
Tree-Structured Statistical Modeling via Convex Optimization

James Saunderson, Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky

Abstract— We develop a semidefinite-programming-based
approach to stochastic modeling with multiscale autoregressive
(MAR) processes—a class of stochastic processes indexed by the
vertices of a tree. Given a tree and the covariance matrix of the
variables corresponding to the leaves of the tree, our procedure
aims to construct an MAR process with small state dimensions
at each vertex that approximately realizes the given covariance
at the leaves. Our method does not require prior specification of
the state dimensions at each vertex. Furthermore, we establish
a large class of MAR processes for which, given only the index
tree and the leaf covariance of the process, our method can
recover a parametrization that matches the leaf-covariance and
has the correct state dimensions. Finally we demonstrate, using
synthetic examples, that given i.i.d. samples of the leaf variables
our method can recover the correct state dimensions of an
underlying MAR process.

I. INTRODUCTION

Modeling complex data as samples of a structured stochas-
tic process is a common approach that underlies many
techniques in signal processing, system identification, and
machine learning. Among the stochastic processes that have
received a great deal of attention in this context are those that
are tree-structured, in the sense that the process is indexed
by the vertices of a tree and the conditional independence
structure among the variables is related to the edge structure
of the tree. Models of this type admit very efficient estimation
algorithms, and yet possess considerable statistical modeling
power.

A natural sub-class of these tree-structured models are
multiscale autoregressive (MAR) processes [2]. These can be
represented as state space models driven by white Gaussian
noise, where the states are indexed by a tree and the state
variables are related by affine dynamics operating from the
root to the leaves of the tree. MAR models have seen
application in areas including computer vision, image pro-
cessing, remote sensing, and geophysics [19]. In many of
these applications, the signal we wish to model (for example
the image in image processing applications) corresponds
to the leaf-variables of the MAR process, with the other
variables, which capture longer-range correlations in the
signal, modeled as unobserved or latent.

In this paper we consider the problem of building par-
simonious MAR processes where the leaf-variables model
observed data. In this work we assume the tree that indexes
the MAR process is given. As such, by parsimonious MAR

This research was funded in part by AFOSR under Grant FA9550-08-1-
1080, and in part by Shell International Exploration and Production, Inc.

The authors are with the Department of Electrical Engineering and
Computer Science, Laboratory of Information and Decision Systems, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139 USA.

Emails: {jamess, venkatc, parrilo, willsky}@mit.edu

processes we mean those for which the state space at each
latent variable has small dimension. It is an interesting and
challenging problem to learn a tree structure given only data
at the leaves. This problem has been the subject of much
work in the context of phylogenetics [6] and machine learn-
ing [14]. We could use any previously developed techniques
for learning such a tree as input for our methods.

Our approach to the modeling problem is based on

1) reformulating the modeling problem as a matrix de-
composition problem and

2) developing an approach to this matrix decomposition
problem based on semidefinite programming.

One way to assess a modeling procedure is to consider its
consistency properties. In this paper we analyze our modeling
procedure with respect to the following recovery property.

Definition 1: Suppose that Σ is the covariance matrix
among the leaf variables of an MAR process indexed by
a tree T . We say that a modeling procedure recovers the
MAR process from Σ and T if it produces an MAR process
indexed by T that has leaf covariance Σ and the same state
dimensions as the original MAR process.
Note that we do not care about the particular parametrization
of the MAR process, only that it has the correct ‘complexity’
and realizes the correct leaf covariance. Indeed there are
many different (parametrizations of) MAR processes with
the same state dimensions and the same leaf covariance. We
focus only on recovering those aspects of the model that are
identifiable given only information about the leaf-variables
of the process.

The central problem addressed in this paper is to determine
conditions on MAR processes that ensure they can be recov-
ered by our modeling procedure. Our main result, Thm. 2,
establishes that a large class of MAR processes that have
scalar valued variables can be recovered by our modeling
procedure.

Although our main recovery result deals with underlying
models that have scalar variables, a feature of our modeling
procedure is that we do not make any hard prior choices
about the state dimensions of the MAR process. Our semidef-
inite program (SDP) naturally favors models with small state
dimensions.

The stochastic realization problem for MAR processes has
been considered by a number of authors including Irving et
al. [8] who developed a technique based on the notion of
canonical correlations, and Frakt et al. [7] who proposed a
computationally efficient method for learning internal MAR
processes, an important subclass of MAR processes. Both
of these are computationally local methods that require prior

Fig. 1. Summary of notation related to trees. Note that V2, for example,
refers to all of the vertices at distance 2 from the root r. Note that all of
the leaves of this tree are at the same distance from the root, and so this
tree satisfies our standing assumption.

assumptions on the dimensions of the state spaces at each
vertex.

A standard approach to choosing parameters for any sta-
tistical model with latent variables is to use the expectation-
maximization (EM) algorithm [5] which has been specialized
to the case of learning parameters of MAR processes [10].
The EM algorithm, however, does not offer any consistency
guarantees, and does not (in its most basic form) learn
the state dimensions of the latent variables along with the
parameters.

In the case where the index tree is a ‘star’, consisting only
of a root vertex and leaves, then the corresponding MAR
model is exactly what is known as a factor analysis model
[18] in statistics and the (algebraic) Frisch Scheme [9] in
system identification. In this case, the covariance among the
leaf variables decomposes as the sum of a diagonal and a low
rank matrix. A generalization of this decomposition plays a
central role in this work. Furthermore, the SDP we describe
in Sec. IV is a non-trivial generalization of a well-known
SDP-based heuristic for factor analysis, known as minimum
trace factor analysis [16].

The rest of the paper is organized as follows. In Sec. II
we introduce notation and terminology related to trees and
MAR processes. We then highlight, in Sec. III a particular
decomposition that the covariance among the leaf-variables
admits. In Sec. IV we propose SDPs to perform exact
and approximate covariance decomposition, and analyze the
exact decomposition SDP in Sec. V-A. Finally in Sec. VI we
apply this method in experiments on synthetic data.

Due to space constraints, we omit detailed proofs through-
out the paper.

II. PRELIMINARIES

We introduce notation to allow us to work with random
processes on trees. Throughout the paper we will use the tree
shown in Fig. 1 to provide a concrete example of much of
our notation.

A. Trees

Let T = (V, E) be a tree with a distinguished vertex r ∈ V
called the root. We divide the vertices into scales depending

on their distance from the root. Explicitly, Vs denotes the set
of vertices at distance s from the root.

When it is convenient we can think of T as a directed
tree with edges oriented away from the root. Given a vertex
v ∈ V let Pv be the parent of v, the (unique) vertex such
that (Pv, v) is a directed edge in T . Similarly the children of
v, denoted Cv, are those vertices whose (common) parent is
v. The leaves of the tree are those vertices with no children.
The descendants of a vertex v are the vertices connected to
v by a directed path. Finally we use the notation V\r instead
of V \ {r} for the set of vertices excluding the root. We
summarize these notational conventions in Fig. 1.

We restrict ourselves to a particular class of trees in this
paper. We assume that trees are rooted and have all of their
leaves at the same scale with respect to the root.

B. Multiscale Autoregressive Models

1) Definition and Notation: Consider a zero-mean Gaus-
sian process (xv)v∈V where each xv takes values in Rnv for
some nv . We refer to Rnv as the state space at v and do not
fix the dimension of these state spaces a priori.

Define (xv)v∈V by xr ∼ N (0, R) and if v ∈ V\r,

xv = AvxPv + wv (1)

where Av is an nv × nPv matrix, wv ∼ N (0, Qv), wv and
wu are independent if u 6= v, and for each v ∈ V\r, wv
is independent of xr. We refer to the process (xv)v∈V as a
multiscale autoregressive (MAR) process. Such a process can
be parametrized by the matrices (Av, Qv)v∈V\r

, R, and the
tree T . To avoid certain non-identifiability issues we assume,
throughout, that R and each Av and Qv have full rank.

Since we do not specify the dimensions nv of the state
spaces a priori, almost all of our discussion is at the level
of block matrices, where each block is indexed by a pair of
vertices (u, v) and has dimension nu×nv as a matrix. If X
is a block matrix indexed by subsets U and W of vertices,
we abuse notation and terminology slightly and call X a
|U| × |W| matrix. For example we call Av , in the definition
of an MAR process, a |v| × |Pv| matrix.

2) MAR processes as Markov chains: If we collect to-
gether all of the xv for v ∈ Vs as the variable xs (and
similarly define ws) we can think of an MAR process as a
Markov chain indexed by scale with x0 = xr and

xs = Asxs−1 + ws. (2)

for s = 1, 2, . . . , t where Vt corresponds to the leaves of the
index tree. The matrices As for s = 1, 2, . . . , t are |Vs| ×
|Vs−1| (block) matrices defined by

[As]u,v =

{
Av if v = Pu
0 otherwise.

The relationship between the As and the Av is illustrated in
Fig. 2

Products of the form AtAt−1 · · ·As+1 have support
related to the structure of T , with only the entries
[AtAt−1 · · ·As+1]u,v where u ∈ Vt is a descendant of
v ∈ Vs being non-zero.

Fig. 2. The left figure shows how the matrices Av for v ∈ V\r relate to
the tree structure of an MAR process. The right figure is the Markov chain
version of the same MAR process, parametrized in terms of the matrices
As for s = 1, 2, . . . , t.

III. COVARIANCE DECOMPOSITIONS

As for time-indexed linear state space models we can solve
for the leaf variables in terms of the inputs ws as

xt = (At · · ·A1)x0 + (At · · ·A2)w1 + · · ·+Atwt−1 + wt.
(3)

Let Σt be the covariance of xt and Qs be the covariance
of ws, noting that Qs is diagonal as a block matrix. Taking
covariances of (3) yields a decomposition of Σt as

Σt = (At · · ·A1)R(At · · ·A1)T + (At · · ·A2)Q1(At · · ·A2)T

+ · · ·+AtQt−1A
T
t +Qt (4)

=: L0 + L1 + · · ·+ Lt−1 + Lt.

This decomposition is illustrated in Fig. 4. Let us highlight
the defining properties of this decomposition.
P1 Block Diagonal Structure: For s = 1, 2, . . . , t the

terms Ls = (At · · ·As+1)Qs(At · · ·As+1)T are block
diagonal with a support structure that arises from the
support pattern of the product At · · ·As+1. Since this
structure arises often in the sequel we introduce notation
to express it compactly, writing Bst for the map that
given a symmetric |Vt| × |Vt| matrix X is defined by

[Bst (X)]u,v =

[X]u,v if u and v are both

descendants of some w ∈ Vs
0 otherwise,

where u and v take values in Vt. These block diagonal
structures are illustrated in Fig. 3.

P2 Low-Rank Structure: For parsimonious MAR models
the dimensions nv of the state spaces at each vertex are
all small, so for 0 ≤ s ≤ t − 1 the Ls have low rank.
Specifically L0 = (At · · ·A1)R(At · · ·A1)T has rank
nr and the terms Ls = (At · · ·As+1)Qs(At · · ·As+1)T

for 1 ≤ s ≤ t− 1 have rank
∑
v∈Vs

nv .
P3 Nested Column Spaces: The column spaces of the terms

in the decomposition are nested, satisfying

R(L0) ⊂ R(L1) ⊂ · · · ⊂ R(Lt)

where R(X) denotes the column space of the matrix
X . This nesting of column spaces arises because of the
way the Ls factor into products of the Aτ for s < τ ≤ t.

Fig. 3. An illustration of the block diagonal projections Bs
t defined in

property P1 of Sec. III. For example, the vertices V1 = {u, v} induce a
partition of V2 given by the descendants of u and the descendants of v
shown by the dashed boxes. This partition defines the block pattern of B1

2 .

Fig. 4. An illustration of the leaf-covariance decomposition described in
Sec. III for the tree in Fig. 1. The first equality represents the block diagonal
structure of the terms, the second equality represents the low-rank and nested
column space structures of the terms.

Conversely, any decomposition of Σt as a sum of positive
semidefinite matrices satisfying P1, P2, and P3 is the leaf
covariance of an MAR process indexed by T .

From now on we usually think of an MAR process in
terms of the implicit parameterization given by the terms
of the decomposition (4). It is straightforward to recover an
explicit parameterization of an MAR process from the Ls if
necessary.

IV. SDP FORMULATIONS FOR COVARIANCE
DECOMPOSITION

A. An Exact Covariance Decomposition SDP

In this section we formulate an SDP to decompose Σt
according to (4) as

Σt = L0 + L1 + · · ·+ Lt

where each Ls � 0 satisfies P1, P2, and P3 from Sec. III.
Our final formulation will specifically address each of these
structural issues.

The constraints that each Ls is positive semidefinite and
has a particular block diagonal structure are straightforward
to incorporate into a semidefinite programming framework.

The constraint that the column spaces of the Ls for
s = 0, 1, . . . , t− 1 are nested can be imposed by choosing a
positive constant M and enforcing that (L0, L1, . . . , Lt−1) ∈

KM where

KM := {(L0, . . . , Lt−1) : L0 � 0,MLs � Ls−1

for s = 1, . . . , t− 1} . (5)

Since we fix M , this constraint clearly excludes some valid
models. For the purposes of our analysis in Sec. V-A,
we will, for simplicity of exposition, assume that M is
sufficiently large that the model of interest is not excluded.

We want to choose the objective function of our SDP to
favor low rank solutions for L0, . . . , Lt−1. A long-known
heuristic, put on firm theoretical ground in recent years,
is that one can minimize the trace of positive semidefinite
matrices as a convex surrogate for minimizing the rank. See,
for example, [12] and [15] and the references therein for
much more on this topic.

This leads us to an SDP that aims to decompose Σt into
the sum of low-rank (except for Lt) block diagonal terms.

(L̂s)ts=0 = arg min
t∑

s=0

λstr(Ls)

s.t. Σt =
t∑

s=0

Bst (Ls) (6)

Lt � 0, (L0, . . . , Lt−1) ∈ KM

where λs ≥ 0 are parameters of the convex program. Our
analysis requires that if s̄ ≤ s then λs̄ ≥ λs. This is intuitive
as we want to encourage Ls̄ to have lower rank than Ls,
so we should penalize its rank (via the convex surrogate
for rank, namely the trace) more by having λs̄ ≥ λs. For
convenience, and by way of normalization, we set λ0 = 1.

It can be shown that the SDP (6) has a unique solution
(L̂0, . . . , L̂t) which, of course, depends only on Σt and the
tree T .

B. An Approximate Covariance Decomposition SDP

In the context of modeling we aim to approximately
decompose the given matrix Σt according to (4) as Σt
typically will not admit a (non-trivial) exact decomposition.
A natural modification of the SDP is to replace the constraint
Σt =

∑t
s=0 Bst (Ls) with a penalty on the size of Σt −∑t

s=0 Bst (Ls). Using a squared Frobenius norm penalty, for
example, gives the following modification of (6)

min γ
t∑

s=0

λstr(Ls) +
1
2
‖Σt −

t∑
s=0

Bst (Ls)‖2F (7)

s.t. Lt � 0, (L0, . . . , Lt−1) ∈ KM (8)

where γ > 0 is a regularization parameter that balances the
competing objectives of building a model that matches the
observations (that is Σt) and has low complexity in the sense
of low total state dimension. Note that the convex program
defined by (7) and (8) can be formulated as an SDP [3].

V. ANALYSIS AND DISCUSSION OF THE COVARIANCE
DECOMPOSITION SDPS

A. Recovery Properties of the Exact Decomposition SDP

Throughout this section we assume that Σt refers to the
covariance at scale t of an MAR process parameterized by
(Av, Qv)v∈V\r

and R (as in Sec. II). Furthermore, we define
L?0, · · ·L?t to be the terms in the decomposition (4) of Σt,
and assume that M is large enough so that (L?0, . . . , L

?
t−1) ∈

KM .
Our aim, here, is to establish sufficient conditions on the

parameters (Av, Qv)v∈V\r
, and R so that the optimal point

(L̂0, . . . , L̂t) of the exact covariance decomposition SDP
(6) is precisely (L?0, . . . , L

?
t). This is exactly the notion of

recovery in Def. 1 of the introduction.
The usual optimality conditions for semidefinite program-

ming (see [3], for example) give necessary and sufficient con-
ditions for recovery, but involve the cone K∗M , complicating
the analysis somewhat. Because K∗M contains the product of
t − 1 copies of the positive semidefinite cone, we obtain
sufficient conditions for recovery by replacing K∗M with
a product of positive semidefinite cones in the optimality
conditions.

Proposition 1: The SDP (6) correctly decomposes Σt if
there exists a dual certificate Y such that λsI − Bst (Y) � 0
and L?s(λsI − Bst (Y)) = 0 for s = 0, 1, . . . , t.

It is not particularly obvious how to construct a Y with
the properties stated in Prop. 1 as these properties are rather
global in nature. It turns out that we can simplify the task of
constructing Y by combining dual certificates that concern
only the interactions between a parent and all of its children.
This is the main technical lemma of this paper.

Lemma 1: Suppose that for each non-leaf vertex v there
is a |Cv| × |Cv| symmetric positive semidefinite matrix Yv
such that

1) [Yv]uu = I for all u ∈ Cv
2) YvACv = 0

where ACv =
[
Au1 · · · Aum

]T
and Cv = {u1, . . . , um}.

Then there exists Y with the properties stated in Prop. 1 and
so the SDP (6) correctly decomposes Σt.
Rather than supplying a detailed proof, we only explain how
to construct Y from the Yv . First, for each 1 ≤ s ≤ t, we
define a |Vs| × |Vs| matrix Ys by

Ys = I − diag(Yv1 , . . . , Yvm)

where Vs−1 = {v1, . . . , vm}. Then we take Y to be the
|Vt| × |Vt| matrix

Y = (λ0 − λ1)(At · · ·A2)Y1(At · · ·A2)T+

(λ1 − λ2)(At · · ·A3)Y2(At · · ·A3)T + · · · (9)

+ (λt−2 − λt−1)AtYt−1A
T
t + (λt−1 − λt)Yt.

It can be shown that as long as λt < λt−1 < · · · < λ0, the
matrix Y in (9) has the required properties.

Given this result, we need only consider the apparently
simpler situation of finding ‘local’ dual certificates. Any

results about constructing matrices Yv satisfying the assump-
tions of Lem. 1 translate into results about the success of the
covariance decomposition SDP (6).

One such result, on which we will focus in this paper,
deals with the case where xv is scalar valued (i.e. nv = 1)
for all v. In this case all of our block matrices reduce to
matrices with scalar entries. Delorme and Poljak [4], in
the context of analyzing an approximation algorithm for
the MAX-CUT problem, gave a characterization of when a
matrix Yv satisfying the assumptions of Lem. 1 exists.

Definition 2: A vector u ∈ Rn is balanced if for all i =
1, 2, . . . , n

|ui| ≤
∑
j 6=i

|uj |.

Theorem 1 (Delorme and Poljak [4]): Given u ∈ Rn,
there exists a matrix Z � 0 such that Zii = 1 for i =
1, 2, . . . , n and Zu = 0 if and only if u is balanced.

We would like to point out that there is no known simple
characterization of the existence of a matrix Yv satisfying
the assumptions of Lem. 1 where nv > 1 except for the few
special cases considered in [1].

The following is our main result, and summarizes the
discussion in this section. It gives simple conditions under
which the SDP (6) correctly decomposes the covariance
among the leaves of an MAR model where all of the
variables xv are scalar valued.

Theorem 2: Suppose that for all v ∈ V , nv = 1 and that
for all children u of v,

|Au| ≤
∑

w∈Cv\{u}

|Aw|.

Then the covariance decomposition SDP (6) (with suffi-
ciently large M) correctly decomposes Σt.

Remark: The balance condition imposes an interesting
structural restriction on the trees T that can index an MAR
process if we hope to identify that process using the SDP
(6). Suppose v ∈ V has just two children, u1 and u2. Then
the balance condition says that we must have

|Au1 | = |Au2 |

a condition that does not hold generically. As such, in order
for the parameters of an MAR process to be generically
balanced, we need every vertex in the tree T to have at least
three children. Even at this qualitative level, Thm. 2 gives us
insight about how we ought not to go about choosing our tree
T when trying to solve a modeling problem as our procedure
will clearly not be effective on trees having vertices with only
two children.

B. Discussion of the Approximate Covariance Decomposi-
tion SDP

Suppose Σt is a good approximation of the covariance at
scale t of an MAR model that can be recovered using the
exact decomposition SDP. One would hope that the optimum
of the approximate covariance decomposition SDP is close
in some sense to the ‘true’ decomposition of the underlying

Fig. 5. The two trees that index the MAR processes in our synthetic
experiments. All the variables have state dimension one.

MAR model if we choose γ and M suitably with respect to
the error between Σt and the underlying leaf covariance.

Similar results hold for a number of related problems
including sparse and low-rank decompositions and matrix
completion (see [13], for example). These results typically
require a suitable tightening of the conditions on the model
required for exact recovery (in our case, a suitable tightening
of the balance conditions in Thm. 2). We leave this as an
avenue for further investigation.

VI. EXPERIMENT

In this section we demonstrate by simulation the perfor-
mance of our method for learning the state dimensions and
parameters of an MAR process given i.i.d. samples of the
leaf variables, rather than the exact covariance matrix. We
consider two MAR processes, defined with respect to the
trees in Fig. 5. All of the variables in both processes are
scalar-valued. For both processes, the underlying model are
generated by taking R = 1 and, for v ∈ V\r, Qv = 1 and
Av = 1+0.01nv where nv are i.i.d. standard normal random
variables. These choices ensure that (with high probability)
the balance condition of Thm. 2 is satisfied.

For each value of N in a given range, and each of the two
underlying processes, we run the following procedure fifty
times. We form the sample covariance matrix corresponding
to N i.i.d. samples of the leaf-variables and run the approxi-
mate covariance decomposition SDP, recording on each trial
whether all the state dimensions of the underlying MAR
process were correctly recovered. We choose the parameters
λs = 0.9s (for s = 0, 1, 2) and M = 1.1 (large enough so
that the underlying model is in the model class). In both cases
we chose γ = min{M, 6

√
p/N}, where p is the number

of observed variables (p = 9 and p = 16 for the trees
on the right and left respectively in Fig. 5). We note that
similar results are obtained for values of γ in a range around
these values. We solve the SDP (7) using a combination
of the modeling language YALMIP [11] and SDPT3 [17].
Fig. 6 shows the results, indicating that with sufficiently
many samples, the method is successful in both cases in
recovering the state dimensions of the model.

VII. CONCLUSIONS

In this paper we propose a semidefinite programming-
based method for modeling with MAR processes. Our ap-
proach naturally favors parsimonious models yet does not
require prior choices to be made about the state dimensions
of the model. We prove that under certain natural conditions
on the underlying MAR process, our method can exactly

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples (N)

P
ro

po
rt

io
n

of
 s

uc
ce

ss
fu

l t
ria

ls

Fig. 6. For each of the two trees shown in Fig. 5 and each N we repeat the
following procedure 50 times. We form a sample covariance matrix from N
i.i.d. samples of the leaf variables of an MAR process defined on the given
tree. We use our method to model the given data with a parsimonious MAR
process and check whether the state dimensions of the learned model match
those of the underlying model. On the vertical axis we plot the proportion
of trials in which all state dimensions were recovered correctly. We display
the number of samples on the horizontal axis. The blue solid line displays
results for the tree on the left in Fig. 5 and the black dashed line displays
results for the tree on the right in Fig. 5.

recover the model parameters given the tree structure and the
covariance matrix among the variables at the finest scale.

In future work we would like to prove statistical consis-
tency of our method, providing guidelines for choosing the
parameters γ and M , as well as considering more general
choices of loss function in our approximate covariance
decomposition SDP. Furthermore, the problem of learning
the tree structure in addition to model parameters and state
dimensions given data is a natural and challenging gener-
alization of problems considered in this paper. It would be
interesting to extend the convex optimization-based approach
of this paper to that setting.

REFERENCES

[1] W. Barrett and S. Pierce, “Null Spaces of Correlation Matrices,” Linear
Algebra and its Applications, vol. 368, pp. 129–157, 2003.

[2] M. Basseville, A. Benveniste and A. S. Willsky, “Multiscale Au-
toregressive Processes I. Schur-Levinson parametrizations,” IEEE
Trans. Signal Process., vol. 40, no. 8, pp. 1915–1934, 1992.

[3] S. P. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, 2004.

[4] C. Delorme and S. Poljak, “Combinatorial Properties and the Com-
plexity of a Max-Cut Approximation,” European Journal of Combi-
natorics, vol. 14, no. 4, pp. 313–333, 1993.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-
Likelihood from Incomplete Data via the EM Algorithm,” J. Royal
Stat. Soc. Ser. B, vol. 38, no. 1, pp. 1–38, 1977.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, “Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids,” Cambridge Univ. Press, 1999.

[7] A. B. Frakt and A. S. Willsky, “Computationally Efficient Stochastic
Realization for Internal Multiscale Autoregressive Models,” Multidi-
mensional Systems and Signal Processing, vol. 12, no. 2, pp. 109–142,
2001.

[8] W. W. Irving and A. S. Willsky, “A Canonical Correlations Approach
to Multiscale Stochastic Realization,” IEEE Trans. Automatic Control,
vol. 46, no. 10, pp. 1514–1528, 2001.

[9] R. E. Kalman, “Identification of Noisy Systems,” Russian Mathemat-
ical Surveys, vol. 40, no. 4, pp. 25–42, 1985.

[10] A. Kannan, M. Ostendorf, W. C. Karl, D. A. Castanon and R. K. Fish,
“ML Parameter Estimation of Multiscale Stochastic Processes using
the EM Algorithm,” IEEE Trans. Signal Process., vol. 48, no. 6,
pp. 1836–1847, 2000.

[11] J. Löfberg, “YALMIP: A Toolbox for Modeling and Optimization in
MATLAB.” Proc. CACSD Conf., Taipei, Taiwan, 2004.

[12] M. Mesbahi and G. P. Papavassilopoulos, “On the Rank Minimization
Problem over a Positive Semidefinite Linear Matrix Inequality,” IEEE
Trans. Automatic Control, vol. 42, no. 2, pp. 239–243, 1997.

[13] S. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, “A Unified
Framework for High-Dimensional Analysis of M -Estimators with
Decomposable Regularizers,” arXiv:1010.2731v1.

[14] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Network of
Plausible inference,” Morgan Kaufmann, 1988.

[15] B. Recht, M. Fazel, P. A. Parrilo, “Guaranteed Minimum-Rank So-
lutions of Linear Matrix Equations via Nuclear Norm Minimization,”
SIAM Review, vol. 52, no. 3, pp. 471–501, 2010.

[16] A. Shapiro, “Rank-Reducibility of a Symmetric Matrix and Sampling
Theory of Minimum Trace Factor Analysis,” Psychometrika, vol. 47,
no. 2, pp. 187–199, 1982.

[17] K. C. Toh, M. J. Todd and R. H. Tutuncu, “SDPT3 — a Matlab Soft-
ware Package for Semidefinite Programming,” Optimization Methods
and Software, vol. 11, no. 12, pp. 545–581, 1999.

[18] L. L. Thurstone, “Multiple Factor Analysis,” Psychological Review,
vol. 38, no. 5, pp. 406–427, 1931.

[19] A. S. Willsky, “Multiresolution Markov Models for Signal and Image
Processing,” Proceedings of the IEEE, vol. 90, no. 8, pp. 1396–1458,
2002.

