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Abstract— Optimization problems with variables constrained
to be in SO(d)—orthogonal matrices with determinant one—
arise in attitude estimation, molecular imaging, and computer
vision applications, among others. Recently it has been shown
that the convex hull of SO(d) can be described in terms of linear
matrix inequalities. This allows us to devise new semidefinite
programming-based reformulations and relaxations of prob-
lems involving rotation matrices.

In this paper we illustrate the use of these techniques for two
different types of optimization problems over SO(d). The first
type of problem arises in jointly estimating the attitude and
spin-rate of a spin-stabilized satellite. We show how to exactly
reformulate such problems as semidefinite programs. The
second type of problem arises when estimating the orientations
of a network of objects (such as cameras, satellites or molecules)
from noisy relative orientation measurements. For this class of
problems we formulate new semidefinite relaxations that are
tighter than those existing in the literature, and show that they
are exact when the underlying graph is a tree.

I. INTRODUCTION

Optimization problems with variables constrained to be in
the set of rotation matrices

SO(d) := {X ∈ Rd×d : XTX = Id, det(X) = 1}

arise in numerous applications, such as attitude estimation
[1], computer vision [2], and molecular imaging [3]. Since
SO(d) is non-convex, optimization problems with decision
variables constrained to be in SO(d) are non-convex and
are often approached using local optimization methods. Of
particular interest are those exploiting the manifold structure
of SO(d) [4].

In this paper we take a global approach to problems with
rotation-matrix constraints by attempting to convexify such
problems. The basic idea is a standard one: reformulate the
problem as the maximization of a linear functional over
a complicated constraint set S, and then observe that it
is equivalent to maximize the same linear functional over
the convex hull convS of that constraint set. If we have
a tractable representation of convS we obtain a tractable
convex reformulation of the problem. It may be the case
that convS is very complicated, nevertheless we can obtain
convex relaxations of the original problem using tractable
outer approximations of convS. Such relaxations may be
exact for certain instances (i.e. produce optimal solutions for
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the original non-convex problem). In any case the optimal
value of a convex relaxation always provides global bounds
on the optimal cost that can be used, for instance, to
assess the quality of stationary points produced by local
optimization methods.

It has recently be shown by the authors [5] that the convex
hull of SO(d) can be expressed as the feasible region of a
semidefinite program, allowing the possibility of devising
improved semidefinite programming-based relaxations and
even exact reformulations of certain optimization problems
over SO(d). In this paper we apply these new semidefinite
representations to two particular problem classes described
in the following two subsections.

A. Joint attitude and spin-rate estimation

The first problem class consists of optimization problems
we call generalized joint attitude and spin-rate estimation
problems. These are optimization problems of the form

max
R∈SO(d)
ω∈[0,2π)

〈A0, R〉+
T∑
t=1

〈At cos(ωt) +Bt sin(ωt), R〉. (1)

As shown by Psiaki [1], problems of this form (with d =
3) generalize the classical satellite attitude (i.e. orientation)
estimation problem to a situation where the aim is to jointly
estimate the spin-rate and attitude of a spinning satellite. We
discuss how (1) arises in this attitude estimation context in
Section III.

The first main contribution of this paper is to show that
problems of the form in (1) can be exactly reformulated as
semidefinite programs of size (T +1)2d−1. In the physically
relevant case d = 3 these semidefinite programs have size
4(T + 1).

B. Optimization over relative rotations

The second problem class we consider consists of opti-
mization problems where the decision variables Ri ∈ SO(d)
are indexed by the vertices V of a graph G = (V,E)
and the cost function depends only on the relative rotation
R−1i Rj = RTi Rj over the edges {i, j} ∈ E, i.e.

min
R1,...,Rn∈SO(d)

∑
{i,j}∈E

fij(R
T
i Rj) (2)

where each of the fij : Rd×d → R are convex functions.
This problem class includes a natural discrete-time filtering
problem on SO(d) (see Section IV-A) as well the problem
of synchronization over rotations discussed, for instance, in
[3], [6], [7] (see Section IV-B).



The second main contribution of this paper is to give
new semidefinite relaxations for optimization problems over
relative rotations (2) that are tighter than the relaxations
considered, for instance, in [6], [8]. We prove, in Theorem 4,
that our relaxations are exact when the fij are linear and the
underlying graph is a tree.

C. Notation

We briefly summarize notation not explicitly defined else-
where. We denote by Sm the space of m×m real symmetric
matrices and by Sm+ ⊂ Sm the positive semidefinite matrices.
If X ∈ Sm we write X � 0 to mean X ∈ Sm+ . We denote
d1×d2 real matrices by Rd1×d2 and for any X,Y ∈ Rd1×d2
we define 〈X,Y 〉 = tr(XTY ). If X ∈ Rd1×d2 its Frobenius
norm is ‖X‖F := 〈X,X〉1/2. If n is a positive integer we
use the shorthand [n] for {1, 2, . . . , n}. If G = (V,E) is an
undirected graph we write the edge joining vertices i and j
as {i, j} whereas if G is directed, we write the directed edge
from vertex i to vertex j as (i, j).

D. Outline

In Section II we summarize some of the main results
from [5] describing two different semidefinite representations
of convSO(d). In Section III we discuss a natural formu-
lation (due to Psiaki [1]) of the joint spin-rate and attitude
estimation problem for a spinning satellite. We establish that
the associated optimization problem can be exactly reformu-
lated as a semidefinite program. In Section IV we consider
new semidefinite relaxations for optimization problems over
relative rotations, and prove that our relaxations are exact
when the underlying graph is a tree. Finally in Section V
we present numerical results showing the difference between
the semidefinite relaxations for optimization over relative
rotations proposed in this paper, and a standard existing
relaxation.

II. SEMIDEFINITE REPRESENTATIONS OF convSO(d)

In this section we briefly review some of the main re-
sults of [5] where two different semidefinite descriptions of
convSO(d) are given. Both descriptions are expressed in
terms of a collection (Aij)

d
i,j=1 of 2d−1 × 2d−1 symmetric

matrices. We now describe these matrices. Let

σ0 =

[
1 0
0 1

]
, σ1 =

[
1 0
0 −1

]
, σ2 =

[
0 −1
1 0

]
,

λi =

i−1︷ ︸︸ ︷
σ1 ⊗ · · · ⊗ σ1⊗σ2 ⊗

d−i︷ ︸︸ ︷
σ0 ⊗ · · · ⊗ σ0,

ρi = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
i−1

⊗σ2 ⊗ σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
d−i

and

Peven =
1

2

[
1
1

]
⊗

d−1︷ ︸︸ ︷
σ0 ⊗ · · · ⊗ σ0 +

1

2

[
1
−1

]
⊗

d−1︷ ︸︸ ︷
σ1 ⊗ · · · ⊗ σ1

where Peven is a 2d×2d−1 zero-one matrix with exactly one
1 per column and at most one 1 per row. Then define

Aij = −PTevenλiρjPeven.

for 1 ≤ i, j ≤ d. With the (Aij)
d
i,j=1 defined, we now

state the representations of convSO(d) given in [5]. The
first expresses convSO(d) as the intersection of the pos-
itive semidefinite cone with an affine subspace, showing
convSO(d) is a spectrahedron and implying that it has many
nice geometric and algebraic properties.

Theorem 1: Let R := diag(1, 1, . . . , 1,−1) and d ≥ 4.
Then X ∈ convSO(d) if and only if[

0 X
XT 0

]
� I2d, and

d∑
i,j=1

Aij [RX]ij � (d− 2)I2d−1 .

In the case d = 2 we have

convSO(2) =

{[
c −s
s c

]
:

[
1− c s
s 1 + c

]
� 0

}
.

When d = 3, X ∈ convSO(3) if and only if1−X11 −X22 +X33 X13 +X31

X13 +X31 1 +X11 −X22 −X33

X12 −X21 X23 −X32

X23 +X32 X12 +X21

X12 −X21 X23 +X32

X23 −X32 X12 +X21

1 +X11 +X22 +X33 X31 −X13

X31 −X13 1−X11 +X22 −X33

 � 0.

The second representation of convSO(d) given in [5] ex-
presses convSO(d) as a projection of 2d−1×2d−1 unit trace
positive semidefinite matrices.

Theorem 2: X ∈ convSO(d) if and only if there is Z � 0
such that tr(Z) = 1 and

X = Ad(X) :=


〈A11, Z〉 〈A12, Z〉 · · · 〈A1d, Z〉
〈A21, Z〉 〈A22, Z〉 · · · 〈A2d, Z〉

...
...

. . .
...

〈Ad1, Z〉 〈Ad2, Z〉 · · · 〈Add, Z〉

 . (3)

In Section IV-B the constraint X ∈ convSO(d) can be
expanded in terms of linear matrix inequalities according
to either Theorem 1 or Theorem 2. In contrast, for the
reformulation in Section III to work, it is crucial that we use
the representation in Theorem 2 rather than the representation
in Theorem 1.

III. JOINT SPIN-RATE AND ATTITUDE ESTIMATION

A. Wahba’s problem

The attitude of a satellite is the rotation R ∈ SO(3)
that transforms a reference coordinate system (the sun-fixed
frame) to a coordinate system fixed with respect to the
satellite (the body-fixed frame). Attitude estimation problems
involve estimating the satellite attitude given noisy measure-
ments. One family of these are called ‘vector measurements’
and consist of measurements in the body-fixed frame of
reference directions that are known in the sun-fixed frame
(e.g. the directions of stars, the earth’s magnetic field orien-
tation, etc.).

The most basic attitude estimation problem from vector
measurements is known as Wahba’s problem [9]. Suppose
y1, y2, . . . , yk are noisy measurements in the body-fixed



frame of known directions x1, x2, . . . , xk in the sun-fixed
frame. We think of the attitude R and the directions xi
as fixed, with R being unknown.1 Assume that the yi are
independent and have a von Mises-Fisher distribution on the
sphere [10] with mean Rxi and concentration parameter κi.
Hence the yi have joint distribution

p(y1, . . . , yk;R) ∝ exp(
∑k
i=1κi〈yi, Rxi〉)

where the constant of proportionality does not depend on R.
Then if X =

[
x1 · · · xk

]
and Y =

[
y1 · · · yk

]
, the

maximum likelihood estimate of the attitude R can be found
by solving

max
R∈SO(3)

k∑
i=1

κi〈yi, Rxi〉 = max
R∈SO(3)

〈Y KXT , R〉

= max
R∈convSO(3)

〈Y KXT , R〉 (4)

where K = diag(κ1, κ2, . . . , κk). Using the semidefinite
representations of the convex hull of SO(3) given either in
Theorem 1 or Theorem 2 the problem in (4) can be expressed
as a semidefinite program.

There are other ways to solve (4), the most common
being the q-method [11], which involves using the quaternion
parameterization of SO(3) to rewrite (4) as a symmetric
eigenvalue problem. The benefit of having a semidefinite
representation of convSO(3) is that it allows us to refor-
mulate more complex related problems in the framework of
semidefinite programming.

B. Joint attitude and spin-rate estimation

A generalization of Wahba’s problem, proposed recently
by Psiaki [1], involves jointly estimating the attitude and
spin-rate of a spinning satellite.

We now assume the satellite is spinning around a known
axis (say its major axis) at an unknown rate ω rad/sample
which we assume lies in the interval [0, 2π).2

By choosing the body-fixed coordinate system appropri-
ately we see that the attitude at time t is given by

R[t] =

1 0 0
0 cos(ωt) − sin(ωt)
0 sin(ωt) cos(ωt)

R
where R := R[0] is the initial attitude. At each time t =
0, 1, 2 . . . , T we obtain a batch of noisy vector measurements
y1[t], . . . , yk[t] in the body-fixed frame of known reference
directions x1[t], . . . , xk[t] in the sun-fixed frame. As for
Wahba’s problem, assume that the yi[t] are independent (for
different t and i) and have von Mises-Fisher distribution
with mean R[t]xi[t] and concentration parameter κi[t]. Let
X[t] =

[
x1[t] · · · xk[t]

]
, Y [t] =

[
y1[t] · · · yk[t]

]
, and

1We could alternatively take a Bayesian view, thinking of R as random
with some prior distribution.

2In fact we need only assume that there is an interval [a, a + 2π)
containing ω. An assumption of this form is required due to aliasing—our
formulation cannot distinguish between frequencies differing by multiples
of 2π.

K[t] = diag(κ1[t], κ2[t], . . . , κk[t]). Under these assump-
tions on the yi[t], the joint maximum likelihood estimate of
the initial attitude R and the spin-rate ω can be found by
solving

max
R∈SO(3)
ω∈[0,2π)

〈A0, R〉+
T∑
t=1

〈At cos(ωt) +Bt sin(ωt), R〉 (5)

where

A0 = Y [0]K[0]X[0]T +

T∑
t=1

1 0 0
0 0 0
0 0 0

Y [t]K[t]X[t]T ,

At =

0 0 0
0 1 0
0 0 1

Y [t]K[t]X[t]T , and

Bt =

0 0 0
0 0 1
0 −1 0

Y [t]K[t]X[t]T .

This is clearly of the general form (1) stated in the intro-
duction. For the remainder of the section we work with the
general form in (1).

C. An exact SDP reformulation of the general joint attitude
and spin-rate estimation problem

If we define Md,T ⊂ (Rd×d)2T+1 to be

{(R,R cos(ω), R sin(ω), . . . , R cos(Tω), R sin(Tω)) :

R ∈ SO(d), ω ∈ [0, 2π)}

then (1) can be reformulated as the maximization of a
linear functional over Md,T which is equivalent to the
maximization of the same linear functional over convMd,T :

max
(Xt)Tt=0,(Yt)Tt=1

〈A0, X0〉+
T∑
t=1

[〈At, Xt〉+ 〈Bt, Yt〉]

subject to (X0, X1, Y1, . . . , XT , YT ) ∈ convMd,T .

To reformulate the problem (1) as a semidefinite program,
it remains to show that the convex hull of Md,T has a
semidefinite representation. This is the case because

1) convMd,T is the image of another convex body,
convM̃2d−1,T , under a linear map (Proposition 1 to
follow). The proof of this requires the description of
convSO(d) in Theorem 2.

2) For any positive integers m and T , convM̃m,T is the
feasible region of a linear matrix inequality involving
symmetric matrices of size (T + 1)m.

For positive integers m,T , define M̃m,T ⊂ (Sm)2T+1 by

{(qqT, qqTcos(ω), qqTsin(ω), . . . , qqTcos(Tω), qqTsin(Tω)) :
qT q = 1, ω ∈ [0, 2π)}.

We now state the relationship between convMd,T and
convM̃2d−1,T .

Proposition 1: convMd,T = Ã(convM̃2d−1,T ) where Ã
is the linear map that sends ((Xt)

T
t=0, (Yt)

T
t=1) to

(Ad(X0),Ad(X1),Ad(Y1), . . . ,Ad(XT ),Ad(YT ))



and Ad : S2
d−1 → Rd×d is defined in (3) of Section II.

Proof: See the appendix.
To complete the section we state a linear matrix inequality

description of convM̃m,T .
Proposition 2: convM̃m,T is the set of (2T + 1)-

tuples (X0, X1, Y1, . . . , XT , YT ) of symmetric matrices
s.t. tr(X0) = 1 and

X0 X1 X2 · · · XT

X1 X0 X1
. . .

...

X2 X1
. . .

. . .
...

...
. . .

. . .
. . . X1

XT · · · · · · X1 X0

+

−YT −YT−1 · · · −Y1 0

−YT−1 . .
.

. .
.

0 Y1
... . .

.
. .
.

. .
. ...

−Y1 0 . .
.

. .
.
YT−1

0 Y1 · · · YT−1 YT

 � 0.

Proof: See [12, Appendix A]. The idea of the proof is
to combine the matrix version of the Fejér-Riesz theorem
(that Hermitian positive semidefinite-valued matrices with
univariate trigonometric polynomial entries are Hermitian
squares) with a symmetry reduction argument.

Combining Propositions 1 and 2 establishes our main
result for this section.

Theorem 3: For any positive integer T , the joint attitude
and spin-rate estimation problem in (5) can be reformulated
as a semidefinite program of size 4(T + 1).

IV. OPTIMIZATION OVER RELATIVE ROTATIONS

We now turn to optimization problems over many rotation-
matrix valued variables (e.g. satellites in formation or a
network of cameras) indexed by the vertices of a graph. The
edges in the graph may, for instance, correspond to satellites
within low-power communication range, or cameras that can
see each other. In particular we focus on cases where the cost
function on edge (i, j) depends only on the relative rotation
RTi Rj of the variables corresponding to the endpoints of that
edge, giving rise to problems of the form

min
R1,...,Rn∈SO(d)

∑
{i,j}∈E

fij(R
T
i Rj) (6)

where each of the fij : Rd×d → R are convex functions and
fij(X) = fij(X

T ). By choosing different graph structures
and cost functions fij we capture a natural discrete-time
filtering problem on SO(d) (see Section IV-A) as well as
many of the formulations of ‘synchronization over rotations’
considered, for instance, in [6], [7], [8] (see Section IV-B).

At this stage we would like to emphasize that
if (R1, . . . , Rn) is an optimizer of (6) then so is
(RR1, . . . , RRn) for any R ∈ SO(d). As such we can
‘dehomogenize’ the problem by choosing a vertex in each
connected component of G and setting Ri = Id for these ver-
tices. This leads to an equivalent ‘inhomogeneous’ problem
class of the form

min
R1,...,Rn∈SO(d)

∑
{i,j}∈E′

fij(R
T
i Rj) +

∑
i∈V ′

fi(Ri) (7)

which may be more natural in some settings. Importantly,
though, the graphs corresponding to the homogeneous prob-
lem and the inhomogeneous problem are different. If G′ =
(V ′, E′) is the graph for the inhomogeneous problem (7) then

Fig. 1. Graph corresponding to discrete-time filtering problem written in
homogeneous form.

the graph G = (V,E) for the corresponding homogeneous
problem is the suspension graph of G′ obtained by adding
a new vertex and connecting it to all existing vertices. For
example if G′ is a chain of length 6, G is the graph shown
in Figure 1, which is not a chain.

A. Example 1: Discrete-time filtering on SO(d)

Suppose R[0], R[1], . . . , R[T ] is a sequence of rotations
which we wish to estimate from noisy observations of their
action on vectors in Rd. Such a situation could be used to
model a dynamic attitude estimation problem such as the one
described in Section III-B. We consider a basic probabilistic
model that models the dynamics of the underlying sequence
of rotations as random, in contrast with the deterministic
model in the joint spin-rate and attitude estimation problem
discussed in Section III-B.

In particular assume that at time t we observe
y1[t], . . . , yk[t], noisy observations of the rotations
R[t]x1[t], . . . , R[t]xk[t] of a collection x1[t], . . . , xk[t]
of known vectors. Assume the R[t] and yi[t] follow a
hidden Markov model with state space SO(d), observations
y1[t], . . . , yk[t] that (conditioned on the state) are
i.i.d. von Mises-Fisher distributed with mean R[t]xi[t]
and concentration parameter κ, and transition kernel
Pr[R[t + 1]|R[t]] proportional to exp(wttr(R[t]TR[t + 1]))
with wt > 0. One could think of the interaction between
R[t] and R[t + 1] as putting higher weight on sequences
where consecutive rotations are similar (depending on the
magnitude of wt) and so putting higher weight on slowly
varying sequences R[t].

A solution of the following optimization problem gives a
most probable sequence of rotations given the observed data
(where the notation Y [t] and X[t] are from Section III-B)

max

T∑
t=0

wttr(R[t]TR[t+ 1]) + κ

T∑
t=0

〈R[t], Y [t]X[t]T 〉 (8)

where the maximization is over R[0], . . . , R[T ] ∈ SO(d).
We can rewrite (8) in the form of (6) by homogenizing as
discussed in Section IV. The resulting graph G is of the form
shown in Figure 1, and so is not a tree.

B. Example 2: Synchronization over rotations

Another family of optimization problems over relative
rotations has received significant attention recently is that of
synchronization problems over rotations. In this case there
are multiple variables R1, . . . , Rn ∈ SO(d) and we are
given (noisy) measurements R̂ij of the relative rotations
RTi Rj for some subset E of pairs of the variables. The
aim is to recover the underlying rotations R1, . . . , Rd (up



to a global ambiguity caused by the fact that we only have
measurements of the relative rotations). Many formulations
have recently been proposed for this problem. For example,
by choosing

fij(R
T
i Rj) = ‖R̂ij −RTi Rj‖2F = 2− 2〈R̂ij , RTi Rj〉

we obtain (up to an additive constant) a formulation with the
fij being linear functionals. With

fij(R
T
i Rj) = ‖R̂ij −RTi Rj‖F

we obtain the least unsquared deviation formulation in [6].
Taking fij(R

T
i Rj) to be the log-likelihood function of a

certain mixture model on SO(3) we obtain the robust
formulation in [7].

C. Semidefinite relaxations

The O(d)-based relaxation: The standard convex re-
laxation of (6) proposed in the literature is a fairly direct
generalization of the usual semidefinite relaxation for binary
quadratic optimization. The idea is that if R1, R2, . . . , Rn ∈
SO(d) then RTi Ri = Id. Hence the matrix of relative
rotations

M := [RTi Rj ]
n
i,j=1 =


Id RT1 R2 · · · RT1 Rn

RT2 R1 Id · · · RT2 Rn
...

...
. . .

...
RTnR1 RTnR2 · · · Id


satisfies Mii = Id and M � 0. (Note that throughout this
section we think of nd × nd symmetric matrices of n × n
block matrices with each block being d× d and use indices
1 ≤ i, j ≤ n to index the d× d blocks.)

These observations give rise to the following convex
relaxation of (6) proposed in the literature (see, e.g., [6]):

min
M∈Snd

∑
{i,j}∈E

fij(Mij) s.t.

{
M � 0,

Mii = Id, ∀i ∈ [n].
(9)

We call it the O(d)-based relaxation because (9) only uses
the fact that if Ri ∈ SO(d) then RTi Ri = I , i.e. that

SO(d) ⊂ O(d) = {X ∈ Rd×d : XTX = Id}.

It does not use the additional constraint that det(Ri) = 1.3

The SO(d)-based relaxation: We now propose a new
convex relaxation for problems of the form (6) that makes use
of the semidefinite representations of convSO(d) from [5]
described in Section II. Our relaxation is based on the
following characterization of matrices of relative rotations.

Lemma 1: Suppose R1, R2, . . . , Rn ∈ SO(d) and M =
[RTi Rj ]

n
i=1,j . Then

• Mii = Id
• M � 0
• Mij ∈ convSO(d) for i 6= j.
• rank(M) = d.

3We note that in [8] a finite set of valid inequalities for convSO(d) are
added to Mij for i 6= j, giving a formulation tighter than (9) and not as
tight as the SO(d)-based relaxation.

Conversely any nd × nd symmetric matrix M satisfying
these four conditions has a unique factorization as M =
[RTi Rj ]

n
i,j=1 with Ri ∈ SO(d) and R1 = Id.

Proof: Whenever R1, R2, . . . , Rn ∈ SO(d) it is clear
that [RTi Rj ]

n
i,j=1 satisfies these four properties. Conversely

if M is positive semidefinite and has rank d then there are
matrices R1, . . . , Rd such that M = [RTi Rj ]

n
i,j=1. Since

Mii = Id for all i ∈ [n] each of the Ri are orthogonal.
Without loss of generality assume R1 = Id (otherwise
multiply all the matrices on the left by RT1 ). This removes
any ambiguity in the factorization, showing it is unique.

It remains to show that Ri ∈ SO(d) for i ∈ [n]. Since
Mij ∈ convSO(d) for i 6= j we have that RT1 Rj = Rj ∈
convSO(d) for j ∈ [n]. Since we know that Ri ∈ O(d) for
i ∈ [n], to conclude the proof we need to show that

convSO(d) ∩O(d) = SO(d).

Since SO(d) ⊂ convSO(d) and SO(d) ⊂ O(d) we have
that convSO(d)∩O(d) ⊇ SO(d). For the reverse inclusion
note that SO(d) and O(d) are both subsets of the Frobenius
norm sphere of radius

√
d, denoted S ⊂ Rd×d. It then

follows that convSO(d) ∩ S = SO(d). Since, in addition,
O(d) ⊂ S we can conclude that convSO(d) ∩ O(d) ⊆
convSO(d) ∩ S = SO(d) as required.
Note that Lemma 1 would also be true (but less interesting)
if we replaced the condition Mij ∈ convSO(d) for i 6= j
with the stronger requirement that Mij ∈ SO(d) for i 6= j.

Omitting the rank constraint from the characterization in
Lemma 1 we obtain our SO(d)-based relaxation:

min
M

∑
{i,j}∈E

fij(Mij) s.t.


M � 0

Mii = Id ∀i ∈ [n]

Mij ∈ convSO(d) if i 6= j.
(10)

We remark that using Theorem 1 to represent convSO(d)
shows that the feasible region of this semidefinite program
is a spectrahedron.

Exactness for trees: We say that the SO(d)-based
relaxation (10) is exact if it has an optimal solution M?

of rank d. In this case by Lemma 1 we can factorize M?

to obtain an optimal solution of the original non-convex
problem (6).

One feature of the SO(d)-based relaxation (10) not en-
joyed by the O(d)-based relaxation (9) is that it is exact
when the underlying graph is a tree and the fij are linear
functionals. We prove this in Theorem 4 (to follow). The key
fact underlying the argument is the following.

Lemma 2: Let G = (V,E) be a rooted tree with n
vertices. Suppose vertex 1 is the root and the edges are ori-
ented away from the root. Let (R(i,j))(i,j)∈E be an arbitrary
collection of n−1 elements of SO(d) indexed by the oriented
edges of the tree. Then there are R1, . . . , Rn ∈ SO(d) with
R1 = Id such that RTi Rj = R(i,j) for every oriented edge
(i, j) ∈ E.

Proof: Define R1 = Id. Since G is a tree with edges
oriented away from vertex 1, for any i ∈ V \ {1} there is



a unique (oriented) path 1, vi1, . . . , v
i
k = i from vertex 1 to

vertex i. For i 6= 1 define

Ri = R(1,vi1)
R(vi1,v

i
2)
· · ·R(vik−1,i)

.

Since each R(i,j) ∈ SO(d), it follows that Ri ∈ SO(d) for
each i. Furthermore, if (i, j) ∈ E is an oriented edge then
the oriented path from 1 to i is 1, vi1, . . . , v

i
k−1, i and the

oriented path from 1 to j is 1, vi1, . . . , v
i
k−1, i, j. Hence

RTi Rj=R
T
(vik−1,i)

· · ·RT(vi1,1)R(vi1,1)
· · ·R(vik−1,i)

R(i,j)

=R(i,j)

as required.
We now prove that the SO(d)-based relaxation (10) is exact
when the underlying graph is a tree and the fij are linear.

Theorem 4: If each of the fij are linear and the underlying
graph G is a tree then the convex relaxation (10) is exact.

Proof: For convenience of notation, root the tree at
vertex 1, orient the edges away from the root, and assume
the vertices are sorted so that if {i, j} is an undirected edge
(with i < j) then the corresponding oriented edge is (i, j).

We, in fact, show that the following optimization problem

min
M

∑
(i,j)∈E

fij(Mij)

s.t. Mij ∈ convSO(d), ∀(i, j) ∈ E (11)

obtained from (10) by keeping the same cost function and
keeping only the constraints corresponding to the edges of
the graph, has an optimal solution M? that satisfies M? � 0,
M?
ii = Id, M?

ij ∈ convSO(d) and rank(M?) = d. This
implies that the SO(d)-based relaxation (10) is also exact.

The optimization problem (11) is separable, so for any
optimal M̂ we have that when (i, j) ∈ E the (i, j) block of
M̂ , namely M̂ij , is optimal for

min
Mij

fij(Mij) s.t. Mij ∈ convSO(d). (12)

Fix (i, j) ∈ E. Since fij is linear, the minimum of (12) is
achieved at an extreme point of convSO(d) and so is an
element of SO(d). So there is some optimal M̂ for (11)
satisfying M̂ij ∈ SO(d) for (i, j) ∈ E. Apply Lemma 2 to
the M̂ij to conclude that there are R1 = Id, R2, . . . , Rn
such that RTi Rj = M̂ij . Then M? = [RTi Rj ]

n
i,j=1 is

also an optimal solution to (11) with the desired properties,
completing the argument.
We remark that the same argument works when the underly-
ing graph is a forest. In that case one can apply the argument
separately to each connected component of the graph.

V. NUMERICAL EXPERIMENTS

It is clear from the definitions that our SDP relaxation (10)
is at least as tight as the standard SDP relaxation (9). In
this section we describe some simple numerical experiments
that illustrate the gap between these two relaxations for
some natural families of problem instances. To solve the
semidefinite programs described in this section we use the
parser YALMIP [13] and the solver MOSEK.
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Fig. 2. We show the number of trials of randomly generated filtering
problems (8) with d = 3 for which the SO(d)-based (solid) and O(d)-
based (dashed) relaxations are, respectively, exact. For T = 0 the relaxations
reduce to optimizing a random linear functional over the convex hull of
SO(3) and O(3) respectively. In this case the SO(d)-based relaxation is
always exact whereas the O(d)-based relaxation is exact when the linear
functional has positive determinant—for our ensemble this occurs with
probability 1/2.

A. Discrete-time filtering on SO(d)

We consider problems with the discrete-time filtering
structure from Section IV-A with d = 3 and T =
1, 2, . . . , 15. For each of these values of T we sample 1000
independent random problem instances. For each instance
we solve the SO(d)-based and O(d)-based relaxations. We
record the number of instances for the two relaxations, re-
spectively, solve the original non-convex optimization prob-
lem. Each random problem instance is specified by taking
wt = 1 for all t = 0, 1, . . . , T and sampling T + 1 matrices
A0, A1, . . . , AT ∈ Rd×d each having independent standard
Gaussian entries.

The results of the experiment are shown in Figure 2.
They indicate that the SO(d)-based relaxation is often exact,
particularly for smaller problem sizes (i.e. small T ), whereas
the O(d)-based relaxation typically fails to be exact for
problems of this type.

B. Optimization over relative rotations

We generate random ‘planted’ instances from an ensemble
analyzed by Wang and Singer [6]. First fix R1, R2, . . . , Rn ∈
SO(3). For each i < j sample R̂ij ∈ SO(3) by

R̂ij =

{
RTi Rj with probability p
Rij with probability 1− p

where the Rij are i.i.d. samples from the uniform distribution
on SO(3). Define fij(X) = −〈R̂ij , X〉. This models a situ-
ation where there is a ‘planted’ consistent set of underlying
relative rotations corrupted by noise.

For n = 10 and for p = 0, 0.05, 0.1, . . . , 0.95, 1 we
sample 1000 independent problem instances as described in
the previous paragraph. For each instance we solve both the
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Fig. 3. Plot of the number of random instances of synchronization problems
(see Section IV-B) of size n = 10 with probability p of obtaining a correct
measurement on each edge, for which the SO(d)-based relaxation (solid)
and the O(d)-based relaxation (dashed) are, respectively, exact.

SO(d)- and O(d)- based relaxations and record how many
instances, for each p, are exact. The results are shown in
Figure 3.

The experiment reveals two regimes among these problem
instances. For large p both relaxations work well. This is
because in these cases the linear functional we are optimizing
is a slight perturbation of a linear functional pointing in the
direction of a point in the constraint set for the underlying
non-convex problem (which is a subset of the sphere). For
small p, the O(d)-based relaxation typically fails, whereas
the SO(d)-based relaxation can be exact even with indepen-
dent random edge variables in SO(3) (i.e. p = 0).

VI. CONCLUSION

In this paper we illustrated the use of semidefinite de-
scriptions of the convex hull of rotation matrices for two
classes of optimization problems over rotation matrices. We
showed how to obtain an exact semidefinite programming
reformulation of a joint satellite attitude and spin-rate estima-
tion problem and described tighter semidefinite relaxations,
exact for problems defined with respect to trees, for certain
optimization problems over relative rotations.
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APPENDIX

A. Proof of Proposition 1

Suppose

(R,R cos(ω), R sin(ω), . . . , R cos(Tω), R sin(Tω)) ∈Md,T .

Then since R ∈ SO(d) by Theorem 2 there is q ∈ R2d−1

such that qT q = 1 and Ad(qqT ) = R. (This is the case
because R is an extreme point of convSO(d) so its preimage
underAd must consist of extreme points of unit trace positive
semidefinite matrices.) Hence

(R,R cos(ω), R sin(ω), . . . , R cos(Tω), R sin(Tω)) =

Ã(qqT, qqTcos(ω), qqTsin(ω), . . . , qqTcos(Tω), qqTsin(Tω)).

This establishes that Md,T ⊆ Ã(M̃2d−1,T ) and so that

convMd,T ⊆ conv Ã(M̃2d−1,T ) = Ã(convM̃2d−1,T ).

We now turn our attention to the reverse inclusion. Let

(qqT, qqTcos(ω), qqTsin(ω), . . . , qqTcos(Tω), qqTsin(Tω))

be an element of M̃2d−1,T . Then since Ad(qqT ) ∈
convSO(d) we can express Ad(qqT ) as a convex combi-
nation of elements of SO(d), i.e.,

Ad(qqT ) =
∑̀
i=1

λiRi

where the Ri ∈ SO(d) and the λi ≥ 0 satisfy
∑`
i=1 λi = 1.

Hence

Ã(qqT, qqTcos(ω), qqTsin(ω), . . . , qqTcos(Tω), qqTsin(Tω))

=
∑̀
i=1

λi(Ri, Ri cos(ω), Ri sin(ω), . . . ,

Ri cos(Tω), Ri sin(Tω))

and so Ã(M̃2d−1,T ) ⊆ convMd,T . This establishes the
reverse inclusion that Ã(convM̃2d−1,T ) ⊆ convMd,T .


