X � 0 is n×n and has a LTCD
∑

v∈V Xv with structure

(Sv)v∈V that can be recovered by MTCD. Suppose that the dual of MTCD has an optimal

solution Y that is block diagonal with respect to the partition (Si)
k
i=1 of [n]. If λrI − Y

and Xr satisfy the strict complementarity condition

rank(λrI − Y ) + rank(Xr) = n (6.5.3)

then

Xr = X0 +
k∑
i=1

Xi

where

1. col(Xr) ⊆
⊕k

i=1 col(Xi);

2. rank(Xi) = |Si| − rank(YSiSi) and supp(col(Xi)) ⊆ Si, for all i = 1, 2, . . . , k;

3. rank(X0) < rank(Xr).

We remark that this result is non-trivial precisely because rank(X0) < rank(Xr),

otherwise we could have just taken all Xi = 0 and X0 = Xr.

Proposition 6.5.3 is intended to justify an approach to recovering the tree structure

via regularizing the dual of MTCD to induce block diagonal solutions. Indeed if we bias

our search for LTCDs towards those where the dual has block diagonal solutions, then

we are, implicitly, biasing our search towards LTCDs where the term corresponding to
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the root can be further decomposed. This is the basic idea behind our procedure to

construct approximate LTCDs without being initially given a tree structure.

Dual regularized approximate MTCD

Let h : Sn → R be a convex function that is designed to induce block-diagonal structure.

More specifically, if (S1, S2, . . . , Sk) is a partition of [n] we would like h(Y ; (Si)
k
i=1) to

encourage Y , thought of as a matrix with block entries YSiSj to be block diagonal. Since

such a matrix has only a small number of the block-entries YSiSj being non-zero, one

possible choice for h is

h(Y ; (Si)
k
i=1) =

∑
i 6=j
‖YSiSj‖

where the norm on the blocks is the spectral norm. Let h∗( · ; (Si)
k
i=1) be the convex

conjugate of h. This is given, explicitly, by

h∗(X; (Si)
k
i=1) =

{
0 if XSiSi = 0 for all i ∈ [k] and ‖XSiSj‖∗ ≤ 1 for all i 6= j

∞ otherwise

where ‖M‖∗ is the nuclear norm of a matrix M , i.e. the sum of its singular values.

Let X̂ be a given n×n matrix matrix for which we would like to find an approximate

LTCD where the dual optimal solution is block diagonal. Then it is natural to solve a

variant of approximate MTCD that has an additional regularization penalty in the dual.

The regularization is based on h(Y ; (Sv)v∈C(r)). Note that if (Sv)v∈V form a rooted tree

then (Sv)v∈C(r) is a partition of [n]. It is the natural choice here because our aim is to

find additional structure in the term corresponding to the root in the LTCD.

Using this regularization, the resulting pair of convex optimization problems is

min
X̂=W+X+Xe

(Zv)v∈V

γ

(∑
v∈V

λvtr(Zv)

)
+ δ h∗(W/δ; (Sv)v∈C(r)) +

1

2
‖Xe‖2F

subject to

{
X =

∑
v∈V π

∗
Sv
ZvπSv

Zv ∈ SSv+ for all v ∈ V
(6.5.4)

and

max
Y
〈X̂, Y 〉 −

[
δ h(Y ; (Sv)v∈C(r)) +

1

2
‖Y ‖2F

]
subject to YSvSv � γλvI for all v ∈ V. (6.5.5)
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where δ and γ are positive regularization parameters.

We have stated this pair of optimization problems for a particular structure (Sv)v∈V
that forms a tree. In Algorithm 6.2 we repeatedly use these optimization problems as

a subroutine. Each time they are called, the input structure (Sv)v∈V is different. In

particular, the first time they are called the structure is the initial partition that tells

us how to associate observed variables with leaves of the tree.

The primal problem (6.5.4) aims to decompose the given matrix as a sum of a matrix

X that has an LTCD with structure (Sv)v∈V and small dimensions, a matrix W that

is small (in a sense determined by h∗), and a residual that has small Frobenius norm.

As such, the effect of regularizing the dual (6.5.5) with h is to allow for another error

term, measured differently, in the primal decomposition.

Even in this regularized approximate decomposition setting, if the dual has a block

diagonal solution it is an indication that we can refine the decomposition we have found

in the primal. After all, the optimal X in (6.5.4) necessarily has an LTCD (defined by

the (Zv)v∈V) that can be recovered by MTCD. Furthermore, any optimal dual solution

Y satisfies the optimality conditions of MTCD with respect to the optimal LTCD of X.

As such, if the optimal Y is block diagonal (and the strict complementarity condition

in (6.5.3) holds) then by Proposition 6.5.3 it follows that Zr can be decomposed further

according to the block structure in Y .

This suggests the procedure in Algorithm 6.2 to construct both an LTCD of a matrix

X̂ and a corresponding tree structure. The subroutine blocks is defined in the same

Algorithm 6.2 Recovering a tree for approximate LTCDs by dual regularization

Input: X̂ � 0, (Sv)v∈V0
Sr ← [n]
k ← 0
repeat

k ← k + 1 . increment scale
Y ← a-d-mtcdδ,γ(X̂; (Sv)v∈(V<k∪r)) . solve (6.5.5) for Y
(Sv)v∈Vk ← blocks(Y, (Sv)v∈Vk−1

) . get next scale from blocks of Y
until |Vk| = 1 . no interesting block structure in Y

way as in Section 6.5.3. As such, it always produces a partition that is refined by its

input partition, and so Algorithm 6.2 necessarily returns (Sv)v∈V that forms a constant

depth tree. The subroutine a-d-mtcdδ,γ(X̂; (Sv)v∈V<k∪r′) returns an optimal solution

to (6.5.5), the approximate dual version of LTCD.

We remark that in the limit as δ and γ go to zero, Algorithm 6.2 essentially reduces

to Algorithm 6.1 but using part 3 rather part 2 of Theorem 6.5.2 to uncover the block

structure of interest. To see this, note that taking the limits γ → 0 and δ → 0 in (6.5.4)
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is the same as solving MTCD with input X̂. Taking the same limits in the dual, (6.5.5),

it is the case that the limit points of Y/γ are the solutions to the dual of LTCD that

minimize h(Y ) over the dual optimal face. For the concrete choice of h given above,

under the assumptions of Theorem 6.5.2, the minimum of h over the dual optimal

face has the appropriate block diagonal structure (we show this in Lemma 6.7.5 of

Section 6.7.3).

� 6.6 Summary and future work

� 6.6.1 Summary of contributions

In this chapter we considered the problem of approximating a given positive semidefinite

matrix as the covariance among the leaf-indexed variables of a Gaussian tree model.

We established a connection between the marginal covariance at the leaves of a Gaus-

sian tree model and a certain family of matrix decomposition problems that we call

latent tree covariance decompositions (LTCDs).

If the tree structure is fixed, the set of valid matrix decompositions is a convex

set, while the complexity of the corresponding tree model is captured by the ranks

of certain linear combinations of terms in the decomposition. A natural approach

to searching for such decompositions is minimize a convex function that encourages

low-rank solutions over valid decompositions. Using trace as a surrogate for rank, we

obtain a formulation that we call minimum trace covariance decomposition (MTCD).

We analyze this method, giving geometric conditions on an underlying Gaussian tree

model that ensure it can be recovered from its leaf covariance using MTCD.

If the tree structure is unknown we proposed and analyzed a method based on

solving a sequence of LTCD problems. The idea is to start with the simplest possible

tree structure (a star), find an LTCD with respect to this structure, and then try to

identifiy additional properties of the root-indexed latent variable that suggest it can be

further decomposed. Our method to do this is based on regularizing the dual of MTCD.

This has the benefit of allowing us to bias our search for decompositions towards those

where the term corresponding to the root has the additional structure of interest.

� 6.6.2 Problems for future study

There are many possible directions for future research based on the approach to learning

Gaussian latent trees presented in this chapter. We conclude the chapter by summariz-

ing a selection of these.



Sec. 6.6. Summary and future work 213

Minimality

For any problem of latent variable modeling, it is desirable to learn minimal models. In

the case where the tree structure is fixed, a minimal model is one where the dimensions

of each of the latent state spaces cannot be made any smaller. In the case where all

the latent variables have dimension one, notions of minimality of the tree structure (in

terms of contraction and deletion of edges) are studied in [31] (see also [93]). When both

the structure and the dimensions of the latent variables can vary, it is not completely

obvious what the right definition of minimality is. In any case, our view of Gaussian

latent tree models in terms of matrix decompositions may help in understanding and

recovering minimal models. Indeed by refining the definition of an LTCD to require

that the subsets that make up the structure satisfy additional properties, it may be

possible to ensure that non-minimal trees cannot be obtained from these more refined

LTCDs.

Removing parameterization dependence

Throughout this chapter we work with covariance parameterizations of Gaussian tree

models and Gaussian latent tree models. This is particularly convenient when work-

ing with singular models since the inverse covariance parameterization, where the tree

structure can be interpreted in terms of sparsity, is not well defined in that case. If the

model is non-singular it is fairly easy to show that the inverse of the covariance among

the leaves admits a structured matrix decomposition that is very similar to an LTCD.

In the singular case, one needs to be careful since only some generalized inverses of the

covariance of a Gaussian tree model preserve Markov structure.

Furthermore the LTCD approach depends on the choice of root for the tree. Since

this choice is arbitrary, it should not play a role in any good method to learn Gaussian

tree models. It would be desirable to develop an approach that still gives a convex

parameterization of the set of models of interest, but does not require this arbitrary

choice.

Approximate recovery, consistency and sample complexity

We have focused on establishing conditions under which our methods exactly recover

the tree structure and the parameters of a Gaussian latent tree model from the exact

covariance among the leaf variables. Nevertheless, our approach is specifically geared

towards providing algorithms for learning Gaussian latent trees that are robust. In

particular if the given matrix is close to the leaf-covariance of a Gaussian latent tree

model (that can be recovered by MTCD), we expect that our methods produce an

approximate LTCD that is close to the underlying exact LTCD. It would be interesting

to investigate this recovery error in terms of natural distance measures on the terms
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in an LTCD and also in terms of structural properties such as the dimensions of the

subspace Uv and the recovered tree structure.

When the given matrix is a sample-based approximation to the exact leaf-covariance

of a Gaussian tree model, understanding the approximate recovery properties of our

methods translates into understanding their consistency properties. Since we are inter-

ested in multiple structures, it may even be the case that the methods we present can

consistently recover the underlying tree structure and the parameters of the model, but

not, say, the dimensions of the subspaces Uv. If this were the case then we would like

to modify the methods to ensure they are consistent in all senses of interest.

With consistency established the next natural question is to understand how many

samples are required so that our methods applied to the given sample covariance can

obtain the correct structural features of the model, and also the rate at which the model

parameters converge to the true parameters. This is closely related to providing guide-

lines to choose the regularization parameters as a function of the number of samples

available. Since the methods proposed in this chapter are much more global in nature

than competing methods for learning Gaussian latent tree models, we expect that when

correctly tuned they may, in practice, require fewer samples than other methods (even

though the theoretical guarantees may be the same). It would also be interesting to

investigate differences in the sample complexity of determining the combinatorial struc-

ture of the tree and the ranks of the latent variables. It is possible that one or the other

of these quantities is significantly easier to learn in this sense.

Improved methods to learn the tree

The method we propose to learn the tree structure only works for non-singular models

where all of the leaves are at the same distance from the root. It is likely that a modifi-

cation of the method can remove this second assumption. Dealing with singular models

seems difficult. This is because in the singular case the subspaces we seek to recover do

not have the block structure our method exploits. Another place for improvement in

this method is the choice of regularizer h in the dual of MTCD. The problem of regular-

izing to induce block diagonal structure is closely related to convex optimization-based

methods for problems in clustering (see, e.g., [3, 2]) and to convex relaxations for sparse

PCA (see, e.g., [34]). As such, we expect there are opportunities both to improve the

choice of block-diagonal regularization we use here, and more broadly develop improved

techniques for numerous problems where this structure naturally arises.

Furthermore, it would be good to remove the reliance of our methods on an initial

partition that assigns observed variables to leaf-indexed vertices of a tree. In terms of

matrix decompositions, this choice of initial partition tells us that we should start by

solving a block-diagonal and low-rank decomposition problem, with the block diagonal
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structure specified by the initial partition. One obvious alternative is to start by seeking

a decomposition of the given matrix as a sum of a sparse matrix plus a low-rank matrix,

a problem that has been studied by Chandrasekaran, Parrilo, and Willsky [27]. A more

sophisticated approach would aim to decompose the given matrix as the sum of a block

diagonal matrix and a low-rank matrix, but with the block diagonal structure being

unknown, using the same sort of block-diagonal regularization methods discussed in the

previous paragraph.

� 6.7 Proofs for Chapter 6

� 6.7.1 Proofs for Section 6.3

The following result gathers useful facts about the relationship between the subspaces

and the supports in an LTCD.

Lemma 6.7.1. If X =
∑

v∈V Xv be an LTCD with supports (Sv)v∈V and subspaces

(Uv)v∈V then

1. PSwUu ⊆ Uw whenever w � u;

2. πUv(π
∗
Uw
πUw)π∗Uw = πUvπ

∗
Uu

whenever v ≺ w ≺ u.

Proof. First note that since w � u we have that Sw ⊆ Su and so PSwPSu = PSw . Then(∑
t�wPSwXtPSw

)
= PSw

(∑
t�wPSuXtPSu

)
PSw � PSw

(∑
t�uPSuXtPSu

)
PSw � 0

(6.7.1)

where the second inequality holds because each Xu is positive semidefinite, and the first

because, in addition, {t : t � w} ⊇ {t : t � u}. The column space of the left hand

side of (6.7.1) is Uw and the column space of the right hand side of (6.7.1) is PSwUu.

Applying Lemma 6.2.2, which tells us that B � A � 0 implies col(B) ⊇ col(A), we see

that PSwUu ⊆ Uw, establishing the first part of the Lemma.

For the second part, since Uw ⊆ RSw we have that PUw = PUwPSw and so

πUv(π
∗
UwπUw)πUu = πUvPUwPSwπUu .

From the first part of the lemma we know that PSwUu ⊆ Uw which means that

PUw(PSwπ
∗
Uu

) = PSwπ
∗
Uu

. Combining these two observations with the fact that Uv ⊆
RSv ⊆ RSw we obtain

πUv(π
∗
UwπUw)πUu = πUvPUw(PSwπUu) = πUvPSwπ

∗
Uu = πUvπ

∗
Uu .
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Proof of Theorem 6.3.9

The facts established in the previous lemma are important in the proof of Theorem 6.3.9,

that the covariances among the leaves of a Gaussian latent tree model are characterized

by having an LTCD.

Proof of Theorem 6.3.9. We begin by establishing the converse. Most of the argument

is sketched in the discussion prior to the definition of an LTCD; we make it precise here.

Suppose X is the n× n covariance among the leaf-indexed variables of a Gaussian tree

model with state dimensions (nv)v∈V and tree T with root r. Then there are (Av)v∈V\r
and (Qv)v∈V such that Qv ∈ Snv+ for all v ∈ V and Av ∈ RnP(v)×nv for all v ∈ V \ r such

that

X =
∑
v∈V

ΦLvQvΦ
T
Lv

(where Φ is defined according to (6.2.5)). Let Xv = ΦLvQvΦ
T
Lv and note that each of

these is positive semidefinite. For each w ∈ L define Sw ⊂ [n] to index the state space

of that leaf (so that |Sw| = nw). For each v ∈ V \ L define Sv =
⋃
w∈D(v)∩L Sw, the

(disjoint) union of the state spaces of the leaves descended from v. Note that Sv ⊂ Su
if and only if v � u in the tree order, so the collection (Sv)v∈V forms the rooted tree

T . Furthermore, since ΦLv is supported only on the block rows indexed by L∩D(v) it

follows that

Sv ⊇ supp
(
col
(
ΦLvQvΦ

T
Lv
))

= supp (col(Xv)) .

This establishes that X =
∑

v∈V Xv is a valid LTCD with structure (Sv)v∈V . The

subspaces of this decomposition are (Uv)v∈V where (by definition) Uv is the column

space of∑
u�v

PSvXuPSv =
∑
u�v

PSvΦLuQuΦT
LuPSv (by definition of Xu)

∗
=
∑
u�v

ΦLvΦvuQuΦT
vuΦT

Lv (see comments below)

= ΦLvΣvvΦ
T
Lv (by the expression for Σvv in (6.2.6)).

The equality marked with an asterisk requires additional comment. It holds because if

v � u and w ∈ L then

ΦwvΦvu =

{
Φwu if w � u
0 otherwise.

An equivalent way to write this is that ΦLvΦvu = PSvΦL,u whenever v � u.

Since Uv is the column space of ΦLvΣvvΦ
T
Lv we have that the corresponding dimen-
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sion mv = dim(Uv) of the decomposition satisfies mv ≤ rank(Σvv) ≤ nv. This completes

the proof of the converse.

Now suppose X =
∑

v∈V Xv is an LTCD with subspaces (Uv)v∈V , dimensions

(nv)v∈V and supports (Sv)v∈V that are subsets of [n] and form the rooted tree T . Then

the explicit parameterization given in terms of the (Av)v∈V\r and (Qv)v∈V certainly

defines a Gaussian tree model Markov with respect to T and with state dimensions

(nv)v∈V .

It remains to check that the covariance among the leaves in this model is, indeed,

X. Much of the work is done by Lemma 6.7.1 which describes relationships between the

subspaces Uv for v ∈ V. In particular part 2 of Lemma 6.7.1 tells us that whenever v ≺
w ≺ u we have πUvπ

∗
Uw
πUwπ

∗
Uu

= πUvπ
∗
Uu

. Repeatedly applying part 2 of Lemma 6.7.1

we see that if v ≺ u and w is the child of u satisfying v � w ≺ u then

Φvu = AvAP(v) · · ·Aw = πUvπ
∗
UP(v)

πUP(v)
· · ·πUwπUwπ∗Uu = πUvπ

∗
Uu . (6.7.2)

Whenever w ∈ L we have that Uw = col(XSwSw). Because X � 0 (by assumption) we

have that Uw = col(XSwSw) = RSw whenever w ∈ L. Applying (6.7.2) we see that if

w ∈ L, Φwu = πSwπ
∗
Uu

for any u ∈ V. Hence ΦLu = π∗Uu for any u ∈ V. Hence the

covariance among the leaves of the Gaussian tree model defined by the (Qv)v∈V and the

(Av)v∈V\{r} is∑
v∈V

ΦLvQvΦ
T
Lv =

∑
v∈V

π∗UvQvπUv (by (6.7.2))

=
∑
v∈V

PUvXvPUv (by definition of Qv)

=
∑
v∈V

Xv (since col(Xu) ⊆ Uu by Lemma 6.2.2)

which is X by the definition of an LTCD.

Proof of Lemma 6.3.11

We now establish the two characterizations of non-singular LTCDs given in Lemma 6.3.11.

Proof of Lemma 6.3.11. We begin by observing that

0 � Xv � Xv + PSvXP(v)PSv �
∑
u�v

PSvXuPSv .

Hence by Lemma 6.2.2 the following inclusions always hold

col(Xv) ⊆ col(Xv + PSvXP(v)PSv) ⊆ col
(∑

u�vPSvXuPSv

)
= Uv. (6.7.3)
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If part 3 holds, i.e. Uv = col(Xv) for all v ∈ V then all the subspaces in (6.7.3) are equal.

Hence col(Xv) = col(Xv + PSvXP(v)PSv). Equivalently col(PSvXP(v)PSv) ⊆ col(Xv) so

part 2 holds.

Conversely suppose part 2 holds. We establish part 3 by induction on the distance

between v and the root. If d(v, r) = 0 then part 3 holds vacuously. The induction

hypothesis is that whenever d(v, r) = k then col(Xv) = col
(∑

u�vPSvXuPSv

)
. Assume

d(v, r) = k + 1 and so that d(P(v), r) = k. Then

col(Xv) ⊇ col
(
PSvXP(v)PSv

)
since part 2 holds

= PSvcol(XP(v))

= PSvcol
(∑

u�P(v)PSP(v)
XuPSP(v)

)
by the induction hypothesis

= col
(∑

u�P(v)PSvXuPSv

)
since Sv ⊆ SP(v).

Hence col(Xv) = col
(
Xv +

∑
u�P(v) PSvXuPSv

)
= Uv and so part 3 holds.

We have shown that part 2 and part 3 are equivalent. We now show that part 1

and part 3 are equivalent. The LTCD X =
∑

v∈V Xv is non-singular if and only if

Qv = πUvXvπ
∗
Uv
� 0 (this is clear from the factorization Σ = ΦQΦT from (6.2.6), where

Q has the Qv on the block diagonal and Φ is non-singular). If πUvXvπ
∗
Uv
� 0 it follows

that col(Xv) ⊇ Uv. Since Uv ⊆ col(Xv) by definition, we have that col(Xv) = Uv and so

part 3 holds. Conversely if part 3 holds then Qv = πUvXvπ
T
Uv
� 0 so part 1 holds.

� 6.7.2 Proofs for Section 6.4

We begin with a lemma that establishes the basic reason why we require scalars (λv)v∈V
to be constant on children in a number of places in the discussion.

Lemma 6.7.2. If (λv)v∈V are constant on children (see Definition 6.4.1) then for all

u ∈ V
λuPSu =

∑
v�u

(λv − λC(v))PSv .

Proof. We argue by induction on the maximum distance from u to any descendant of u,

i.e. maxt�u d(u, t). For the base case, suppose u ∈ L so that maxt�u d(u, t) = 0. Then

since λC(u) = 0 and {v : v � u} = {u},∑
v�u

(λv − λC(v))PSv = (λu − λC(u))PSu = λuPSu .

Assume that the result holds for all vertices u such that maxt�u d(u, t) = k. Suppose

u ∈ V is such that maxt�u d(u, t) = k + 1. Then maxt�w d(w, t) = k for all w ∈ C(u).



Sec. 6.7. Proofs for Chapter 6 219

Now we can break up the sum over descendants of u into a term for u and a sum over

the descendants of each of the children of u as

∑
v�u

(λv − λC(v))PSv = (λu − λC(u))Pu +
∑

w∈C(u)

∑
v�w

(λv − λC(v))PSv

 .
Applying the induction hypothesis to the right hand side we obtain∑

v�u
(λv − λC(v))PSv = (λu − λC(u))Pu +

∑
w∈C(u)

λwPSw .

Since λw = λC(u) for all w ∈ C(u) and
∑

w∈C(u) PSw = PSu it follows that∑
v�u

(λv − λC(v))PSv = (λu − λC(u) + λC(u))PSu = λuPSu

completing the proof.

Proof of Lemma 6.4.2

This enables us to establish the correctness of our simplification of the objective function

of MTCD.

Proof of Lemma 6.4.2. First, since the (λv)v∈V are non-negative, order preserving, and

constant on children it follows that κv := λv − λC(v) > 0 for all v ∈ V. Then since trace

is a linear function, we can rewrite the objective function of (6.4.4) in a simpler form

as

tr

∑
v∈V

∑
u�v

κv[π
∗
SuZuπSu ]SvSv

 =
∑
u∈V

tr

∑
v�u

κv[π
∗
SuZuπSu ]SvSv


=
∑
u∈V

tr

π∗SuZuπSu
∑
v�u

κvPSv

 .
Here the first equality holds by changing the order of summation and using linear-

ity of the trace. The second equality holds by linearity of trace and the fact that

tr([A]SS) = tr(πSAπ
∗
S) = tr(APS). Since the (λv)v∈V are constant on children we can

apply Lemma 6.7.2 to obtain

∑
u∈V

tr

π∗SuZuπSu
∑
v�u

κvPSv

 =
∑
u∈V

tr
[
π∗SuZuπSu (λuPSu)

]
=
∑
u∈V

λutr(Zu)
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completing the proof.

Proof of Proposition 6.4.4

Proof of Proposition 6.4.4. The condition that there exists Y such that for all v ∈ V,

〈Y x, x〉 ≤ λv‖x‖2 for all x ∈ RSv and

〈Y x, x〉 = λv‖x‖2 for all x ∈ col(Xv) ⊆ RSv .

is equivalent to the condition that there exists Y such that for all v ∈ V,

YSvSv � λvI (6.7.4)

YSvSvZv = λvZv. (6.7.5)

If X is strictly positive definite then the primal problem is strictly feasible. We have

already seen that the dual problem is strictly feasible. The conditions (6.7.4) and (6.7.5)

are precisely a statement of the optimality conditions for semidefinite optimization

under strict feasibility of the primal and dual problems (Theorem 2.4.3 in Chapter 2).

It remains to show that if MTCD is feasible then it always has a unique optimal

point. Suppose (Z
(1)
v )v∈V and (Z

(2)
v )v∈V are both optimal for MTCD. Then by convex-

ity, the averages ((Z
(1)
v +Z

(2)
v )/2)v∈V are also optimal for MTCD. Let Y satisfy, for all

v ∈ V,

YSvSv � λvI and YSvSv(Z
(1)
v + Z(2)

v ) = λv(Z
(1)
v + Z(2)

v )

which exists by the argument in the previous paragraph. Let Vλv denote the λv-

eigenspace of Y and note that col(Z
(1)
v +Z

(2)
v ) ⊆ Vλv . In addition, since Z

(1)
v � Z(1)

v +Z
(2)
v

and Z
(2)
v � Z

(1)
v + Z

(2)
v we can conclude (from Lemma 6.2.2) that col(Z

(1)
v ) ⊆ Vλv and

col(Z
(2)
v ) ⊆ Vλv and so that

YSvSvZ
(1)
v = λvZ

(1)
v and YSvSvZ

(2)
v for all v ∈ V. (6.7.6)

Assume, seeking a contradiction, that there is some v such that Z
(1)
v 6= Z

(2)
v , and choose

such a v that is maximal with this property, i.e. so that if t � v then Z
(1)
t = Z

(2)
t .

Observe that

ΣD(v)∩L,D(v)∩L =
∑
w≺v

[π∗SwZ
(i)
w πSw ]SvSv + Z(i)

v +
∑
t�v

[π∗StZ
(i)
t πSt ]SvSv

for i = 1, 2. Subtracting these two equations we see that
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0 =
∑
w≺v

[π∗Sw(Z(1)
w − Z(2)

w )πSw ]SvSv + (Z(1)
v − Z(2)

v ) +
∑
t�v

[π∗St(Z
(1)
t − Z

(2)
t )πSt ]SvSv

=
∑
w≺v

[π∗Sw(Z(1)
w − Z(2)

w )πSw ]SvSv + (Z(1)
v − Z(2)

v ) (6.7.7)

where the second equality holds by our choice of v. Since Z
(1)
v 6= Z

(2)
v (by assumption)

for (6.7.7) to hold there must be some w ≺ v such that Z
(1)
w 6= Z

(2)
w . Let w1, w2, . . . , wk

be the set of maximal elements of {w ∈ V : w ≺ v and Z
(1)
w 6= Z

(2)
w }. Then observe

that we can rewrite (6.7.7) as

Z(2)
v − Z(1)

v =

k∑
i=1

∑
ui�wi

[π∗Sui
(Z(1)

ui − Z
(2)
ui )πSui ]SvSv .

It follows that Z
(2)
v − Z

(1)
v is block diagonal with support on the blocks indexed by

Swi for i = 1, 2, . . . , k. These blocks are disjoint because the wi are maximal and so

are incomparable in the tree order. Because of the support of Z
(2)
v − Z

(1)
v , for each

i = 1, 2, . . . , k we have that

YSwiSwi [Z
(2)
v − Z(1)

v ]SwiSwi = [Y (Z(2)
v − Z(1)

v )]SwiSwi = λv[Z
(2)
v − Z(1)

v ]SwiSwi (6.7.8)

where the last equality is from (6.7.6). Now, for all i = 1, 2, . . . , k we have that λv > λwi
because the (λv)v∈V are order preserving. Hence for all i = 1, 2, . . . , k we have that

λvI − YSwiSwi � λwiI − YSwiSwi � 0

where the right hand side is positive semidefinite because Y satisfies (6.7.4). Hence

λvI − YSwiSwi is invertible for i = 1, 2, . . . , k. Then we can see from (6.7.8) that

(λvI − YSwiSwi )[Z
(1)
v − Z(2)

v ]SwiSwi = 0

for all i = 1, 2, . . . , k. It then follows that Z
(1)
v = Z

(2)
v , a contradiction.

Proof of Lemma 6.4.9

The main technical lemma of Section 6.4 establishes that we can construct a global dual

certificate for MTCD out of local dual certificates. We now establish this result.
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Proof of Lemma 6.4.9. Our aim is to understand

〈Y x, x〉 =
∑
v∈V

(λv − λC(v))〈π∗SvYvπSvx, x〉

when x ∈ RSu (and also when x ∈ col(Xu) ⊆ RSu). To this end we begin by studying

〈π∗SvYvπSvx, x〉 when x ∈ RSu and u, v ∈ V are arbitrary. We claim that

〈π∗SvYvπSvx, x〉 = 0 for all x ∈ RSu whenever u, v ∈ V and u 6� v. (6.7.9)

First assume u and v are incomparable. Then RSu and RSv are orthogonal subspaces

so πSvx = 0 for all x ∈ RSu . Now if u and v are comparable and u 6� v then u ≺ v.

Then there is some w such that w is a child of v and u � w ≺ v. Then RSu ⊆ RSw so

that whenever x ∈ RSu we have that 〈π∗SvYvπSvx, x〉 = 0 (by the first assumption on

Yv), establishing (6.7.9).

It follows from this claim that whenever x ∈ RSu

〈Y x, x〉 =
∑
v∈V

(λv − λC(v))〈π∗SvYvπSvx, x〉 =
∑
v�u

(λv − λC(v))〈π∗SvYvπSvx, x〉 (6.7.10)

since the remaining terms in the sum are zero.

Now we establish that whenever (λv)v∈V is constant on children and λv > λC(v) for

all v then Y satisfies the first of the optimality conditions (6.4.7). To do so observe

that if u ∈ V and x ∈ RSu

〈Y x, x〉 =
∑
v�u

(λv − λC(v))〈π∗SvYvπSvx, x〉

=
∑
v�u

(λv − λC(v))〈π∗SvYvπSvPSvx, PSvx〉 (6.7.11)

≤
∑
v�u

(λv − λC(v))‖PSvx‖2 (6.7.12)

= λu‖PSux‖2 (6.7.13)

= λu‖x‖2 (6.7.14)

where the inequality holds by the second assumption on Yv (and the fact that λv > λC(v)

for all v), the second-last equality follows from Lemma 6.7.2 and the last equality holds

since x ∈ RSu . We have now established that Y satisfies (6.4.7).

To see that (6.4.8) holds, we use a similar argument. The key additional observation
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we need is that whenever u � v then Pvcol(Xu) ⊆ Uv. This holds because

Uv = col
(∑

w�vPSvXwPSv

)
⊇ col(PSvXuPSv) = PSvcol(Xu)

where the inclusion follows from Lemma 6.2.2. With this observation established, if u ∈
V and x ∈ col(Xu) ⊆ RSu then (reusing the steps from (6.7.11), (6.7.13), and (6.7.14))

we have that

〈Y x, x〉 =
∑
v�u

(λv − λC(v))〈π∗SvYvπSvPSvx, PSvx〉

=
∑
v�u

(λv − λC(v))‖PSvx‖2 (6.7.15)

= λu‖x‖2

where (6.7.15) follows from the fact that PSvx ∈ PSvcol(Xu) ⊆ Uv and from the third

assumption on Yv. This completes the proof.

The following technical result allows us to state our sufficient conditions for MTCD

to recover an LTCD (Theorem 6.4.10) in terms of the angles between the subspaces

Uv and UP(v) from an LTCD. Without this lemma the same result would hold, but

it would be stated in a less aesthetically appealing (but completely equivalent) way in

terms of the angle between the subspaces πSP(v)
UP(v) and πSP(v)

RSv .

Lemma 6.7.3. Suppose X =
∑

v∈V Xv is an LTCD with supports (Sv)v∈V and sub-

spaces (Uv)v∈V . Then

cos(θ(Uu, Uw))2 = cos( θ(πSuUu, πSuRSw) )2 whenever w � u.

Proof. We start by observing that since Uu ⊆ RSu and RSw ⊆ RSu it follows that

cos( θ(πSuUu, πSuRSw) )2 = cos( θ(Uu,RSw) )2. To conclude the proof we use the results

of Lemma 6.7.1 and the definition of the principal angle between subspaces to see that:

cos(θ(Uu,RSw))2 = max
x∈Uu

‖PSwx‖2

‖x‖2

= max
x∈Uu

‖PUwPSwx‖2

‖x‖2
(since PSwUu ⊆ Uw from part 1 of Lemma 6.7.1)

= max
x∈Uu

‖PUwx‖2

‖x‖2
(since Uw ⊆ RSw)

= cos(θ(Uu, Uw))2.
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� 6.7.3 Proofs for Section 6.5

We begin with a useful result that shows how to write the projection onto the block

diagonal part of a symmetric matrix as a convex combination of symmetric matrices.

If (Si)
k
i=1 is a partition of [n] then define G((Si)

k
i=1) to be the group consisting of

matrices of the form

g =
k∑
i=1

εiPSi where εi ∈ {−1, 1} for all i ∈ [k].

This is a group because PSiPSj = δijPSi . It consists of diagonal sign matrices that are

constant on the part of the diagonal indexed by Si, for each i = 1, 2, . . . , k.

Lemma 6.7.4. If (Si)
k
i=1 is a partition of [n] and G = G((Si)

k
i=1) then the orthogonal

projection onto symmetric matrices that are block diagonal with respect to (Si)
k
i=1 is

X 7→
k∑
i=1

PSiXPSi =
1

|G|
∑
g∈G

gXgT .

Proof. The action g ·X = gXgT is a valid action of the group G on symmetric matrices.

Moreover the action preserves the trace inner product, i.e. 〈X,Y 〉 = 〈gXgT , gY gT 〉 for

all X,Y ∈ Sn. The subspace of symmetric matrices satisfying X = gXgT for all g ∈ G
is precisely the set of matrices block diagonal with respect to (Si)

k
i=1. The result then

follows from Lemma 2.6.6 of Chapter 2, which states that the orthogonal projector

onto the fixed-point subspace of a group action that preserves inner products is given

by averaging over the group action.

Proof of Lemma 6.5.1

Proof of Lemma 6.5.1. Let G = G( (Sv)v∈Vk ). Then by Lemma 6.7.4

∑
v∈Vk

PSv

∑
u�v

Xu

PSv =
∑
v∈Vk

PSvXr′PSv =
1

|G|
∑
g∈G

gXr′g
T � 1

|G|
Xr′ � 0.

It then follows from Lemma 6.2.2 that

⊕
v∈Vk

Uv = col

∑
v∈Vk

PSv

∑
u�v

Xu

PSv

 ⊇ col(Xr′).
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If the LTCD is non-singular then by Lemma 6.3.11 col(Xv) = Uv for all v ∈ V. Hence

⊕
v∈Vk

Uv =
⊕
v∈Vk

col(Xv) = col

∑
v∈Vk

Xv

 ⊆ col

 ∑
v∈V≥k

Xv

 = col(Xr′)

where the inclusion again holds by Lemma 6.2.2. This establishes the second part of

the statement of the lemma.

Proof of Theorem 6.5.2

Proof of Theorem 6.5.2. Since the LTCD can be recovered by MTCD, it follows from

Prop 6.4.4 that there is a dual certificate Y satisfying

YSvSv � λvI and YSvSv [Xv]SvSv = [Xv]SvSv for all v ∈ V. (6.7.16)

Let Y ′ denote the matrix that is block diagonal with respect to (Sv)v∈Vk with diagonal

blocks Y ′SvSv = YSvSv for all v ∈ Vk. Then Y ′ satisfies (6.7.16) for v ∈ V<k simply

because YSvSv = Y ′SvSv whenever v ∈ V<k. It remains to show that Y ′ satisfies (6.7.16)

for v = r′, i.e. that

Y ′ � λkI and Y ′Xr′ = λkXr′ .

The first of these conditions holds because Y ′ is block diagonal, the blocks satisfy

Y ′SvSv = YSvSv � λvI for all v ∈ Vk, and λk is (by definition) the common value of λv
for all v ∈ Vk.

For the second, by Lemma 6.5.1 and the fact that the LTCD of X is non-singular,

we have that col(Xr′) =
⊕

v∈Vk col(Xv). This means that if x ∈ col(Xr′) then x =∑
v∈Vk xv where each xv ∈ col(Xv) ⊆ RSv for v ∈ Vk. Then since Y ′ is block diagonal

with respect to (Sv)v∈Vk ,

Y ′x =
∑
v∈Vk

Y ′xv =
∑
v∈Vk

π∗Sv(YSvSv)πSvxv =
∑
v∈Vk

λvxv = λkx.

Since this holds for any x ∈ col(Xr′) it follows that Y ′Xr′ = λkXr′ .

This argument establishes part 1 and part 3 of the statement of Theorem 6.5.2.

To establish part 2, we note that since col(Xr′) =
⊕

v∈Vk col(Xv) and col(Xv) ⊆ RSv
for v ∈ Vk it follows that Pcol(Xr′ )

is block diagonal with respect to (Sv)v∈Vk with the

diagonal block indexed by Sv being Pcol(Xv). Finally by part 1 we have that Pcol(Zr′ )
=

Pcol(Xr′ )
so it also has this block diagonal structure.
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Proof of Proposition 6.5.3

Proof of Proposition 6.5.3. By the optimality conditions for MTCD we know that Y Xr =

λrXr. Since rank(λrI−Y )+rank(Xr) = n we know that the column space of Xr equals

the nullspace of λrI−Y . Since λrI−Y is block diagonal it follows Xr has a factorization

as

Xr = P


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

M

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak


T

P T

where P is a permutation matrix, M is positive definite, and each Ai has columns that

are a basis for the nullspace of λrI − YSiSi . Decompose M as the sum of a positive

semidefinite block diagonal matrix D (with blocks corresponding to the partition in-

duced by the columns of the Ai) and a rank-deficient positive semidefinite matrix L.

One could do this using MTCD, for instance. Then the decomposition

Xr = P


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 (D + L)


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak


T

P T

=

 k∑
i,j=1

π∗SiAiLijA
T
j πSj

+
k∑
i=1

(π∗SiAiDiiA
T
i πSi)

satisfies the conclusion of the Proposition.

At the end of Section 6.5.4 we briefly describe how, in the limit as the regularization

parameters δ and γ go to zero, the optima of dual regularized approximate LTCD (6.5.5)

approach optimal solutions of the dual of MTCD for which h is minimized. The follow-

ing result gives conditions on an underlying LTCD and on a regularizer h, that ensures

that the minimum of h over the dual optimal face is block diagonal.

Lemma 6.7.5. Suppose X � 0 is n× n and has a non-singular LTCD X =
∑

v∈V Xv

with structure (Sv)v∈V that forms a constant depth tree. Suppose, also, that the LTCD

can be recovered by MTCD (with scalars (λv)v∈V that are positive, order preserving, and

constant on scales). Let h : Sn → R be a convex function that satisfies, for each k > 0,

h(gY gT ) = h(Y ) for all g ∈ Gk−1 := G((Sv)v∈Vk−1
). Then for each scale k > 0

min
Y

h(Y ; (Sv)v∈Vk−1
) s.t. Y is dual optimal
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is block diagonal with respect to (Sv)v∈Vk .

Proof. Under these hypotheses, in the proof of Theorem 6.5.2 we showed that if Y is

any element of the dual optimal set then the matrix Y ′ obtained by setting Y ′SvSw =

δvwYSvSv for v, w ∈ Vk is also in the dual optimal set. Let Gk = G((Sv)v∈Vk) and note

that because (Sv)v∈Vk−1
is a refinement of (Sv)v∈Vk , Gk is a subgroup of Gk−1. By

Lemma 6.7.4 we have that

Y ′ =
1

|G|
∑
g∈Gk

gY gT .

Then by the convexity of h and by the fact that h(gY gT ) = h(Y ) for all g ∈ Gk−1 (and

hence all g ∈ Gk), we can conclude that

h(Y ′) ≤ 1

|G|
∑
g∈Gk

h(gY gT ) = h(Y ).

Hence the minimizer of h must be block diagonal with respect to (Sv)v∈Vk .
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Chapter 7

Conclusion

This thesis is focused on giving new descriptions of both optimization-based and prob-

abilistic models. In particular the emphasis is on descriptions that allow problems to

be solved (or approximately solved) globally and with both computational efficiency

(and approximation) guarantees. Semidefinite optimization problems play a central

role, either by providing

• exact reformulations (Chapters 3 and 4) for families of optimization problems

• approximations for families of optimization problems with provable approximation

guarantees (Chapter 5), or

• methods to search for computationally efficient approximations for certain prob-

abilistic models (Chapter 6).

In Section 7.1, we summarize the main contributions of the thesis. In Section 7.2 we

suggest avenues for future work. The discussion in Section 7.2 is intended to complement

the concrete problems and suggestions for future work at the end of Chapters 3, 4, 5,

and 6, by discussing some broader possible research themes related to the ideas in this

thesis.

� 7.1 Summary of contributions

In this section we summarize the main contributions of the thesis.

Chapter 3: Semidefinite representations of derivative relaxations of spectra-
hedral cones

The work in Chapter 3 is broadly related to understanding how different families of

convex optimization problems are related, both in terms of their expressive power and in

terms of the complexity of describing and solving the associated optimization problems.

In particular we consider the problem of giving semidefinite representations of a family

of hyperbolicity cones called the derivative relaxations of spectrahedral cones. These

229



230 CHAPTER 7. CONCLUSION

derivative relaxations form a sequence of outer approximations to a spectrahedral cone.

This sequence of approximations starts with a spectrahedral cone, and then successively

relaxes the high-dimensional faces of the cone, preserving lower-dimensional faces, until

only a half-space containing the original cone is left.

Our main contribution is to construct explicit semidefinite representations of these

derivative relaxations. Our representations have size that is polynomial in both the size

of the original spectrahedral cone and the relaxation parameter. These are the first

known semidefinite representations for this family of convex cones.

Chapter 4: Semidefinite descriptions of the convex hull of rotation matrices

In Chapter 4 we study n× n rotation matrices (i.e. orthogonal matrices with determi-

nant one) from the point of view of semidefinite optimization. Our main contribution

is to give the first semidefinite representations of the convex hull of n × n rotation

matrices. Optimization problems with variables that are constrained to be rotations

arise naturally in many application areas. Our semidefinite representations open up the

possibility of constructing semidefinite representations and relaxations for a range of

problems involving rotations that are typically tackled by local optimization methods.

As an example, in Chapter 4 we use our representations to exactly reformulate a joint

attitude and spin-rate estimation problem for a spinning spacecraft as a semidefinite

optimization problem.

Chapter 5: Rounding semidefinite relaxations for pairwise optimization prob-
lems

In Chapter 5 we consider the problem of rounding semidefinite relaxations for a class

of pairwise optimization problems that includes natural multivariate extensions of the

problems we solve exactly in Chapter 4. We generalize well-known constant-factor

approximation guarantees and associated rounding schemes for quadratic optimization

over {−1, 1}n to a much larger class of problems than has been previously considered.

The problem class we work with replaces binary variables with subsets X of m × d

matrices such that

• X∗X � I for all X ∈ X ;

• X has a certain symmetry property;

• we can (approximately) maximize linear functionals over X .

An example of such a set X is the set of d× d rotation matrices.

Our main result shows that to design an optimal (in an appropriate sense) rounding

scheme for a particular semidefinite relaxation, requires the solution of a geometric
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optimization problem, the normalized maximum width problem, related to the constraint

set X . Feasible points for this geometric problem can be translated into rounding

schemes. The corresponding objective value is related to the approximation guarantee

the rounding scheme achieves.

Chapter 6: A convex approach to learning Gaussian latent tree models

In Chapter 6 we shift from developing tractable descriptions of optimization problems

to developing tractable descriptions of multivariate Gaussian random variables. In par-

ticular we propose methods to approximate a given covariance matrix as the marginal

covariance among the leaf-indexed variables of a Gaussian tree model. Gaussian tree

models are a tractable family of models that allow very efficient decentralized inference

algorithms. Typical methods for constructing such latent variable models involve local

optimization approaches such as the expectation-maximization (EM) algorithm.

The method we propose to construct such tree models is based on semidefinite opti-

mization and is global in nature. The main contribution of Chapter 6 is to analyze our

method in the case where we are given the covariance among the leaf-indexed variables

of a latent tree model, and we aim to recover the full underlying latent tree model.

We give sufficient conditions on the underlying model that ensure our method recovers

the model parameters, the dimensions of the latent variables, and the combinatorial

structure of the tree.

� 7.2 Future directions

In this final section we describe some natural avenues for future research related to the

work in this thesis.

Breaking symmetry in semidefinite representations

Many of the sets for which we would like to find semidefinite representations have a large

symmetry group. The semidefinite representations developed in Chapters 3 and 4 of this

thesis, as well as many others in the literature [110], are equivariant in the sense that the

semidefinite representations respect the symmetries of the underlying convex set being

represented. Restricting to equivariant representations allows us to use systematic

approaches (see, e.g., [43, 44]) to construct semidefinite representations. On the other

hand, as was discussed briefly in Chapter 4, in some cases it is known that breaking

symmetry allows for dramatic reductions in the size of semidefinite representations.

Developing systematic approaches to reducing the size of semidefinite representations

by breaking symmetry is a natural topic for future study.

Many of the representations known that do break symmetry proceed by decompos-

ing the (extreme points of the) convex set to be represented into simpler pieces (in
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a way that breaks some symmetry), representing the constituent pieces, and then re-

assembling them to form a representation of the overall object. Understanding how to

systematically search for decompositions of a given set that are beneficial in this context

seems like one natural approach to systematically breaking symmetry in semidefinite

representations.

Semidefinite relaxations for multivariate optimization problems over rotation
matrices

Optimization problems with multiple 3× 3 rotation-matrix-valued variables are an im-

portant family of non-linear non-convex optimization problems. These arise naturally

in many estimation and control problems for, say, rigid bodies. The multiple vari-

ables could arise, for example, from discretizing time in a dynamic model to obtain a

time-series taking values in rotation matrices, or from having multiple static objects of

interest, or having multiple such time-series. Our semidefinite representations for the

convex hull of 3 × 3 rotation matrices from Chapter 4 give rise to exact semidefinite

representations for a very restricted class of multivariate problems, and can also be used

to obtain tighter semidefinite relaxations for a broader class of problems [118].

Nevertheless there has not yet been a systematic approach taken to developing and

analyzing methods based on semidefinite optimization for multivariate optimization

problems on 3 × 3 rotation matrices. This is even the case for the simple class of

time-series models discussed in [118]. On the theoretical end of the spectrum, it would

be useful to find explicit and exact semidefinite reformulations of these multivariate

problems (even though, if such representations exist, they are likely of exponential size

in the number of variables). Such descriptions could be used to construct more tractable

relaxations by systematically weakening some of their constraints. On the other end of

the spectrum, developing efficient specialized numerical algorithms to solve semidefinite

relaxations for these classes of problems could have significant practical impact. For

recent initial work in this direction see, for instance, [16].

Simultaneous design of semidefinite relaxations and rounding schemes

Numerous tools have been developed over the last 10–15 years to construct hierarchies

of semidefinite relaxations for polynomial optimization problems. These are essentially

based on the basic idea of certifying non-negativity of functions by writing them as

sums of squares [92] (or, dually, by constructing relaxations for the moments of proba-

bility measures supported on a given set [73]). Since these procedures, generally, only

produce relaxations of the convex sets of interest, it is desirable to have associated

rounding schemes with good approximation guarantees. Thus far there has been little

progress, in general, in systematically developing rounding schemes for relaxations of
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polynomial optimization problems coming from these hierarchies (beyond the first level

of the hierarchies).

One natural (and very broad) problem area for future research would be to develop

families of semidefinite relaxations that are designed with rounding in mind. Any round-

ing scheme must map the extreme points of the relaxation into the exact convex hull of

the feasible points for the original problem. As such it would be important that for a

family of relaxations developed with rounding in mind we have a good characterization

of the extreme points of the relaxation. This is typically not the case for hierarchies

based on sums-of-squares, for instance.

Convex approaches for hierarchical matrix decomposition problems

One interpretation of the latent tree covariance decomposition problem from Chapter 6

is that it is a hierarchical version of a (block) diagonal and low-rank matrix decomposi-

tion problem, where the hierarchical nature comes from additional structure within the

low-rank term. In the past five years, convex optimization-based methods for related

matrix decomposition problems, such as sparse and low-rank decompositions [29, 27],

have been developed, analyzed, and applied to numerous problem areas. It would be

interesting to develop hierarchical analogs of matrix decompositions involving low-rank

matrices, where the low-rank term has additional hierarchical structure, as well as as-

sociated convex optimization-based methods to find such decompositions. The family

of matrices that are well approximated by matrices with, say, a hierarchical sparse and

low-rank decomposition, is likely significantly larger than those that are well approxi-

mated by a single-scale sparse and low-rank decomposition. On the other hand, due to

the multi-scale structure one would imagine that the subsequent cost of carrying out

computations with a hierarchical approximation would be similar to that of the single-

scale approximation. It is likely that many of the issues that arise in the hierarchical

diagonal and low-rank decomposition setting of Chapter 6 will be similar to the issues

that appear in hierarchical versions of more complex matrix decomposition problems.
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[40] È. B. Vinberg. “The theory of homogeneous convex cones”. In: Trans. Moscow

Math. Soc. 12 (1965), pp. 340–403.

[41] F. R. Harvey. Spinors and Calibrations. Vol. 9. Perspectives in Mathematics.

Academic Press, Inc., Boston, MA, 1990.

[42] H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, and R. R. Thomas. Positive

semidefinite rank. 2014. eprint: arXiv:1407.4095.

[43] H. Fawzi, J. Saunderson, and P. A. Parrilo. Equivariant semidefinite lifts and

sum-of-squares hierarchies. 2013. eprint: arXiv:1312.6662.

[44] H. Fawzi, J. Saunderson, and P. A. Parrilo. Sparse sum-of-squares certificates on

finite abelian groups. 2015. eprint: arXiv:1503.01207.

[45] M. Fazel. “Matrix rank minimization with applications”. PhD thesis. Stanford

University, 2002.

[46] P. W. Fieguth and A. S. Willsky. “Fractal estimation using models on multiscale

trees”. In: IEEE Transactions on Signal Processing 44.5 (1996), pp. 1297–1300.

[47] A. B. Frakt and A. S. Willsky. “Computationally efficient stochastic realization

for internal multiscale autoregressive models”. In: Multidimensional Systems and

Signal Processing 12.2 (2001), pp. 109–142.
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