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SEMIDEFINITE DESCRIPTIONS OF THE CONVEX HULL OF
ROTATION MATRICES∗
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Abstract. We study the convex hull of SO(n), the set of n× n orthogonal matrices with unit
determinant, from the point of view of semidefinite programming. We show that the convex hull of
SO(n) is doubly spectrahedral, i.e., both it and its polar have a description as the intersection of a
cone of positive semidefinite matrices with an affine subspace. Our spectrahedral representations are
explicit and are of minimum size, in the sense that there are no smaller spectrahedral representations
of these convex bodies.
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1. Introduction. Optimization problems where the decision variables are con-
strained to be in the set of orthogonal matrices

(1.1) O(n) := {X ∈ R
n×n : XTX = I}

arise in many contexts (see, e.g., [25, 26] and references therein), particularly when
searching over Euclidean isometries or orthonormal frames. In some situations, espe-
cially those arising from physical problems, we require the additional constraint that
the decision variables be in the set of rotation matrices

(1.2) SO(n) := {X ∈ R
n×n : XTX = I, det(X) = 1}

representing Euclidean isometries that also preserve orientation. For example, these
additional constraints arise in problems involving attitude estimation for spacecraft
[27], in pose estimation in computer vision applications [19], or in understanding
protein folding [23]. The unit determinant constraint is important in these situations
because we typically cannot reflect physical objects such as spacecraft or molecules.

The set of n × n rotation matrices is nonconvex, so optimization problems over
rotation matrices are ostensibly nonconvex optimization problems. An important
approach to global nonconvex optimization is to approximate the original nonconvex
problem with a tractable convex optimization problem. In some circumstances, it may
even be possible to exactly reformulate the original nonconvex problem as a tractable
convex problem. This approach to global optimization via convexification has been
very influential in combinatorial optimization [34] and more generally in polynomial
optimization via the machinery of moments and sums of squares [4]. As an example
of a problem amenable to this approach, in section 2 we describe the problem of
jointly estimating the attitude and spin-rate of a spinning satellite and show how to
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reformulate this ostensibly nonconvex problem as a convex optimization problem that,
using the constructions in this paper, can be expressed as a semidefinite program.

When we attempt to convexify optimization problems involving rotation matrices,
two natural geometric objects arise. The first of these is the convex hull of SO(n),
which we denote, throughout, by convSO(n). The second convex body of interest in
this paper is the polar of SO(n), the set of linear functionals that take value at most
one on SO(n), i.e.,

SO(n)◦ = {Y ∈ R
n×n : 〈Y,X〉 ≤ 1 for all X ∈ SO(n)},

where we have identified R
n×n with its dual space via the trace inner product 〈Y,X〉 =

tr(Y TX). These two convex bodies are closely related. Since convSO(n) is closed and
contains the origin, it follows from basic results of convex analysis [31, Theorem 14.5]
that convSO(n) = (SO(n)◦)◦.

We also study the convex hull and the polar of orthogonal matrices in this paper.
It is well known that these correspond to commonly used matrix norms (see, e.g., [32]).
The convex hull of O(n) is the operator norm ball, the set of n×nmatrices with largest
singular value at most one, and the polar of O(n) is the nuclear norm ball, the set of
n× n matrices such that the sum of the singular values is at most one, i.e.,

convO(n) =
{
X ∈ R

n×n : σ1(X) ≤ 1
}

and O(n)◦ =

{
X ∈ R

n×n :

n∑
i=1

σi(X) ≤ 1

}
.

Note that O(n) is the (disjoint) union of SO(n) and the set SO−(n) := {X ∈
R

n×n : XTX = I, det(X) = −1}. As such, it follows from basic properties of the
polar [31, Corollary 16.5.2] that

(1.3) O(n)◦ = SO(n)◦ ∩ SO−(n)◦,

allowing us to deduce properties of O(n)◦ from those of SO(n)◦. On the other hand,
we show in Proposition 4.6 that for n ≥ 3,

(1.4) convSO(n) = (convO(n)) ∩ (n− 2)SO−(n)◦,

allowing us to deduce properties of convSO(n) from properties of convO(n) and
SO−(n)◦. Figure 1 illustrates the differences between convSO(n) and convO(n) and
the relationship described in (1.3).

The convex bodies convSO(n) and convO(n) are examples of orbitopes, a family
of highly symmetric convex bodies that arise from representations of groups [2, 3, 32].
Suppose a compact group G acts on R

n by linear transformations and x0 ∈ R
n. Then

the orbit of x0 under G is

G · x0 = {g · x0 : g ∈ G} ⊆ R
n

and the corresponding orbitope is conv (G ·x0), the convex hull of the orbit. The sets
O(n) and SO(n) defined above can be thought of as the orbit of the identity matrix
I ∈ R

n×n under the linear action of the groups O(n) and SO(n), respectively, by
right multiplication on n×n matrices. The corresponding orbitopes are known as the
tautological O(n) orbitope and the tautological SO(n) orbitope, respectively [32]. The
set SO−(n) can be viewed as the orbit of R := diag∗(1, 1, . . . , 1,−1), the diagonal
matrix with diagonal entries (1, 1, . . . , 1,−1), under the same SO(n) action on n× n
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(a) A two-dimensional projection
of convSO(3) (light gray), convSO−(3)
(dark gray), and convO(3) =
conv [SO(3) ∪ SO−(3)] (black).

(b) The corresponding
two-dimensional section of
SO(3)◦ (light gray), SO−(3)◦
(dark gray), and O(3)◦ =
SO(3)◦ ∩ SO−(3)◦ (black).

Fig. 1. Pictures of some of the convex bodies considered in this paper. These were created by
optimizing 100 linear functionals over each of these sets to obtain 100 boundary points. The opti-
mization was performed by implementing our spectrahedral representations in the parser YALMIP
[22] and solving the semidefinite programs numerically using SDPT3 [36].

matrices. Note that SO−(n) is then the image of SO(n) under the invertible linear
map X 	→ R ·X .

Spectrahedra. For convex reformulations or relaxations involving the convex hull
of SO(n) to be useful from a computational point of view, we need an effective de-
scription of the convex body convSO(n). One effective way to describe a convex
body is to express it as the intersection of the cone of symmetric positive semidefinite
matrices with an affine subspace. Such convex bodies are called spectrahedra [28]
and are natural generalizations of polyhedra. Algebraically, a convex subset C of Rn

(containing the origin in its interior1) is a spectrahedron if it can be expressed as the
feasible region of a linear matrix inequality of the form

(1.5) C =

{
x ∈ R

n : Im +

n∑
i=1

A(i)xi � 0

}
,

where Im is the m×m identity matrix, A(1), A(2), . . . , A(n) are m×m real symmetric
matrices, and M � 0 means that M is a symmetric positive semidefinite matrix. If the
matrices A(i) are m ×m, we call the description (1.5) a spectrahedral representation
of size m.

Giving a spectrahedral representation for a convex set has algebraic, geometric,
and algorithmic implications. Algebraically, a spectrahedral representation of C of
size m as in (1.5) tells us that the degree m polynomial p(x) = det(I +

∑n
i=1 A

(i)xi)
vanishes on the boundary of C and that C itself can be written as the region defined by
m polynomial inequalities (i.e., it is a basic closed semialgebraic set) [30, Theorem 20].
Geometrically, a spectrahedral representation of C gives information about its facial
structure. For example, it is known that all faces of a spectrahedron are exposed
(i.e., can be obtained as the intersection of the spectrahedron with a supporting
hyperplane), since the same is true for the positive semidefinite cone.

1We can assume this without loss of generality by translating C and restricting to its affine hull.
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From the point of view of optimization, problems involving minimizing a linear
functional over a spectrahedron are called semidefinite optimization problems [4] and
are natural generalizations of the more well-known class of linear programming prob-
lems. Semidefinite optimization problems can be solved (to any desired accuracy) in
time polynomial in n and m.

The convex sets that can be obtained as the images of spectrahedra under linear
maps are also of interest. Indeed, to minimize a linear functional over a projection
of a spectrahedron, one can simply lift the linear functional and minimize it over the
spectrahedron itself using methods for semidefinite optimization. We say a convex
body has a PSD lift if it has a description as a projection of a spectrahedron (see
section 5.2). PSD lifts are important because they form a strictly larger family of
convex sets than spectrahedra and because some spectrahedra have PSD lifts that
are much more concise than their smallest spectrahedral representations (see Exam-
ple 1.5), generalizing the notion of extended formulations for polyhedra. On the other
hand, convex bodies that have PSD lifts do not enjoy the same nice algebraic and geo-
metric properties as spectrahedra—indeed, they are semialgebraic but not necessarily
basic semialgebraic and are not necessarily facially exposed [4].

Throughout much of the paper, we consider only spectrahedral representations,
confining our discussion of PSD lifts to section 5.2.

Doubly spectrahedral convex sets. In this paper, we are interested in both SO(n)◦

and convSO(n), and so we study both from the point of view of semidefinite pro-
gramming. For finite sets S, both S◦ and convS are polyhedra. On the other hand,
for infinite sets S, usually neither S◦ nor convS are spectrahedra. Even if a convex
set is a spectrahedron, typically its polar is not a spectrahedron (see section 6). We
use the term doubly spectrahedral convex sets to refer to those very special convex sets
C with the property that both C and C◦ are spectrahedra.

Main contribution. The main contribution of this paper is to establish that
convSO(n) is doubly spectrahedral and to give explicit spectrahedral representations
of both SO(n)◦ and convSO(n).

Main proof technique. The main idea behind our representations is that we start
with a parameterization of SO(n), rather than working with the defining equations
in (1.2). The parameterization is a direct (and classical) generalization of the widely
used unit quaternion parameterization of SO(3). In higher dimensions, the unit
quaternions are replaced with Spin(n), a multiplicative subgroup of the invertible
elements of a Clifford algebra. In the cases n = 2 and n = 3, it is relatively straight-
forward to produce our semidefinite representations directly from this parameteriza-
tion. For n ≥ 4, the parameterization does not immediately yield our semidefinite
representations. The additional arguments required to establish the correctness of our
representations for n ≥ 4 form the main technical contribution of the paper.

1.1. Statement of results. In this section, we explicitly state the spectrahedral
representations that we prove are correct in subsequent sections of the paper. In par-
ticular, we state spectrahedral representations for SO(n)◦ and convSO(n), as well as
a spectrahedral representation of O(n)◦, the nuclear norm ball. All the spectrahedral
representations stated in this section are of minimum size (see Theorem 1.4). The
reader primarily interested in implementing our semidefinite representations should
find all the information necessary to do so in this section.

Matrices of the spectrahedral representations. Our main results are stated in terms
of a collection of symmetric 2n−1 × 2n−1 matrices denoted (A(ij))1≤i,j≤n. We give
concrete descriptions of them here in terms of the Kronecker product of 2× 2 matri-
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ces, deferring more invariant descriptions to Appendix A. The matrices A(ij) can be
expressed as

(1.6) A(ij) = −PT
evenλiρjPeven,

where (λi)
n
i=1 and (ρi)

n
i=1 are the 2n×2n skew-symmetric matrices defined concretely

by

λi =

i−1︷ ︸︸ ︷[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
⊗
[
0 −1
1 0

]
⊗

n−i︷ ︸︸ ︷[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
ρi =

[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
︸ ︷︷ ︸

i−1

⊗
[
0 −1
1 0

]
⊗
[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
︸ ︷︷ ︸

n−i

and Peven is the 2n × 2n−1 matrix with orthonormal columns

Peven =
1

2

[
1
1

]
⊗

n−1︷ ︸︸ ︷[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
+
1

2

[
1
−1

]
⊗

n−1︷ ︸︸ ︷[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
.

Note that PT
evenMPeven just selects a particular 2n−1 × 2n−1 principal submatrix of

M . For any 1 ≤ i ≤ n, λi and ρi are both skew-symmetric since they are formed by
taking the Kronecker product of n − 1 symmetric matrices and one skew-symmetric
matrix. Furthermore, for any pair 1 ≤ i, j ≤ n, the product λiρj is symmetric. This is
because if i ≥ j, λiρj is the Kronecker product of n symmetric matrices, and if i < j,
λiρj is the Kronecker product of n− 2 symmetric matrices and two skew-symmetric
matrices. It follows that each A(ij) is symmetric. Furthermore, since λi and ρj are
signed permutation matrices, so is −λiρj . From this we can see that all of the entries
of the A(ij) are 0, 1, or −1.

Spectrahedral representations. The following, which we prove in section 4, is the
main technical result of the paper.

Theorem 1.1. The polar of SO(n) is a spectrahedron. Explicitly,

(1.7) SO(n)◦ =

⎧⎨⎩Y ∈ R
n×n :

n∑
i,j=1

A(ij)Yij  I2n−1

⎫⎬⎭ ,

where the 2n−1 × 2n−1 matrices A(ij) are defined in (1.6).
Since O(n) = SO(n) ∪ SO−(n), as a corollary of Theorem 1.1 we obtain a spec-

trahedral representation of O(n)◦ = SO(n)◦ ∩ SO−(n)◦.
Theorem 1.2. The polar of O(n) is a spectrahedron. Explicitly,

O(n)◦ =

⎧⎨⎩Y ∈ R
n×n :

n∑
i,j=1

A(ij)Yij  I2n−1 ,

n∑
i,j=1

A(ij)[RY ]ij  I2n−1

⎫⎬⎭ ,

where R = diag∗(1, 1, . . . , 1,−1).
Just because a convex set C is a spectrahedron does not, in general, mean that

its polar is also spectrahedron. (See section 6 for a simple example.) Even if we are in
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the special case where C is doubly spectrahedral, it is not straightforward to obtain
a spectrahedral representation of C◦ from a spectrahedral representation of C. For
example, if C is a polyhedron (and so certainly doubly spectrahedral), this is the
problem of computing a facet description of C◦ (i.e., the vertices of C) from a facet
description of C.

Nevertheless, we obtain a spectrahedral representation of convSO(n) by showing
that, for n ≥ 3, convSO(n) = (convO(n)) ∩ (n − 2)SO−(n)◦ (Proposition 4.6),
expressing convSO(n) as the intersection of two spectrahedra. We explain how this
works in detail in section 4.3.

Theorem 1.3. The convex hull of SO(n) is a spectrahedron. Explicitly,

convSO(n) =

⎧⎨⎩X∈R
n×n :

[
0 X

XT 0

]
 I2n,

n∑
i,j=1

A(ij)[RX ]ij  (n− 2)I2n−1

⎫⎬⎭ .

(1.8)

In the special cases n = 2 and n = 3, we have

convSO(2) =

{[
c −s
s c

]
∈ R

2×2 :

[
1 + c s
s 1− c

]
� 0

}
and

(1.9)

convSO(3) =

{
X ∈ R

3×3 :

3∑
i,j=1

A(ij)[RX ]ij  I4

}(1.10)

=

{
X ∈ R

3×3 :(1.11) ⎡⎣ 1−X11−X22+X33 X13+X31 X12−X21 X23+X32

X13+X31 1+X11−X22−X33 X23−X32 X12+X21

X12−X21 X23−X32 1+X11+X22+X33 X31−X13

X23+X32 X12+X21 X31−X13 1−X11+X22−X33

⎤⎦ � 0

}
.

We note that the representation of convSO(3) described by Sanyal, Sottile, and
Sturmfels [32, Proposition 4.1] can be obtained from the spectrahedral representation
for convSO(3) given here by conjugating by a signed permutation matrix, establishing
that the two representations are equivalent.

In section 5, we prove that our spectrahedral representations in Theorems 1.1,
1.2, 1.3 are of minimum size. We do so by establishing lower bounds on the minimum
size of spectrahedral representations of SO(n)◦, convSO(n), and O(n)◦ that match
the upper bounds given by our constructions.

Theorem 1.4. If n ≥ 1, the minimum size of a spectrahedral representation of
O(n)◦ is 2n. If n ≥ 2, the minimum size of a spectrahedral representation of SO(n)◦

is 2n−1. If n ≥ 4, the minimum size of a spectrahedral representation of convSO(n)
is 2n−1+2n. The minimum size of a spectrahedral representation of convSO(3) is 4.

Representations as PSD lifts. Given a spectrahedral representation of size m of
a convex set C (with the origin in its interior), by applying a straightforward conic
duality argument (see, for example, [14, Proposition 3.1]) we can obtain a PSD lift of
C◦. This representation, however, is usually not a spectrahedral representation.

Example 1.5. Theorems 1.2 and 1.4 tell us that the smallest spectrahedral rep-
resentation of O(n)◦, the nuclear norm ball, has size 2n. Yet by dualizing the size
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2n spectrahedral representation of convO(n) (given in Proposition 4.7 to follow), we
obtain a PSD lift of O(n)◦ of size 2n

O(n)◦ =

{
Z ∈ R

n×n : ∃X,Y s.t.

[
X Z
ZT Y

]
� 0, tr(X) + tr(Y ) = 2

}
.

This is equivalent to the representation given by Fazel [11] for the nuclear norm ball.
By dualizing, in a similar fashion, the spectrahedral representation of SO(n)◦, we

obtain a representation of convSO(n) as the projection of a spectrahedron, i.e., a PSD
lift of convSO(n). In some situations, it may be preferable to use this representation
of convSO(n) rather than the spectrahedral representation in Theorem 1.3.

Corollary 1.6. The convex hull of SO(n) can be expressed as a projection of
the 2n−1 × 2n−1 positive semidefinite matrices with trace one as

convSO(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
〈A(11), Z〉 〈A(12), Z〉 · · · 〈A(1n), Z〉
〈A(21), Z〉 〈A(22), Z〉 · · · 〈A(2n), Z〉

...
...

. . .
...

〈A(n1), Z〉 〈A(n2), Z〉 · · · 〈A(nn), Z〉

⎤⎥⎥⎥⎥⎥⎦ : Z � 0, tr(Z) = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We note that a straightforward application of [14, Proposition 3.1] to our spec-
trahedral representation of SO(n)◦ gives a PSD lift of convSO(n) with the condition
tr(Z) ≤ 1, whereas Corollary 1.6 has tr(Z) = 1. That these two conditions describe
the same set follows from the fact that there is a point Z0 satisfying tr(Z0) = 1,
Z0 � 0, and 〈A(ij), Z0〉 = 0 for all 1 ≤ i, j ≤ n. One can take Z0 = I/2n−1, since
tr(A(ij)) = 0 for all 1 ≤ i, j ≤ n, a fact we establish in Lemma A.11 using properties
of the linear maps represented by the matrices A(ij).

1.2. Related work. That the convex hull of O(n) is a spectrahedron is a classi-
cal result. (We give a self-contained proof of this fact in Proposition 4.7.) It was not
until recently that Sanyal, Sottile, and Sturmfels [32] established that O(n)◦ is a spec-
trahedron by explicitly giving a (nonoptimal) size

(
2n
n

)
spectrahedral representation.

In the same paper, the authors study numerous SO(n)- and O(n)-orbitopes consid-
ering both convex geometric aspects, such as their facial structure and Carathéodory
number, and algebraic aspects, such as their algebraic boundary and whether they
are spectrahedra. They describe (previously known) spectrahedral representations of
convSO(2) and convSO(3). The representation for convSO(3) given in [32, equa-
tion 4.1] is equivalent to our representation in Theorem 1.3, and the representation
given in [32, equation 4.2] is equivalent to

convSO(3) =

{[Z11−Z22−Z33+Z44 −2Z13−2Z24 −2Z12+2Z34

2Z13−2Z24 Z11+Z22−Z33−Z44 −2Z14−2Z23

2Z12+2Z34 2Z14−2Z23 Z11−Z22+Z33−Z44

]
:

Z � 0, tr(Z) = 1

}
,

which can be obtained by specializing Corollary 1.6. Sanyal, Sottile, and Sturmfels
raise the general question of whether convSO(n) is a spectrahedron for all n (which
we answer in the affirmative) and more broadly ask for a classification of the SO(n)-
orbitopes that are spectrahedra.
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Earlier work on orbitopes in the context of convex geometry includes the work
of Barvinok and Vershik [3], who consider orbitopes of finite groups in the context
of combinatorial optimization, Barvinok and Blekherman [2], who used asymptotic
volume computations to show that there are many more nonnegative polynomials
than sums of squares (among other things), and Longinetti, Sgheri, and Sottile [23],
who studied SO(3)-orbitopes with a view to applications in protein structure deter-
mination. More recently, Sinn [35] has studied in detail the algebraic boundary of
four-dimensional SO(2)-orbitopes as well as the Barvinok–Novik orbitopes.

1.3. Notation. In this section, we gather notation not explicitly defined else-
where in the paper. We use Sm and Sm

+ to denote the space of symmetric m × m
matrices and the cone of positive semidefinite matrices, respectively. If U ⊆ R

n is a
subspace, then πU : Rn → U is the orthogonal projector onto U and π∗

U : U → R
n is its

adjoint. If the subspace in question is the subspace of diagonal matrices D ⊆ R
n×n,

we occasionally also use diag := πD and diag∗ := π∗
D. We frequently use the matrix

R = diag∗(1, 1, . . . , 1,−1) ∈ R
n×n. It could be replaced, throughout, by any orthog-

onal self-adjoint matrix with determinant −1. We use the shorthand [n] for the set
{1, 2, . . . , n} and Ieven for the set of subsets of [n] with even cardinality.

1.4. Outline. The remainder of the paper is organized as follows. In section 2,
we describe a problem in satellite attitude estimation that can be reformulated as a
semidefinite program using the ideas in this paper. Section 3 focuses on the sym-
metry properties of convSO(n) and convO(n), as well as certain convex polytopes
that naturally arise when studying these convex bodies. With these preliminaries es-
tablished, section 4 outlines the main arguments required to establish the correctness
of the spectrahedral representations of SO(n)◦, O(n)◦, convSO(n), and convO(n).
Details of some of the constructions required for these arguments are deferred to
Appendix A. Section 5 establishes lower bounds on the size of spectrahedral repre-
sentations of SO(n)◦, O(n)◦, convSO(n), and convO(n) as well as a lower bound on
the size of equivariant PSD lifts of convSO(n).

Many of the properties of the convex bodies of interest in this paper are summa-
rized in Table 1, which may serve as a useful navigational aid for the reader.

2. An illustrative application—joint satellite attitude and spin-rate es-
timation. In this section, we discuss a problem in satellite attitude estimation that
can be reformulated as a semidefinite program using the representation of SO(n)◦

described in section 1.1. Our aim here is to give a concrete example of situations
where the semidefinite representations we describe in this paper arise naturally. The
problem of interest is one of estimating the attitude (i.e., orientation) and spin-rate
of a spinning satellite, and it is a slight generalization of a problem posed recently
by Psiaki [27]. We first focus on describing the basic attitude estimation problem in
section 2.1 before describing the joint attitude and spin-rate estimation problem in
section 2.2.

2.1. Attitude estimation. The attitude of a satellite is the element of SO(3)
that transforms a reference coordinate system (the inertial system) in which, say, the
sun is fixed, into a local coordinate system fixed with respect to the satellite’s body
(the body system). We are given unit vectors x1, x2, . . . , xT (e.g., the alignment of the
Earth’s magnetic field, directions of landmarks such as the sun or other stars, etc.) in
the inertial coordinate system and noisy measurements y1, y2, . . . , yT of these direc-
tions in the body coordinate system. Let Q ∈ SO(3) denote the unknown attitude of
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Table 1

Summary of results related to the convex bodies considered in the paper.

S SO(n) O(n)

Definition {X ∈ R
n×n : XTX = I, det(X) = 1} {X ∈ R

n×n : XTX = I}

S◦ SO(n)◦ O(n)◦ = Nuclear norm ball

Diagonal slice Polar of parity polytope (Prop. 3.4) Cross-polytope (Prop. 3.4)

Spectrahedral Size: 2n−1 (Thm 1.1) Size: 2n (Thm 1.2)
representation Optimal? Yes (Thm 1.4) Optimal? Yes (Thm 1.4)

PSD lift Size: 2n−1 Size: 2n (Eg. 1.5)
Optimal? Unknown(Cor. 5.6, Q. 6.2)

(S◦)◦ = convS convSO(n) convO(n) = Operator norm ball

Diagonal slice Parity polytope (Prop. 3.4) Hypercube (Prop. 3.4)

Spectrahedral
representation

Size:

{
2n−1 + 2n n ≥ 4

4 n = 3
(Thm 1.3) Size: 2n (Prop. 4.7)

Optimal? Yes (Thm 1.4) Optimal? Yes (Thm 1.4)

PSD lift Size: 2n−1 (Cor. 1.6) Size: 2n
Optimal? Unknown(Cor. 5.6, Q. 6.2)

the satellite. The aim is to estimate (in the maximum likelihood sense) Q given the
yk, the xk, and a description of the measurement noise.

The simplest noise model assumes that each yk is independent and has a von
Mises–Fisher distribution [24] (a natural family of probability distributions on the
sphere) with mean Qxk and concentration parameter κ, i.e., its probability density
function is, up to a proportionality constant that does not depend on Q, p(yk;Q) ∝
exp (κ〈yk, Qxk〉). Then the maximum likelihood estimate of Q is found by solving

max
Q∈SO(3)

T∑
k=1

κ〈yk, Qxk〉 = max
Q∈SO(3)

〈
Q, κ

T∑
k=1

ykx
T
k

〉

= max
Q∈convSO(3)

〈
Q, κ

T∑
k=1

ykx
T
k

〉
.(2.1)

This is a probabilistic interpretation of a problem known as Wahba’s problem in
the astronautical literature, posed by Grace Wahba in the July 1965 SIAM Review
problems and solutions section [38, Problem 65-1].

Our spectrahedral representation of convSO(n) allows us to express the opti-
mization problem in (2.1) as a semidefinite program. In the astronautical literature,
it is common to solve this problem via the q-method [21], which involves parameteriz-
ing SO(3) in terms of unit quaternions and solving a symmetric eigenvalue problem.
Our semidefinite programming-based formulation could be thought of as a much more
flexible generalization of this eigenvalue problem-based approach that works for any
n, not just the case n = 3.

2.2. Joint attitude and spin-rate estimation. A significant benefit of having
a semidefinite programming-based description of a problem (such asWahba’s problem)
is that it often allows us to devise semidefinite programming-based solutions to more
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complicated related problems by composing semidefinite representations in different
ways. An example of this is given by the following generalization of Wahba’s problem
posed by Psiaki [27].2

Consider a satellite rotating at a constant unknown angular velocity ω rad/sample
around a known axis (e.g., its major axis). Assume the body coordinate system is
chosen so that the rotation is around the axis defined by the first coordinate direction.
Then the attitude matrix at the kth sample instant is of the form

Q(k) =

⎡⎣1 0 0
0 cos(kω) − sin(kω)
0 sin(kω) cos(kω)

⎤⎦Q,

where Q ∈ SO(3) is the initial attitude. Suppose, now, the satellite sequentially
obtains measurements y0, y1, . . . , yT in the body coordinate system of known land-
marks in the directions x0, x1, . . . , xT in the inertial coordinate system. As before,
assume that the yk are independent and have von Mises–Fisher distribution with
mean Q(k)xk and concentration parameter κ1. Furthermore, the satellite obtains a
sequence ω1, ω2, . . . , ωT of noisy measurements of the unknown constant spin rate ω.
Suppose the ωk are independent and each ωk has a von Mises distribution [24] (a
natural distribution for angular-valued quantities) with mean ω and concentration
parameter κ2, i.e., its probability density function (up to a constant independent of
ω) is given by p(ωk;ω) ∝ exp (κ2 cos(ωk − ω)). If the ωk and the yk are independent,
then the maximum likelihood estimate of Q and ω can be found by solving

(2.2) max
Q∈SO(3)
ω∈[0,2π)

T∑
k=0

〈
yk, κ1

[ 1 0 0
0 cos(kω) − sin(kω)

0 sin(kω) cos(kω)

]
Qxk

〉
+ κ2

T∑
k=0

cos(ωk − ω).

Note that the optimization problem (2.2) can be rewritten as

(2.3) max
Q∈SO(3)
ω∈[0,2π)

a1 cos(ω) + b1 sin(ω) + 〈A0, Q〉+
T∑

k=1

〈Ak, cos(kω)Q〉+ 〈Bk, sin(kω)Q〉,

i.e., the maximization of a linear functional over

M3,T = {(cos(ω), sin(ω), Q, cos(ω)Q, sin(ω)Q, . . . , cos(Tω)Q, sin(Tω)Q) :

Q ∈ SO(3), ω ∈ [0, 2π)}.
We can reformulate this as a semidefinite program if we have a PSD lift of conv(M3,T ),
because the optimization problem (2.3) is equivalent to the maximization of the same
linear functional over conv(M3,T ). Using the fact that SO(n)◦ has a spectrahedral
representation of size 2n−1, it can be shown that that conv(Mn,T ) has a PSD lift of
size 2n−1(T + 1). Describing this in detail is beyond the scope of the present paper.
Instead, we discuss this reformulation in further detail in a separate report [33].

3. Basic properties of convSO(n) and convO(n). In this section, we con-
sider the convex bodies convSO(n) and convO(n) purely from the point of view of
convex geometry, leaving the discussion of aspects related to their semidefinite rep-
resentations for section 4. In this section, we describe their symmetries and how the

2Psiaki’s formulation only considers the κ2 = 0 case, where measurements of the spin rate are
not considered.
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full space R
n×n of n× n matrices decomposes with respect to these symmetries, via

the (special) singular value decomposition. To a large extent, one can characterize
convSO(n) and convO(n) in terms of their intersections with the subspace of diago-
nal matrices. These diagonal sections are well-known polytopes—the parity polytope
and the hypercube, respectively. The properties of these diagonal sections are crucial
to establishing our spectrahedral representation of convSO(n) in section 4.3 and the
lower bounds on the size of spectrahedral representations given in section 5.

All of the results in this section are (sometimes implicitly) in the literature in
various forms. Here, we aim for a brief yet unified presentation to make the paper as
self-contained as possible.

3.1. Symmetry and the special singular value decomposition. In this
section, we describe the symmetries of convO(n) and convSO(n).

The group O(n)×O(n) acts on R
n×n by (U, V ) ·X = UXV T . This action leaves

the set O(n) invariant and hence leaves the convex bodies convO(n) and O(n)◦ in-
variant. It is also useful to understand how the ambient space of n × n matrices
decomposes under this group action. Indeed, by the well-known singular value de-
composition, every element X ∈ R

n×n can be expressed as X = UΣV T = (U, V ) · Σ,
where (U, V ) ∈ O(n) × O(n) and Σ is diagonal with Σ11 ≥ · · · ≥ Σnn ≥ 0. These
diagonal elements are the singular values. We denote them by σi(X) = Σii. Note
that for most of what follows, we only use the fact that Σ is diagonal, not that its
elements can be taken to be nonnegative and sorted.

Similarly the group

S(O(n)×O(n)) = {(U, V ) : U, V ∈ O(n), det(U) det(V ) = 1}

acts on R
n×n by (U, V ) ·X = UXV T . This action leaves the sets SO(n) and SO−(n)

invariant and hence leaves the convex bodies convSO(n), convSO−(n), SO(n)◦,
SO−(n)◦, convO(n), and O(n)◦ invariant. A variant on the singular value decom-
position, known as the special singular value decomposition [32], describes how the
space of n×n matrices decomposes under this group action. Indeed, every X ∈ R

n×n

can be expressed as X = U Σ̃V T = (U, V ) · Σ̃, where (U, V ) ∈ S(O(n) × O(n)) and
Σ̃ is diagonal with Σ̃11 ≥ · · · ≥ Σ̃n−1,n−1 ≥ |Σ̃nn|. These diagonal elements are the

special singular values. We denote them by σ̃i(X) = Σ̃ii. Again, in what follows, we
typically only use the fact that Σ̃ is diagonal for our arguments.

The special singular value decomposition can be obtained from the singular value
decomposition. Suppose that X = UΣV T is a singular value decomposition of X so
that (U, V ) ∈ O(n) ×O(n). If det(U) det(V ) = 1, this is also a valid special singular
value decomposition. Otherwise, if det(U) det(V ) = −1, then X = UR(RΣ)V T gives
a decomposition where (UR, V ) ∈ S(O(n) × O(n)) and RΣ is again diagonal, but
with the last diagonal entry being negative. As such, the singular values and special
singular values of an n×n matrix are related by σi(X) = σ̃i(X) for i = 1, 2, . . . , n− 1
and σ̃n(X) = sign(det(X))σn(X).

The importance of these decompositions of Rn×n under the action of O(n)×O(n)
and S(O(n) × O(n)) is that they allow us to reduce many arguments, by invariance
properties, to arguments about diagonal matrices.

3.2. Polytopes associated with convO(n) and convSO(n). The convex
hull of O(n) is closely related to the hypercube

(3.1) Cn = conv{x ∈ R
n : x2

i = 1 for i ∈ [n]};
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the convex hull of SO(n) is closely related to the parity polytope

(3.2) PPn = conv{x ∈ R
n :
∏n

i=1 xi = 1, x2
i = 1, for i ∈ [n]};

the convex hull of SO−(n) is closely related to the odd parity polytope

(3.3) PP−
n = conv{x ∈ R

n :
∏n

i=1 xi = −1, x2
i = 1, for i ∈ [n]}.

In this section, we briefly discuss properties of these polytopes and show that they
are the diagonal sections of convO(n), convSO(n), and convSO−(n), respectively.

Facet descriptions. The hypercube has 2n facets corresponding to the linear in-
equality description

(3.4) Cn = {x ∈ R
n : −1 ≤ xi ≤ 1 for i ∈ [n]}.

The parity polytope PPn has the linear inequality description

PPn =

{
x ∈ R

n : −1 ≤ xi ≤ 1 for i ∈ [n],

∑
i/∈I

xi −
∑
i∈I

xi ≤ n− 2 for I ⊆ [n], |I| odd
}
.(3.5)

This description is due to Jeroslow [20]. (See, e.g., [9, Theorem 5.3] for a self-contained
proof.) If n ≥ 4, all 2n+2n−1 linear inequalities in (3.5) define facets. By symmetry,
it suffices to check one inequality of each type. Indeed, if we remove the inequality
x1 ≤ 1, then (n− 2, 0, . . . , 0) satisfies all the other inequalities but is not in PPn (for
n ≥ 4). Similarly, if we remove the inequality −x1 + x2 + · · · + xn ≤ n − 2, then
(−1, 1, . . . , 1) satisfies all the other inequalities but is not in PPn. In the cases n = 2
and n = 3, (3.5) simplifies to

PP2 =
{
[ xx ] ∈ R

2 : −1 ≤ x ≤ 1
}

and(3.6)

PP3 =
{
x ∈ R

3 : x1 − x2 + x3 ≤ 1, −x1 + x2 + x3 ≤ 1,

x1 + x2 − x3 ≤ 1, −x1 − x2 − x3 ≤ 1} ,(3.7)

showing that PP3 has only four facets.
The polar of the hypercube is the cross-polytope. We denote it by C◦

n. It is clear
from (3.1) that C◦

n has 2n facets and corresponding linear inequality description

(3.8) C◦
n =

{
x ∈ R

n :
∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n]

}
.

The polar of the parity polytope is denoted by PP◦
n. It is clear from (3.2) that PP◦

n

has 2n−1 facets and corresponding linear inequality description

(3.9) PP◦
n =

{
x ∈ R

n :
∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n], |I| even
}
.

Similarly,

(3.10) PP−
n
◦
=

{
x ∈ R

n :
∑
i/∈I

xi −
∑
i∈I

xi ≤ 1 for I ⊆ [n], |I| odd
}
.
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To get a sense of the importance of these polytopes for understanding convSO(n),
it may be instructive to compare (3.5) with (1.8), (3.6) with (1.9), (3.7) with (1.10),
and (3.9) with (1.7).

We conclude the discussion of these polytopes with another description of PPn.
Lemma 3.1. If n ≥ 3, the parity polytope can be expressed as

PPn = Cn ∩ (n− 2) · PP−
n
◦
.

If n = 3, this simplifies to PP3 = PP−
3

◦
. If n = 2, PP2 = C2 ∩ span(1, 1).

Proof. For the general case, we need only examine the facet descriptions in (3.4),
(3.5), and (3.10). If n = 3, the result follows by comparing (3.7) with (3.10). The
case n = 2 is a restatement of (3.6).

Diagonal projections and sections. We now establish the link between the hy-
percube and the convex hull of O(n), and the parity polytope and the convex hull
of SO(n). First, we prove a result that says that the subspace D of diagonal ma-
trices interacts particularly well with these convex bodies. The lemma applies for
the convex bodies convO(n), convSO(n), and convSO−(n) because whenever g is
a diagonal matrix with diagonal entries in {−1, 1} (a diagonal sign matrix), each of
these convex bodies is invariant under the conjugation map X 	→ gXgT . Note that
Lemma 3.2 holds in much greater generality than the statement we give here (see,
e.g., [8, Proposition 3.5]).

Lemma 3.2. Let C ⊆ R
n×n be a convex body that is invariant under conjugation

by diagonal sign matrices. Then πD(C) = πD(C∩D) and [πD(C∩D)]◦ = πD(C◦∩D).
Proof. We first establish that πD(C) = πD(C∩D). Note that clearly πD(C∩D) ⊆

πD(C). For the reverse inclusion, let G denote the group (of cardinality 2n) of diagonal
sign matrices and observe that D is the subspace of n×n matrices fixed pointwise by
the conjugation action of diagonal sign matrices. Then consider the linear map

(3.11) P (X) =
1

2n

∑
g∈G

gXgT .

Since the trace inner product is invariant under the action of G, it is straightforward
to show that P is self-adjoint. For any X ∈ R

n×n and any g ∈ G, gP (X)gT = P (X),
implying that the image of P is D. Furthermore, if X ∈ D, then P (X) = X . Together,
these observations imply that P = π∗

DπD, the orthogonal projection onto D.
Now, if C is invariant under the action of G and X ∈ C, then (3.11) gives a

description of π∗
DπD(X) as a convex combination of the gXgT , each of which is an

element of the convex set C. Hence, π∗
DπD(X) ∈ C ∩ D and so πD(X) ∈ πD(C ∩ D).

Now, we establish that [πD(C ∩D)]◦ = πD(C◦ ∩D). For any y ∈ D, we have that

max
x∈πD(C∩D)

〈y, x〉 = max
x∈πD(C)

〈y, x〉 = max
z∈C

〈y, πD(z)〉 = max
z∈C

〈π∗
D(y), z〉.

Hence, y ∈ [πD(C ∩ D)]◦ if and only if π∗
D(y) ∈ C◦, or, equivalently, y ∈ πD

(C◦ ∩ D).
The key fact that relates the parity polytope and the convex hull of SO(n) is the

following celebrated theorem of Horn [18].
Theorem 3.3 (Horn). The projection onto the diagonal of SO(n) is the parity

polytope, i.e., πD(SO(n)) = PPn.



THE CONVEX HULL OF ROTATION MATRICES 1327

Note that we do not need the full strength of Horn’s theorem. We only use the
corollaries that

πD(convSO(n)) = convπD(SO(n)) = convPPn = PPn and(3.12)

πD(convSO−(n)) = πD(R · convSO(n))

= R · πD(convSO(n)) = R · PPn = PP−
n .(3.13)

We are now in a position to establish the main result of this section.
Proposition 3.4. Let D ⊆ R

n×n denote the subspace of diagonal matrices. Then

πD(D ∩ convO(n)) = Cn, πD(D ∩O(n)◦) = C◦
n,

πD(D ∩ convSO(n)) = PPn, πD(D ∩ SO(n)◦) = PP◦
n,

πD(D ∩ convSO−(n)) = PP−
n , πD(D ∩ SO−(n)◦) = PP−

n
◦
.

Proof. First note that by (3.12) and (3.13), we know that πD(convSO(n)) = PPn

and that πD(convSO−(n)) = PP−
n . Consequently,

πD(convO(n)) = convπD(SO(n) ∪ SO−(n)) = conv (PPn ∪ PP−
n ) = Cn.

Since each of convO(n), convSO(n), convSO−(n) is invariant under conjugation
by diagonal sign matrices, we can apply Lemma 3.2. Doing so, and using the charac-
terization of the diagonal projections of each of these convex bodies from the previous
paragraph, completes the proof.

4. Spectrahedral representations of SO(n)◦ and convSO(n). This sec-
tion is devoted to outlining the proofs of Theorems 1.1, 1.2, and 1.3, giving spectra-
hedral representations of SO(n)◦, O(n)◦, and convSO(n). For the sake of exposition,
we initially focus on SO(2)◦, as in this case all the ideas are familiar. Low-dimensional
coincidences do mean that some issues are simpler in the 2× 2 case than in general.
After discussing the 2 × 2 case, in section 4.2 we generalize the argument, deferring
some details to Appendix A. Finally, in section 4.3 we construct our spectrahedral
representation of convSO(n).

4.1. The 2 × 2 case. We begin by giving a spectrahedral representation of
SO(2)◦. We make crucial use of the trigonometric identities cos(θ) = cos2(θ/2) −
sin2(θ/2) and sin(θ) = 2 cos(θ/2) sin(θ/2). Recall that elements of SO(2) have the
form [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

[
cos2( θ2 )− sin2( θ2 ) −2 cos( θ2 ) sin(

θ
2 )

2 cos( θ2 ) sin(
θ
2 ) cos2( θ2 )− sin2( θ2 )

]
and that (cos(θ/2), sin(θ/2)) parameterizes the unit circle in R

2. Hence, SO(2) is the
image of the unit circle {(x1, x2) : x

2
1 + x2

2 = 1} under the quadratic map

Q(x1, x2) =

[
x2
1 − x2

2 −2x1x2

2x1x2 x2
1 − x2

2

]
.

As such, Y ∈ SO(2)◦ if and only if, for all (x1, x2) in the unit circle,

〈Y,Q(x1, x2)〉 =
〈[

Y11 Y12

Y21 Y22

]
,

[
x2
1 − x2

2 −2x1x2

2x1x2 x2
1 − x2

2

]〉
=

[
x1 x2

] [
Y11 + Y22 Y21 − Y12

Y21 − Y12 −Y11 − Y22

] [
x1

x2

]
≤ 1.
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This is equivalent to the spectrahedral representation

SO(2)◦ =

{
Y :

[
Y11 + Y22 Y21 − Y12

Y21 − Y12 −Y11 − Y22

]
 I

}
,

which coincides with the n = 2 case of Theorem 1.1.
To summarize, the main idea of the argument is that we use a parameterization of

SO(2) as the image of the unit circle under a quadratic map. This parameterization
allows us to rewrite the maximum of a linear functional on SO(2) as the maximum of a
quadratic form on the unit circle which can be expressed as a spectrahedral condition.

We note that a very similar argument works in the case n = 3 to directly pro-
duce the representations of SO(3)◦ and convSO(3) in Theorem 1.1 and Corollary 1.6,
respectively. Indeed, the unit quaternion parameterization of rotations gives a param-
eterization of SO(3) as the image of the unit sphere in R

4 under a quadratic mapping.
This allows us to rewrite the maximum of a linear functional on SO(3) as the max-
imum of a quadratic form on the unit sphere or, equivalently, as a spectrahedral
condition.

4.2. Outline of the general argument. For the general case, we first need a
quadratic parameterization of SO(n). There is a classical construction of a quadratic

map Q : R2n−1 → R
n×n and a subset Spin(n) of the unit sphere in R

2n−1

such that
SO(n) = Q(Spin(n)). (We recall this construction in Appendix A, only discussing
those aspects relevant for our argument here.)

Unfortunately, for n ≥ 4, Spin(n) is a strict subset of the unit sphere in R
2n−1

, so
we cannot simply follow the argument for the n = 2 case verbatim. The key difficulty
is that we need a spectrahedral characterization of the maximum over Spin(n) of the
quadratic form x 	→ 〈Y,Q(x)〉 (for arbitrary Y ). It is not obvious how to do this when
Spin(n) is a strict subset of the sphere.

We achieve this by showing that, for any Y , the maximum of the quadratic form
x 	→ 〈Y,Q(x)〉 over the entire sphere coincides with its maximum over the strict subset
Spin(n) of the sphere (see Proposition 4.4, to follow). To establish this, we exploit
additional structure in Spin(n) and certain equivariance properties of Q. The specific
properties we use are stated in Propositions 4.1, 4.2, and 4.3. We prove these in
Appendix A.

Proposition 4.1. There exist a 2n−1-dimensional inner product space, Cl0(n),
a subset Spin(n) of the unit sphere in Cl0(n) and a quadratic map Q : Cl0(n) → R

n×n

such that Q(Spin(n)) = SO(n).
From now on fix Cl0(n), Spin(n), and Q that satisfy the previous proposition and

are explicitly constructed in Appendix A. The quadratic mapping Q interacts well
with left and right multiplication by elements of SO(n).

Proposition 4.2. If U, V ∈ SO(n), then there is a corresponding invertible
linear map Φ(U,V ) : Cl0(n) → Cl0(n) such that for any x ∈ Cl0(n), UQ(x)V T =
Q(Φ(U,V )x) and Φ(U,V )(Spin(n)) = Spin(n).

Recall that Ieven denotes the collection of subsets of [n] of even cardinality.
Proposition 4.3. Given any orthonormal basis u1, . . . , un for R

n, there is a
corresponding orthonormal basis (uI)I∈Ieven for Cl0(n) such that

• uI ∈ Spin(n) for all I ∈ Ieven and
• for all i ∈ [n], if x =

∑
I∈Ieven

xIuI ∈ Cl0(n), then

〈ui, Q (x)ui〉 =
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉.
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The following proposition, the crux of our argument, implies that for any n × n
matrix Y , the maximum of the quadratic form x 	→ 〈Y,Q(x)〉 over the whole sphere
and over the (strict) subset Spin(n) coincide.

Proposition 4.4. Given any Y ∈ R
n×n, the quadratic form x 	→ 〈Y,Q(x)〉 has

a basis of eigenvectors that are elements of Spin(n).
Proof. Suppose that Y ∈ R

n×n is arbitrary. Then by the special singular value
decomposition, Y can be expressed as Y = UTDV , where U and V are in SO(n) and
D is diagonal. Then by Proposition 4.2,

〈Y,Q(x)〉 = 〈UTDV,Q(x)〉 = 〈D,UQ(x)V T 〉 = 〈D,Q(Φ(U,V )x)〉.

Consider the quadratic form z 	→ 〈D,Q(z)〉 and let e1, . . . , en denote the stan-
dard basis for R

n. By Proposition 4.3, there is a basis (eI)I∈Ieven such that if
z =

∑
I∈Ieven

zIeI , then

〈D,Q(z)〉 =
n∑

i=1

Dii〈ei, Q(z)ei〉 =
∑

I∈Ieven

z2I

(
n∑

i=1

Dii〈ei, Q(eI)ei〉
)
.

Hence, z 	→ 〈D,Q(z)〉 has (eI)I∈Ieven as a basis of eigenvectors. Hence, the quadratic
form x 	→ 〈Y,Q(x)〉 has Φ−1

(U,V )eI for I ∈ Ieven as a basis of eigenvectors. Since the eI

are in Spin(n) (by Proposition 4.3), Φ(U,V ) is invertible, and Φ−1
(U,V ) preserves Spin(n)

(by Proposition 4.2), we can conclude that the quadratic form x 	→ 〈Y,Q(x)〉 has a
basis of eigenvectors all of which are elements of Spin(n).

Assuming Propositions 4.1 and 4.4, we can prove Theorem 1.1 using an embel-
lishment of the same argument we used in the 2× 2 case.

Theorem 1.1. The polar of SO(n) is a spectrahedron. Explicitly,

SO(n)◦ =

⎧⎨⎩Y ∈ R
n×n :

n∑
i,j=1

A(ij)Yij  I2n−1

⎫⎬⎭ ,

where the 2n−1 × 2n−1 matrices A(ij) are defined in (1.6).
Proof. Since the image of Spin(n) under Q is SO(n), an n × n matrix Y is in

SO(n)◦ if and only if

max
X∈SO(n)

〈Y,X〉 = max
x∈Spin(n)

〈Y,Q(x)〉 ≤ 1.

Since Spin(n) is a subset of the unit sphere in Cl0(n), we have that

max
x∈Spin(n)

〈Y,Q(x)〉 ≤ max
x∈Cl0(n)
〈x,x〉=1

〈Y,Q(x)〉.

The maximum of the quadratic form x 	→ 〈Y,Q(x)〉 over the unit sphere in Cl0(n) oc-
curs at any eigenvector corresponding to the largest eigenvalue of the quadratic form.
By Proposition 4.4, we can always find such an eigenvector in Spin(n), establishing
that

max
x∈Spin(n)

〈Y,Q(x)〉 = max
x∈Cl0(n)
〈x,x〉=1

〈Y,Q(x)〉.
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Hence, Y ∈ SO(n)◦ if and only if for all x ∈ Cl0(n) such that 〈x, x〉 = 1,

(4.1) 〈Y,Q(x)〉 =
n∑

i,j=1

Yij〈ei, Q(x)ej〉 ≤ 1.

In Appendix A.4, we explicitly describe a choice of coordinates for Cl0(n) such that
the matrix representing the quadratic form x 	→ 〈ei, Q(x)ej〉 in those coordinates is
precisely the matrix A(ij) defined in (1.6). Hence, (4.1) is equivalent to the spectra-
hedral representation given in Theorem 1.1.

Remark 4.5. We briefly describe a more geometric dual interpretation of the
arguments that establish Theorem 1.1. Throughout this remark, let S = {x ∈ Cl0(n) :
〈x, x〉 = 1} be the unit sphere in Cl0(n). We have seen that there is a quadratic
map Q such that SO(n) = Q(Spin(n)) ⊆ Q(S) with the inclusion being strict for
n ≥ 4. The remainder of the proof of Theorem 1.1 shows, from this viewpoint,
that convSO(n) = convQ(Spin(n)) = convQ(S), i.e., all the points in S that are
not in Spin(n) are mapped by Q inside the convex hull of Q(Spin(n)). One may
wonder whether Q(S) = convSO(n), i.e., whether the image of the sphere under
Q is actually convex. This is not the case—already for n = 2, we can see that
Q(S) = SO(2) �= convSO(2).

It is now straightforward to prove Theorem 1.2, giving a spectrahedral represen-
tation of O(n)◦ of size 2n.

Theorem 1.2. The polar of O(n) is a spectrahedron. Explicitly,

O(n)◦ =

⎧⎨⎩Y ∈ R
n×n :

n∑
i,j=1

A(ij)Yij  I2n−1 ,
n∑

i,j=1

A(ij)[RY ]ij  I2n−1

⎫⎬⎭ ,

where R = diag∗(1, 1, . . . , 1,−1).
Proof. Since O(n)◦ = SO(n)◦ ∩ SO−(n)◦ (see (1.3)) and we have already con-

structed a spectrahedral representation of SO(n)◦, it remains to give a spectrahedral
representation of SO−(n)◦. Since SO−(n) = R · SO(n), it follows that Y ∈ SO−(n)◦

if and only if 〈Y,RX〉 = 〈RY,X〉 ≤ 1 for all X ∈ SO(n). Hence, Y ∈ SO−(n)◦ if and
only if RY ∈ SO(n)◦.

The stated spectrahedral representation of O(n)◦ of size 2n follows from these
observations and Theorem 1.1.

4.3. A spectrahedral representation of convSO(n). In this section, we
give a spectrahedral representation of convSO(n) using a description of convSO(n)
which is inherited from the corresponding description of the parity polytope.

Proposition 4.6. If n ≥ 3, the convex hull of SO(n) can be expressed as

convSO(n) = (convO(n)) ∩ (n− 2)SO−(n)◦.

If n = 3, this simplifies to convSO(3) = SO−(3)◦. In the case n = 2,

convSO(2) = (convO(2)) ∩ span

{[
1 0
0 1

]
,

[
0 −1
1 0

]}
.

Proof. Suppose that X ∈ R
n×n is arbitrary and n ≥ 3. By the special singular

value decomposition, X = U Σ̃V T , where (U, V ) ∈ S(O(n)×O(n)) and Σ̃ = diag∗(σ̃)
is diagonal. Then since SO(n) is invariant under the action of S(O(n) × O(n)), it
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follows that X ∈ convSO(n) if and only if Σ̃ ∈ (convSO(n)) ∩ D. Similarly, since
convO(n) and SO−(n)◦ are invariant under the action of S(O(n)×O(n)), it follows
that X ∈ (convO(n)) ∩ (n − 2)SO−(n)◦ if and only if Σ̃ ∈ (convO(n)) ∩ D and
Σ̃ ∈ (n− 2)SO−(n)◦ ∩ D.

Since the diagonal section of convSO(n) is the parity polytope, X ∈ convSO(n)
if and only if σ̃ ∈ PPn. Since the diagonal section of convO(n) is the hypercube,
σ̃ ∈ Cn if and only if Σ̃ ∈ (convO(n)) ∩ D. Since the diagonal section of SO−(n)◦ is
PP−

n
◦
, σ̃ ∈ (n− 2)PP−

n
◦
if and only if Σ̃ ∈ (n− 2)SO−(n)◦ ∩ D.

Finally, we use the fact that PPn = Cn ∩ (n − 2)PP−
n

◦
(see Lemma 3.1). Then

X ∈ convSO(n) if and only if σ̃ ∈ PPn, which occurs if and only if σ̃ ∈ Cn and
σ̃ ∈ (n− 2)PP−

n
◦
, which occurs if and only if X ∈ (convO(n)) ∩ (n− 2)SO−(n)◦.

In the case n = 3, the description PPn = Cn ∩ (n− 2)PP−
n
◦
simplifies to PP3 =

PP−
3

◦
. The corresponding simplification propagates through the above argument

to give convSO(3) = SO−(3)◦. The result in the case n = 2 follows from the
same argument but uses the description PP2 = C2 ∩ span(1, 1) and the fact that
σ̃ ∈ span(1, 1) if and only if X ∈ span

{
[ 1 0
0 1 ] ,

[
0 −1
1 0

]}
.

Since the description of convSO(n) in Proposition 4.6 involves convO(n), we first
give the well-known spectrahedral representation of convO(n).

Proposition 4.7. The convex hull of O(n) is a spectrahedron. An explicit
spectrahedral representation of size 2n is given by

(4.2) convO(n) =

{
X ∈ R

n×n :

[
0 X

XT 0

]
 I2n

}
.

Proof. Let Q ∈ O(n) be arbitrary. Then since QTQ = In, it follows that[
In −Q

−QT In

]
=

[
In

−QT

] [
In −Q

]
� 0,

and so Q is an element of the right-hand side of (4.2). Since the right-hand side
of (4.2) is convex, it follows that convO(n) ⊆ {X ∈ R

n×n :
[

0 X
XT 0

]  I2n
}
.

For the reverse inclusion, suppose that X is an element of the right-hand side
of (4.2). By the singular value decomposition, there is a diagonal matrix Σ such that

X = UΣV T , where U, V ∈ O(n). Conjugating by the orthogonal matrix
[
UT 0
0 V T

]
,

we see that [
0 X

XT 0

]
 I2n ⇐⇒

[
0 Σ
Σ 0

]
 I2n,

which is equivalent to −1 ≤ Σii ≤ 1 for i ∈ [n]. Since πD(D ∩ convO(n)) is the
hypercube, it follows that Σ ∈ D ∩ convO(n) and so that UΣV T ∈ convO(n).

We now restate (omitting the explicit description of convSO(3)) and prove The-
orem 1.3.

Theorem 1.3. The convex hull of SO(n) is a spectrahedron. Explicitly,

conv SO(n) =

⎧⎨⎩X ∈ R
n×n :

[
0 X

XT 0

]
 I2n,

n∑
i,j=1

A(ij)[RX ]ij  (n− 2)I2n−1

⎫⎬⎭ .
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In the special cases n = 2 and n = 3, we have

convSO(2) =

{[
c −s
s c

]
∈ R

2×2 :

[
1 + c s
s 1− c

]
� 0

}
and

convSO(3) =

⎧⎨⎩X ∈ R
3×3 :

3∑
i,j=1

A(ij)[RX ]ij  I4

⎫⎬⎭ .

Proof. Since we now have a spectrahedral representation of convO(n) (from (4.2))
and of SO−(n)◦ (from the proof of Theorem 1.2), by Proposition 4.6 their intersection
gives the spectrahedral representation of convSO(n) valid for n ≥ 3. In the case n =
3, Proposition 4.6 tells us that convSO(3) = SO−(3)◦, giving the stated simplification
(which can be expressed explicitly as in (1.11) by using the definition of the A(ij)

in (1.6)). In the case n = 2, from Proposition 4.6 we have that

convSO(2) =

⎧⎪⎪⎨⎪⎪⎩
[
c −s
s c

]
∈ R

2×2 :

⎡⎢⎢⎣
1 0 −c s
0 1 −s −c
−c −s 1 0
s −c 0 1

⎤⎥⎥⎦ � 0

⎫⎪⎪⎬⎪⎪⎭ .

This is still a spectrahedral representation of size 4, but the constraint has symmetry—
it is invariant under simultaneously reversing the order of the rows and columns—
suggesting that it can be block diagonalized [13]. Under the change of coordinates

1

2

⎡⎢⎢⎣
1 0 −1 0
0 1 0 1
0 1 0 −1
−1 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 −c s
0 1 −s −c
−c −s 1 0
s −c 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 −1 0
0 1 0 1
0 1 0 −1
−1 0 −1 0

⎤⎥⎥⎦
T

=

⎡⎢⎢⎣
1 + c s 0 0
s 1− c 0 0
0 0 1 + c s
0 0 s 1− c

⎤⎥⎥⎦ ,(4.3)

we see that the size 4 spectrahedral representation in (4.3) is actually two copies of
the same size 2 representation, giving the stated result.

5. Lower bounds on the size of representations.

5.1. Spectrahedral representations. Whenever a convex set has a polyhedral
section, we can immediately obtain a simple lower bound on the possible size of a
spectrahedral representation of that convex set in terms of the number of facets of that
polyhedron. The bound is based on the following result of Ramana [29, Corollary 2.5].

Lemma 5.1. If P ⊆ R
p is a polyhedron with f facets and P has a spectrahedral

representation of size m, then m ≥ f .
The following combines Ramana’s result with the simple fact that restricting

a spectrahedral representation of C to an affine subspace U gives a spectrahedral
representation of C ∩ U of the same size.

Lemma 5.2. Suppose that C ⊆ R
n has a spectrahedral representation of size m.

If U ⊆ R
n is an affine subspace and C∩U is a polyhedron with f facets, then m ≥ f .

Proof. Parameterize the subspace U as U = {Ax+ b : x ∈ R
p}, where A ∈ R

n×p

and b ∈ R
n. Let C have a spectrahedral representation C = {x :

∑n
i=1 A

(i)xi+A(0) �
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0} of size m, so the symmetric matrices A(i) are m×m. Let B(j) =
∑n

i=1 A
(i)Aij for

j = 1, 2, . . . , p and let B(0) = A(0) +
∑n

i=1 A
(i)bi. Then C ∩ U is affinely isomorphic

to {x ∈ R
p :
∑p

j=1 B
(j)xj + B(0) � 0}, which has a spectrahedral representation of

size m. Since C ∩ U has f facets, it follows from Ramana’s result (Lemma 5.1) that
m ≥ f .

Remarkably, this simple observation allows us to establish that our spectrahedral
representations are of minimum size.

Theorem 1.4. If n ≥ 1, the minimum size of a spectrahedral representation of
O(n)◦ is 2n. If n ≥ 2, the minimum size of a spectrahedral representation of SO(n)◦

is 2n−1. If n ≥ 4, the minimum size of a spectrahedral representation of convSO(n) is
2n−1+2n. The minimum size of a spectrahedral representation of convSO(3) is 4.

Proof. The diagonal slice of O(n)◦ is the cross-polytope, which (for n ≥ 1) has
2n facets. Hence, for n ≥ 1, any spectrahedral representation of O(n)◦ has size at
least 2n. The diagonal slice of SO(n)◦ is the polar of the parity polytope, which (for
n ≥ 2) has 2n−1 facets. Hence, for n ≥ 2, any spectrahedral representation of SO(n)◦

has size at least 2n−1. The diagonal slice of convSO(n) is the parity polytope, which
for n ≥ 4 has 2n−1 + 2n facets, and for n = 3 has 4 facets. It follows that any
spectrahedral representation of convSO(n) has size at least 2n−1 + 2n for n ≥ 4 and
size at least 4 for n = 3.

The spectrahedral representations we construct in section 4 achieve these lower
bounds and so are of minimum size.

5.2. Equivariant PSD lifts. As is established in Theorem 1.4, our spectra-
hedral representations are necessarily of exponential size. While they are useful in
practice for very small n (such as the physically relevant n = 3 case), this is not the
case for larger n.

PSD lifts. In general, if C is a spectrahedron, it may be possible to give a much
smaller projected spectrahedral representation of C. In other words, it may be the case
that C = π(D), where π is a linear map3 and D has a spectrahedral representation
that has a much smaller size than any spectrahedral representation of C. Note that
throughout this section, if D has a spectrahedral representation of size m, we express
it as D = L∩Sm

+ , where L is an affine subspace of Sm, the space of m×m symmetric
matrices, and Sm

+ ⊆ Sm is the cone of positive semidefinite m×m symmetric matrices.
The following definition is a specialization of [15, Definition 1].

Definition 5.2. Suppose that C ⊆ R
n is a convex body. If C = π(L∩Sm

+ ) where
L is an affine subspace of m × m symmetric matrices and π : Sm → R

n is a linear
map, we say that C has a PSD lift of size m.

It is straightforward to show that if C has a PSD lift of size m, then C◦ also
has a PSD lift of size m [15]. This simple observation already yields examples of
convex bodies for which there is an exponential gap between the size of the smallest
spectrahedral representation and the size of the smallest PSD lift. For instance, as
demonstrated in Example 1.5, the smallest possible spectrahedral representation of
O(n)◦ has size 2n and yet it has a PSD lift of size 2n.

Equivariant PSD lifts. While there has been some recent progress in obtaining
lower bounds on the size of PSD lifts of some polytopes [5, 16], little is understood
about lower bounds on the size of PSD lifts of convex bodies in general. Recently, new
techniques have been developed for obtaining lower bounds on the size of equivariant

3In this section only, to conform with standard notation for PSD lifts, we use π to mean an
arbitrary linear map
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PSD lifts of orbitopes. These are PSD lifts that “respect” (in a precise sense to be
defined below) the symmetries of that orbitope.

In the remainder of this section, we show that any projected spectrahedral rep-
resentation of convSO(n) that is equivariant with respect to the action of S(O(n)×
O(n)) must have size exponential in n. The argument works by showing that from any
PSD lift of convSO(n) that is equivariant with respect to the action of S(O(n)×O(n)),
we can construct a PSD lift of the parity polytope that is equivariant with respect to
a certain group action on R

n. We then apply a recent result that gives an exponential
lower bound on the size of appropriately equivariant PSD lifts of the parity polytope.

The following definition (from [10]) makes the notion of equivariant PSD lift
precise.

Definition 5.3. Let C ⊆ R
n be a convex body invariant under the action of

a group G by linear transformations. Assume that C = π(L ∩ Sm
+ ) is a PSD lift

of C of size m. The lift is called G-equivariant if there is a group homomorphism
ρ : G → GL(m) such that

ρ(g)Xρ(g)T ∈ L for all g ∈ G and all X ∈ L and

π(ρ(g)Xρ(g)T ) = g · π(X) for all g ∈ G and all X ∈ L ∩ Sm
+ .(5.1)

In the present setting we are interested in two particular cases of equivariant
PSD lifts: S(O(n)×O(n))-equivariant PSD lifts of convSO(n) and Γparity-equivariant
PSD lifts of the parity polytope. Here, Γparity can be thought of concretely as the
group of evenly signed permutation matrices—signed permutation matrices where
there are an even number of entries that take the value −1. These act on R

n by
matrix multiplication.

We are now in a position to relate S(O(n) × O(n))-equivariant PSD lifts of
convSO(n) with Γparity-equivariant PSD lifts of PPn.

Proposition 5.4. If convSO(n) has an equivariant PSD lift of size m, then
PPn has an equivariant PSD lift of size m.

Proof. Suppose convSO(n) = π(L ∩ Sm
+ ) is a S(O(n) × O(n))-equivariant PSD

lift of convSO(n) of size m and let ρ : S(O(n) × O(n)) → GL(m) be the associated
homomorphism. Since the projection of convSO(n) onto the subspace of diagonal
matrices is PPn (Theorem 3.3), it follows that

PPn = (πD ◦ π)(L ∩ Sm
+ )

is a PSD lift of PPn of size m. It remains to show that this lift of PPn is Γparity-
equivariant. In other words, we need to construct a homomorphism ρ̃ : Γparity →
GL(m) satisfying the requirements of Definition 5.3.

First, observe that any element of Γparity can be uniquely expressed as DP , where
D is a diagonal sign matrix with determinant one, and P is a permutation matrix.
Furthermore, note that if D1P1 and D2P2 are elements of Γparity, then

(D1P1)(D2P2) = (D1P1D2P
T
1 )(P1P2)

gives the associated factorization of the product. Hence, define φ : Γparity → S(O(n)×
O(n)) by φ(DP ) = (DP,P ). Observe that this is a homomorphism because

φ((D1P1)(D2P2)) = φ((D1P1D2P
T
1 )(P1P2))

= ((D1P1)(D2P2), P1P2) = φ(D1P1) · φ(D2P2).
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Define a homomorphism ρ̃ : Γparity → GL(m) by ρ̃ = ρ◦φ. For any symmetric matrix
X , it is the case that DP · πD(X) = πD(DPXPT ). Hence, the following establishes
that the lift is Γparity-equivariant:

DP · πD(π(X)) = πD(DPπ(X)PT )

= πD(φ(DP ) · π(X))
∗
= πD(π(ρ(φ(DP ))Xρ(φ(DP ))T ))

= πD(π(ρ̃(DP )Xρ̃(DP )T )) by the definition of ρ̃,

where the equality marked with an asterisk holds because the lift of convSO(n) is
equivariant.

The following lower bound on the size of Γparity-equivariant PSD lifts of the parity
polytope is one of the main results of [10].

Theorem 5.5. Any Γparity-equivariant PSD lift of PPn for n ≥ 8 must have size
at least

(
n


n
4 �
)
.

Combining Proposition 5.4 with Proposition 5.5, we obtain the following expo-
nential lower bound on the size of any equivariant PSD lift of convSO(n).

Corollary 5.6. Any S(O(n) × O(n))-equivariant PSD lift of convSO(n) for
n ≥ 8 must have size at least

(
n


n
4 �
)
.

6. Summary and open questions. In this work, we have constructed mini-
mum size spectrahedral representations for the convex hull of SO(n) and its polar.
We have also constructed a minimum-size spectrahedral representation of O(n)◦ (the
nuclear norm ball). We conclude the paper by discussing some natural questions
raised by our results.

6.1. Doubly spectrahedral convex sets. We have seen that both the convex
hull of SO(n) and its polar are spectrahedra. The same is true of the convex hull
of O(n) (the operator norm ball) and its polar (the nuclear norm ball), as estab-
lished by Sanyal, Sottile, and Sturmfels [32, Corollary 4.9]. This is a very special
phenomenon—the polar of a spectrahedron is not, in general, a spectrahedron. For
example, the intersection of the second-order cone {(x, y, z) : z ≥

√
x2 + y2} and the

nonnegative orthant is a spectrahedron, but its polar has nonexposed faces and so is
not a spectrahedron [28].

If a convex set C and its polar are both spectrahedra, we say that C is a doubly
spectrahedral convex set. Apart from convO(n) and convSO(n), two distinct families
of doubly spectrahedral convex sets are the following:

Polyhedra. Every polyhedron is a spectrahedron, and the polar of a polyhedron
is again a polyhedron. Hence, polyhedra are doubly spectrahedral.

Homogeneous cones. A convex coneK is homogeneous if the automorphism group
of K acts transitively on the interior of K. Using Vinberg’s classification of homo-
geneous cones in terms of T -algebras [37], Chua gave spectrahedral representations
for all homogeneous cones [7]. Furthermore, K is homogeneous if and only its dual
cone K∗ = −K◦ is homogeneous [37, Proposition 9]. From these two observations, it
follows that any homogeneous cone is doubly spectrahedral.

We have seen that the doubly spectrahedral convex sets are a strict subset of
all spectrahedra that includes all polyhedra, all homogeneous convex cones, and
convO(n) and convSO(n).

Problem 6.1. Characterize doubly spectrahedral convex sets.
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6.2. Non-equivariant PSD lifts. In section 5, we showed that our spectrahe-
dral representations of convSO(n) and SO(n)◦ are necessarily of exponential size and
that any S(O(n) × O(n))-equivariant PSD lift of convSO(n) must also have expo-
nential size. Our lower bound on the size of S(O(n)×O(n))-equivariant PSD lifts of
convSO(n) used the fact that any Γparity-lift of the parity polytope has exponential
size. Nevertheless, the parity polytope is known to have a PSD lift (in fact, it is an
LP lift) of size 4(n − 1) [6, section 2.6.3] that is not Γparity-equivariant. It is quite
possible that by appropriately breaking symmetry, we can find a small PSD lift of
convSO(n).

Question 6.2. Does convSO(n) have a PSD lift with size polynomial in n?

Appendix A. Clifford algebras and Spin(n). In this section, we describe
and establish the key properties of the quadratic mapping Q from Proposition 4.1
that underlies our spectrahedral representation of SO(n)◦ given in Theorem 1.1. The
mapping Q is most naturally described in terms of an algebraic structure known
as a Clifford algebra, which generalizes some properties of complex numbers and
quaternions. The first part of this section is devoted to describing the basic properties
of Clifford algebras we require. In section A.2, we define the set Spin(n) and establish
some of its properties. In section A.3, we describe the mapping Q and establish
Propositions 4.1, 4.2, and 4.3. Section A.4 gives explicit constructions of the matrices
A(ij) appearing in our spectrahedral representations.

Many of the constructions and properties we describe here are standard and can
be found, for example, in [1, 17]. We highlight those aspects of the development that
are novel as they arise.

A.1. Clifford algebras. The Clifford algebra Cl(n) is the associative algebra4

(over the reals) with generators e1, e2, . . . , en and relations

(A.1) e2i = −1 and eiej = −ejei for i �= j.

Here, 1 denotes the multiplicative identity in the algebra.
Standard basis. When thought of as a real vector space, Cl(n) has dimension 2n.

A basis for Cl(n) is given by all elements of the form

eI := ei1ei2 · · · eik ,

where I = {i1, i2, . . . , ik} is a subset of [n] and i1 < i2 < · · · < ik. Note that e∅ := 1.
Let us call (eI)I⊆[n] the standard basis for Cl(n). With respect to this basis we can
think of an arbitrary element x ∈ Cl(n) as

x =
∑
I⊆[n]

xIeI

where the xI ∈ R. We equip Cl(n) with the inner product 〈x, y〉 =
∑

I⊆[n] xIyI .
Clearly, the standard basis is orthonormal with respect to this inner product.

Left and right multiplication. Any element x ∈ Cl(n) acts linearly on Cl(n) by
left multiplication and by right multiplication. In other words, given x ∈ Cl(n), there
are linear maps λx, ρx : Cl(n) → Cl(n) defined by λx(y) = xy and ρx(y) = yx for all
y ∈ Cl(n).

4That such an algebra exists and is unique up to isomorphism follows because it can be realized
as a quotient of the tensor algebra (see, e.g., [17, Definition 9.4]).
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Conjugation. A straightforward computation shows that with respect to the inner
product on Cl(n), the adjoint of left multiplication by ei is left multiplication by
−ei, i.e., λ∗

ei = λ−ei . Similarly, the adjoint of right multiplication by ei is right
multiplication by −ei. In fact, it is the case that for any x ∈ Cl(n), there is x ∈ Cl(n)
such that λ∗

x = λx and ρ∗x = ρx. To see this, define a conjugation map x 	→ x on the
standard basis by

eI = (−1)|I|eik · · · ei2ei1

and extend by linearity. We use this conjugation map repeatedly in what follows,
usually via the relations

(A.2) 〈xy, z〉 = 〈λxy, z〉 = 〈y, λ∗
xz〉 = 〈y, λxz〉 = 〈y, xz〉

and

(A.3) 〈yx, z〉 = 〈ρxy, z〉 = 〈y, ρ∗xz〉 = 〈y, ρxz〉 = 〈y, zx〉.

Copy of R
n in Cl(n). Throughout this appendix, we use the notation R

n to
denote the n-dimensional subspace of Cl(n) spanned by the generators e1, e2, . . . , en.
Elements of Rn ⊆ Cl(n) satisfy the following coordinate-free version of the defining
relations of Cl(n) given in (A.1).

Lemma A.1. If u, v ∈ R
n, then uv + vu = −2〈u, v〉1.

Proof. First, note that uv + uv = −2〈u, v〉1 is bilinear in u and v, so it suffices
to verify the identity for u = ei and v = ej (for all 1 ≤ i, j ≤ n). That the statement
holds for u = ei and v = ej (for all 1 ≤ i, j ≤ n) is equivalent to the relations (A.1)
(since 〈ei, ej〉 = δij).

The sphere in R
n. We use the notation Sn−1 ⊆ R

n ⊆ Cl(n) to denote the set of
elements x ∈ R

n satisfying 〈x, x〉 = 1. We next state and prove some basic properties
of the elements of Sn−1 ⊆ Cl(n).

Lemma A.2. If u ∈ Sn−1 ⊆ Cl(n), then uu = 1 = uu. Consequently, 〈uy, uz〉 =
〈y, z〉 = 〈yu, zu〉 for all y, z ∈ Cl(n).

Proof. The second statement follows from the first together with (A.2) and (A.3).
That uu = 1 whenever u ∈ Sn−1 follows from a direct application of Lem-
ma A.1.

The following can be established by repeatedly applying Lemma A.2.
Corollary A.3. If u1, u2, . . . , uk ∈ Sn−1, then 〈u1u2 · · ·uk, u1u2 · · ·uk〉 = 1.
Even subalgebra. Consider the subspaces Cl0(n) and Cl1(n) of Cl(n) defined by

Cl0(n) = span{eI : I ⊆ [n], |I| even} and Cl1(n) = span{eI : I ⊆ [n], |I| odd}.

It is straightforward to show that if x, y ∈ Cl0(n), then xy ∈ Cl0(n), and if x, y ∈
Cl1(n), then xy ∈ Cl0(n). The first of these properties, states that Cl0(n) is a
subalgebra of Cl(n), which we call the even subalgebra. With these properties, we have
that the product of an even number of elements of Sn−1 is in the even subalgebra.

Lemma A.4. If u1, u2, . . . , u2k ∈ Sn−1, then x = u1u2 · · ·u2k ∈ Cl0(n).
Proof. Since Sn−1 ⊆ R

n ⊆ Cl1(n), each ui ∈ Cl1(n). Hence, u2i−1u2i ∈ Cl0(n)
for i = 1, 2, . . . , k. So u1u2 · · ·u2k = (u1u2)(u3u4) · · · (u2k−1u2k) is the product of
elements in Cl0(n), and so is itself an element of Cl0(n).
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A.2. Spin(n). We now define Spin(n) and establish some of its basic properties.
Definition A.5. Spin(n) is the set of all even length products of elements of

Sn−1, i.e.,

Spin(n) = {x ∈ Cl(n) : x = u1u2 · · ·u2k, where k is a positive integer and

u1, . . . , u2k ∈ Sn−1}.

Although we do not require this fact, it can be shown that in the above definition
it is enough to take k = �n/2�. We note that a common alternative definition [1]
is to take Spin(n) to be the elements of Cl0(n) satisfying xx = 1 and xvx ∈ R

n for
every v ∈ R

n (which defines a real algebraic variety specified by the vanishing of a
collection of quadratic equations). It is fairly straightforward to establish that these
two definitions are equivalent.

The following observation follows directly from Lemma A.4 and Corollary A.3.
Lemma A.6. The set Spin(n) is a subset of the unit sphere in Cl0(n), i.e.,

Spin(n) ⊆ {x ∈ Cl0(n) : 〈x, x〉 = 1}.
The next result establishes that Spin(n) is a group under multiplication.
Lemma A.7. If x ∈ Spin(n), then xx = xx = 1. If x, y ∈ Spin(n), then

xy ∈ Spin(n).
Proof. That Spin(n) is closed under multiplication is clear from the definition.

That conjugation and inversion coincide on Spin(n) follows from Lemma A.2.

A.3. The quadratic mapping. We now define and establish the relevant prop-
erties of the quadratic mapping Q : Cl0(n) → R

n×n that plays a prominent role in

section 4.2. First, define Q̃ : Cl(n) → R
n×n by

Q̃(x)(u) = πRnλxρx(u) = πRn(xux).

Note that Q̃(x) is quadratic in x. Then define Q : Cl0(n) → R
n×n as the restriction

of Q̃ to the subalgebra Cl0(n).

When we express the linear map Q̃(x) as a matrix (with respect to the standard

basis), we see that [Q̃(x)]ij = 〈ei, xejx〉. Furthermore, Q̃ (and hence Q) interacts
nicely with the conjugation map.

Lemma A.8. If x ∈ Cl(n), then Q̃(x) = Q̃(x)T .

Proof. Simply observe that [Q̃(x)]ij = 〈ei, xejx〉 = 〈xeix, ej〉 = [Q̃(x)]ji.

The definition of Q̃ is motivated by the fact that if u ∈ Sn−1, then −Q̃(u) is the
reflection in the hyperplane orthogonal to u.

Lemma A.9. Let u ∈ Sn−1. Then whenever v ∈ R
n, −uvu ∈ R

n is the reflection
of v in the hyperplane normal to u. In particular, −uvu ∈ R

n.
Proof. Let u ∈ Sn−1. Then by Lemma A.1, if v ∈ R

n, then −uv = 2〈u, v〉1+ vu.
Since uu = 1 and u = −u, it follows that

−uvu = 2〈u, v〉u+ vuu = v − 2〈u, v〉u,

which is the reflection in the hyperplane orthogonal to u and is certainly in R
n.

Note that our definition of Q̃ is one possible extension to all of Cl(n) of the
map that sends u ∈ Sn−1 to the reflection in the hyperplane orthogonal to u. It is
specifically chosen so as to be quadratic on all of Cl(n). Our choice is different from
the typical extension used in the literature—the twisted adjoint representation [1]—
which is not quadratic in x on all of Cl(n) and is not suitable for our purposes.
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Lemma A.10. Let x ∈ Cl(n) and u ∈ Sn−1. Then

Q̃(xu) = Q̃(x)Q̃(u) and Q̃(ux) = Q̃(u)Q̃(x),

where the product on the right-hand side in each case is composition of linear maps.
Proof. If u ∈ Sn−1, we know from the previous lemma that v 	→ uvu leaves the

subspace R
n (and hence its orthogonal complement) invariant. So by the definition

of Q̃, we see that

Q̃(xu)(v) = πRn(xuvu x) = πRn(xπ∗
RnπRn(uvu)x) = Q̃(x)(Q̃(u)(v)).

Similarly, since π∗
RnπRn + π∗

Rn⊥πRn⊥ = I,

Q̃(ux)(v) = πRn(uxvxu)

= πRn(uπ∗
RnπRn(xvx)u) + πRn(uπ∗

Rn⊥πRn⊥(xvx)u) = Q(u)(Q(x)(v)) + 0,

where we have used the fact that uyu ∈ R
n⊥ whenever y ∈ R

n⊥.
We are now in a position to prove Propositions 4.1, 4.2, and 4.3. We restate them

here for convenience.
Proposition 4.1. There is a 2n−1-dimensional inner product space, Cl0(n), a

subset Spin(n) of the unit sphere in Cl0(n) and a quadratic map Q : Cl0(n) → R
n×n

such that Q(Spin(n)) = SO(n).
Proof. The construction of Cl0(n) is given in section A.1. The set Spin(n) is

defined in A.5. That Spin(n) is a subset of the sphere in Cl0(n) is the content of
Lemma A.6. The quadratic mapping Q is defined in section A.3. It remains to show
that Q(Spin(n)) = SO(n).

Let X ∈ SO(n). By the Cartan–Dieudonné theorem [12], any such X can be
expressed as the composition of an even number (at most n) of reflections in hyper-
planes with normal vectors, say, u1, u2, . . . , u2k ∈ Sn−1. Let x = u1u2 · · ·u2k−1u2k ∈
Spin(n). Then by Lemmas A.9 and A.10 and the fact that Q is the restriction of Q̃
to Cl0(n),

X = Q̃(u1)Q̃(u2) · · · Q̃(u2k−1)Q̃(u2k) = Q̃(x) = Q(x) ∈ Q(Spin(n)).

Hence, SO(n) ⊆ Q(Spin(n)). On the other hand, if x = u1u2 · · ·u2k−1u2k ∈ Spin(n),
then Q(x) is the product of an even number of reflections in hyperplanes and so is an
element of SO(n), establishing the reverse inclusion.

Proposition 4.2. If U, V ∈ SO(n), then there is a corresponding invertible
linear map Φ(U,V ) : Cl0(n) → Cl0(n) such that for any x ∈ Cl0(n), UQ(x)V T =
Q(Φ(U,V )x) and Φ(U,V )(Spin(n)) = Spin(n).

Proof. By Proposition 4.1, there are u, v ∈ Spin(n) such that Q(u) = U and
Q(v) = V . Define Φ(U,V ) : Cl0(n) → Cl0(n) by Φ(U,V )(x) = uxv. Then Φ(U,V ) is

invertible with inverse Φ−1
(U,V )(x) = uxv. By Lemmas A.8 and A.10, for any x ∈

Cl0(n),

UQ(x)V T = Q(u)Q(x)Q(v)T = Q(u)Q(x)Q(v) = Q(uxv).

Finally, if x ∈ Spin(n), then Φ(U,V )(x) = uxv ∈ Spin(n) by Lemma A.7. Hence,

Φ(U,V )(Spin(n)) ⊆ Spin(n). For the reverse inclusion, if x ∈ Spin(n), then Φ−1
(U,V )(x) =

uxv ∈ Spin(n) by Lemma A.7. Hence, Φ(U,V )(Spin(n)) ⊇ Spin(n), establishing that
Φ(U,V )(Spin(n)) = Spin(n).

Proposition 4.3. Given any orthonormal basis u1, . . . , un for R
n, there is a

corresponding orthonormal basis (uI)I∈Ieven for Cl0(n) such that
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• uI ∈ Spin(n) for all I ∈ Ieven and
• for all i ∈ [n], if x =

∑
I∈Ieven

xIuI , then

〈ui, Q(x)ui〉 =
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉.

Proof. Let u1, u2, . . . , un ∈ R
n be orthonormal with respect to the usual inner

product on R
n. When thought of as elements of Rn ⊂ Cl(n), these satisfy u2

i = −1
for all i and uiuj = −ujui when i �= j (by Lemma A.1). As such, we can construct
from u1, u2, . . . , un a basis for Cl0(n) just as we did for the standard basis. Indeed,
let I = {i1, . . . , i2k} ⊆ [n], where i1 < i2 < · · · < i2k, and define uI = ui1ui2 · · ·ui2k .
This realizes uI as the product of an even number of elements of Sn−1, showing that
uI ∈ Spin(n). For the second statement, note that if x =

∑
I∈Ieven

xIuI and i ∈ [n],

〈ui, Q(x)ui〉 = 〈ui, xuix〉
=

∑
I,J∈Ieven

xIxJ 〈ui, uIuiuJ〉

∗
=

∑
I,J∈Ieven

xIxJδIJ〈ui, uIuiuI〉

=
∑

I∈Ieven

x2
I〈ui, Q(uI)ui〉

where δIJ = 1 if I = J and zero otherwise, and the equality marked with an asterisk
follows directly from the coordinate-free version of the defining relations of the Clifford
algebra (Lemma A.1).

A.4. Matrices of the quadratic mapping. For 1 ≤ i, j ≤ n, let A(ij) :
Cl0(n) → Cl0(n) be the self-adjoint linear map such that, for all x ∈ Cl0(n),

[Q(x)]ij = 〈ei, xejx〉 = 〈x,A(ij)x〉.

First, we note that the A(ij) have trace zero.
Lemma A.11. For 1 ≤ i, j ≤ n, tr(A(ij)) = 0.
Proof. For i ∈ [n] and I ∈ Ieven, define δ[i∈I] = 1 if i ∈ I and 0 otherwise. Observe

that from the definition of A(ij) and the defining relations of the Clifford algebra,

tr(A(ij)) =
∑

I∈Ieven

〈eI , A(ij)eI〉 =
∑

I∈Ieven

〈ei, eIejeI〉 =
∑

I∈Ieven

(−1)δ[j∈I]〈ei, ej〉.

If i �= j, every term in the sum vanishes. If i = j, observe that there are 2n−2

elements of Ieven containing j and 2n−2 elements of Ieven not containing j, and hence∑
I∈Ieven

(−1)δ[j∈I]〈ej , ej〉 = 0.

For the remainder of the section, we show that with respect to the standard basis
(eI)I∈Ieven for Cl0(n), the A(ij) are represented by the 2n−1×2n−1 symmetric matrices
described in (1.6).

Let Ã(ij) : Cl(n) → Cl(n) be the self-adjoint linear map such that, for all x ∈
Cl(n), [Q̃(x)]ij = 〈ei, xejx〉 = 〈x, Ã(ij)x〉. Since

〈ei, xejx〉 = 〈eix, xej〉 = 〈x, λeiρejx〉 = −〈x, λeiρejx〉,
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it follows that Ã(ij) = −λeiρej . Since A(ij) is the restriction of Ã(ij) to the subspace

Cl0(n), we have that

(A.4) A(ij) = πCl0(n)(−λeiρej )π
∗
Cl0(n).

It remains to derive the matrices that represent the λei and ρei for i = 1, 2, . . . , n,
as well as the matrix representing πCl0(n), in terms of the standard basis (eI)I⊆[n] for
Cl(n) (ordered in a particular way). To describe the ordering, define δ[i∈I] = 1 if i ∈ I
and zero otherwise, and define δ[i/∈I] = 1 if i /∈ I and zero otherwise. We order the
basis elements in such a way that, in coordinates,

[eI ] =

[
δ[1/∈I]

δ[1∈I]

]
⊗
[
δ[2/∈I]

δ[2∈I]

]
⊗ · · · ⊗

[
δ[n/∈I]

δ[n∈I]

]
.

It is straightforward to verify (by checking that the relations of (A.1) are satisfied)
that in these coordinates,

λi := [λei ] =

i−1︷ ︸︸ ︷[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
⊗
[
0 −1
1 0

]
⊗

n−i︷ ︸︸ ︷[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
and

ρi := [ρei ] =

[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
︸ ︷︷ ︸

i−1

⊗
[
0 −1
1 0

]
⊗
[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
︸ ︷︷ ︸

n−i

.

Now, π∗
Cl0(n)

πCl0(n) : Cl(n) → Cl(n) is represented in these coordinates by

[π∗
Cl0(n)πCl0(n)] =

1

2

n︷ ︸︸ ︷[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
+
1

2

n︷ ︸︸ ︷[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
.

This can be verified by noting that if |I| is odd, [π∗
Cl0(n)

πCl0(n)][eI ] = 0, and if |I| is
even, [π∗

Cl0(n)
πCl0(n)][eI ] = [eI ]. Defining the 2n × 2n−1 matrix

Peven =
1

2

[
1
1

]
⊗

n−1︷ ︸︸ ︷[
1 0
0 1

]
⊗ · · · ⊗

[
1 0
0 1

]
+
1

2

[
1
−1

]
⊗

n−1︷ ︸︸ ︷[
1 0
0 −1

]
⊗ · · · ⊗

[
1 0
0 −1

]
and checking that it satisfies PevenP

T
even = [π∗

Cl0(n)
πCl0(n)] and that the columns of

Peven are orthonormal establishes that Peven = [π∗
Cl0(n)

]. It then follows that in these

coordinates,

A(ij) = −PT
evenλiρjPeven

as stated in (1.6).
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