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Abstract—We demonstrate that the optical Fourier transform
and cyclic prefix in an all-optical OFDM transmitter can be simul-
taneously implemented using a liquid crystal on silicon wavelength
selective switch (WSS). The design uses phase-modulated optical
pulses at the inputs of the WSS; this has the advantage that the
optical modulators are only sampled by the optical pulses once per
data-symbol, so that the transition times between the data symbols
are irrelevant to the performance of the system, allowing slow opti-
cal modulators to be used. Furthermore, each input of the WSS can
be assigned to any combination of output subcarrier frequencies,
including frequencies unrelated to the modal frequencies of the
comb source. This is especially useful for testing in-service ultra-
high bandwidth systems by applying additional wavelengths. As
an example, we generate a 10.08 Tb/s signal and transmit along
857.4 km of fiber using 252 10-Gbaud subcarriers with a 10%
cyclic prefix. We use an optically-banded digital subcarrier demul-
tiplexer to simultaneously detect three subcarriers using a single
coherent receiver.

Index Terms—All-optical OFDM, liquid crystal on Silicon
(LCoS), optical communications, optical modulation, Orthorgonal
Frequency Division Multiplexing (OFDM), transmission, wave-
length selective switch (WSS).

I. INTRODUCTION

A S the demand for communications capacity increases,
there is a corresponding imperative to use the available

bandwidth of optical fibers more efficiently, to reduce the cost
per bit. Optical super-channels, based on techniques such as or-
thogonal frequency division multiplexing (OFDM) [1], [2] and
Nyquist wavelength division multiplexing (N-WDM) [3], [4]
offer high spectral efficiencies, and data bandwidths of more
than 1 Tb/s.

Because optical modulators and associated electronics have
a limited bandwidth, a superchannel must be assembled from
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lower-bandwidth channels. N-WDM and traditional OFDM
rely on high-bandwidth electronic digital to analog converters
(DACs) at the transmitter for signal generation, together with
passive optical couplers to combine the OFDM superchannels
or N-WDM channels. All-optical OFDM (AO-OFDM) [5] is a
method of generating the OFDM superchannel without needing
high-bandwidth (DACs) or digital signal processing (DSP) at the
transmitter. Recent developments in high-speed DACs has made
N-WDM more attractive, because of the lower required receiver
bandwidth. However, the increased transmitter complexity of
N-WDM may mean AO-OFDM techniques are more cost and
energy efficient for future systems. Studies have suggested that
the performance of N-WDM and CO-OFDM are similar [6].

AO-OFDM experiments have now achieved data rates be-
yond 10 Tb/s [7], [8] and spectral efficiencies greater than
6 bit/s/Hz [9]. However, it is extremely important to mini-
mize inter-carrier interference (ICI) and maintain orthogonal-
ity between the subcarriers. Traditionally AO-OFDM signals
have been generated by passively combining individual signals
spaced at the baud rate [5], [7], [10], [11]. For this method,
regularly spaced frequency comb lines, usually generated by a
mode-locked laser, are first demultiplexed before each is mod-
ulated with data symbols. These modulated comb lines, called
subcarriers, are then recombined using a frequency-independent
coupler. With this technique, the orthogonality between the sub-
carriers, and thus the quality of the demultiplexed symbols after
the receiver Fourier transform, relies on having very fast transi-
tions between subsequent modulated symbols, and is therefore
limited by the bandwidth of the transmitter electronics and the
modulator. To circumvent this problem, the subcarriers can be
generated by splitting the output of the comb source into several
paths, each containing identical pulses; that is, the splitter is
frequency-independent. Each path is then modulated with data
symbols. The center wavelength and spectral profile of each
path is then defined using an optical inverse Fourier transform
(OIFT) after the modulators, which also combines the subcar-
riers [12]. When considered in the time domain, the optical
pulses sample the states of the modulators only at the centers
of the data symbols. Thus the speed of the transitions between
symbols becomes much less critical. In practice, the OIFT can
be implemented using multiple fiber Bragg gratings [13], an
arrayed waveguide grating router [12], [14]–[16], circuits with
trees of delay line interferometers [17], or a liquid crystal on
silicon (LCoS) wavelength selective switch (WSS) [8], [18].
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Fig. 1. Operating principle of the optical OFDM multiplexer and demultiplexer. TD, FD: time domain and frequency domain, CMZM: complex Mach–Zehnder
modulator.

To achieve low inter-subcarrier-interference in the presence
of component imperfections, band-limited receivers and un-
compensated dispersion, the extension of data symbols using
a Cyclic Prefix (CP) insertion is essential [19]. In electrical
OFDM, this is achieved by prepending the end of each sym-
bol to the start of the same symbol. A similar functionality can
be achieved in AO-OFDM, but has only been optically imple-
mented for a five-subcarrier system [13].

In this paper, we show that a commercial LCoS WSS can be
used to implement the OIFT and the cyclic prefix, and another
WSS can be used at the receiver to demultiplex the subcar-
riers. We demonstrate a 10.08 Tb/s AO-OFDM superchannel,
containing 252 colorless subcarriers each with a 10% CP. At the
receiver, another WSS was used to create a strongly overlapping
optical demultiplexer, which allows digitally demultiplexing of
the spectrally overlapping OFDM subcarriers, and simultane-
ous recovery of all subcarriers without the loss associated with
star-couplers [20]. To demonstrate the quality of the signal, it
was transmitted along 857.4 km of dispersion uncompensated
fiber with EDFA-only amplification. After transmission the sig-
nal qualitiy (Q) of every subcarrier was better than 8.8-dB,
corresponding to a BER of less than 3 × 10−3 .

II. PRINCIPLE

Fig. 1 depicts the operating principle of our system. At the
OIFT transmitter, the output of a mode locked laser (MLL)
is passively split into N paths. Each path is then independently
modulated with one quadratic-amplitude modulation symbol per
optical pulse. The short optical pulses from the MLL sample the
modulator’s state at the middle of each symbol. The modulation
converts the discrete comb-line spectrum of the MLL into a
continuous white spectrum. Each modulated pulse train is then
coupled to the parallel inputs of the LCoS WSS.

A. Optical Inverse Fourier Transform Filter

The functionality of the inverse Fourier transform in an
OFDM transmitter and the forward Fourier transform in an
OFDM receiver can be implemented in the optical domain

using interferometric circuits [17], [21]–[23], specially designed
arrayed waveguide gratings [12], [14]–[16] and FBGs [13]. The
OIFT is implemented by multiplying the white spectrum of an
input by a filter with a sinc-shaped spectral transfer function
of width fR and center frequency f0 . To generate the OFDM
super-channel, the different inputs to the OIFT filter are shaped
by sinc-filters with their centre frequencies spaced at fR if no
CP is added. The resulting spectra are then passively combined
to form the super-channel. This is analogous to the digital pro-
cesses in electrical OFDM systems [8], [18], [24]. In the time
domain (TD) the OIFT corresponds to a convolution of the mod-
ulated pulse train with a rectangular envelope of duration 1/fR ,
and optical carrier wave f0 , where fR is the baud rate of a single
subcarrier.

In contrast to electronic OFDM, where the CP is inserted by
duplicating the extreme time-samples and then repeating them
at the other end of the OFDM symbol, to implement a CP in AO-
OFDM, the spacing of the center frequencies of the subcarriers
is increased, while the baud rate and MLL pulse rate are kept
as before. Importantly, the spectral width of the sinc-filters is
kept at the baud rate fR . This adjustment effectively reduces the
OFDM symbol duration (the inverse of the subcarrier spacing)
to shorter than the MLL pulse spacing (the inverse of the baud
rate), to leave time for the CP. The CP is automatically generated
because the duration of the impulse response of the filter equals
the MLL pulse spacing, so fills the entire time interval between
the MLL pulses (see reference [25] for a detailed discussion).
This CP is critical because it increases the tolerance to CD [7],
[13], [26] and reduces the required receiver bandwidth [19].

We use the advanced functionality of a LCoS-based WSS
to implement the OIFT and CP insertion. Multi-input (or out-
put) transfer function filters can be created by using the ability
for wavelength-dependent, programmable combination of light
from different ports with phase and attenuation control for each
input wavelength component [24]. Thus, by choosing the cor-
rect transfer-function, i.e. a sinc-shaped profile centred at differ-
ent frequencies for different input ports combined into a single
output, it is possible to implement the OIFT and CP insertion
simultaneously. A theoretical transfer function of such an OIFT
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Fig. 2. Ideal transfer function of an OIFT filter for combining four subcarriers:
solid colours—the attenuation profiles for the different inputs into the OIFT
filter, note that the attenuation profiles are plotted on an inverted scale for clarity
reasons; dotted black—Phase response for the yellow channel.

filter is shown in Fig. 2. The ability to simultaneously spectrally
shape and combine input paths avoids the intrinsic loss of us-
ing a star coupler in an FBG implementation. The WSS is also
readily reprogrammable, allowing greater flexibility than AW-
GRs. This enables good control over the frequency responses
(and therefore the impulse responses) for light from each input
port to the common port, tailoring the responses as required. In
particular this flexiblity means that the baudrate to the inputs
be varied at will, while the frequency (impulse) responses are
modified to track this change. In contrast, in other AO-OFDM
implementations this rate is fixed due to the inflexible photonic
structure of the OIFT filter. The Flexibility further allows each
input can be allocated to any output frequency, even a frequency
that is not a mode of the MLL. Therefore, subcarriers can be
inserted wherever there is room in the fiber’s spectrum. Also,
inputs can be to be multi-cast onto several frequencies. This is
especially useful when creating ultra-wide bandwidth test sig-
nals for loading prototype optical systems [27].

B. Digital Demultiplexer

All-optical demultiplexing of AO-OFDM subcarriers has
been previously demonstrated [7], [20], [22], [28], [29]. How-
ever, demultiplexing the individual AO-OFDM subcarriers all-
optically requires near-perfect CD compensation before the de-
multiplexer to avoid inter-symbol interference (ISI), which is
very difficult to implement optically for signals with terahertz
bandwidths [30]. Addtionally, the subcarrier frequencies of the
demultiplexer must exactly match those of the multiplexer on the
transmitter side. This would require trimming and perhaps active
control of the optical demultiplexer. We chose to perform the
demultiplexing partially using digital signal processing (DSP).
Fig. 3 shows the concept of our receiver. The super-channel is
first banded optically using an optical demultiplexer. Multiple
subcarriers (three in the figure) are electrically demultiplexed
and equalized with each coherent receiver using self-optimizing
digital equalizers. The self-optimizing equalizers improve sys-
tem performance by compensating for the exact CD in the

Fig. 3. Conceptual spectrum illustrating the banding at the receiver.

system before subcarrier demultiplexing [10] and by automati-
cally tuning to the center frequency of the subcarrier, which was
determined by the multiplexer at the transmitter [19].

In order to demultiplex OFDM digitally without ICI, the co-
herent receiver must capture a significant portion of the spectral
tails of all the subcarriers that are being demultiplexed (the
bandwidth requirements of receivers is discussed in more detail
in Section III). Therefore, each port of the optical demultiplexer
must be “strongly overlapping” with neighboring ports, to en-
able all subcarriers to be detected simultaneously with multi-
ple coherent receivers. This could be provided by using a star
coupler, feeding a bank of lower-bandwidth coherent receivers.
However, the power penalty would be proportional to the num-
ber of coherent receivers needed, thus this solution is not scal-
able. Our solution is to program the LCoS WSS to have output
ports with overlapping spectral bands; each frequency is output
to two output ports simultaneously. The power penalty associ-
ated with this design is 3 dB plus the loss of the LCoS WSS and is
scalable to the number of ports on the WSS. Each band of subcar-
riers is down-converted using a separate coherent receiver. The
CD is estimated and compensated using a frequency-domain
equalizer. A self-optimizing fractionally-spaced time-domain
equalizer (FS-TDE) is then used to simultaneously equalize
the polarization mode dispersion (PMD) and demultiplex the
individual subcarriers. Algorithms commonly used for single-
carrier systems, such as the constant modulus algorithm and
least-mean square algorithm, are all suitable for AO-OFDM
systems [19], [31]. For sensible CP lengths of 10–20%, around
four-times the Nyquist bandwidth is needed for single subcar-
rier demultiplexing without significant ICI. This implies that
to reduce ICI requires that either: (a) the receiver’s bandwidth
and sampling rate are increased, or (b), the duration of the CP
relative to the OFDM symbol is increased. To demultiplex an
additional subcarrier, the oversampling factor must be increased
by one; thus, an oversampling factor of five will support recep-
tion of two subcarriers, oversampling by six will support three
subcarriers, and so forth. Therefore, depending on the baud rate
of the subcarriers and the bandwidth and sampling rate of the
receiver, several subcarriers can be received simultaneously us-
ing the same receiver. Detecting multiple subcarriers is more
efficient as it allows the CD compensator to be shared between
multiple subcarriers, reducing the multiplications per bit asso-
ciated with CD compensation [10]. Additionally, signals with
a symbol rate of a few gigahertz are optimal in nonlinearity-
limited links [32]–[34]. Thus, sharing a moderate-bandwidth re-
ceiver and subsequent processing between a several subcarriers
spaced at a few-GHz is desirable in a nonlinearity-limited optical
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system and furthermore allows to re-use coherent receivers from
established 100 GE systems. Compared to receivers that demul-
tiplex OFDM using optical FTs [21], [28], we use the DSP for
demultiplexing, plus CD and PMD compensation.

III. IMPORTANCE OF CP

AO-OFDM both with [21], [28] and without CP [8], [35], [36]
has been experimentally demonstrated. However, in order to de-
multiplex an OFDM signal without ISI and ICI, an entire OFDM
symbol without symbol transitions must be captured by the de-
multiplexer, typically an optical Fourier transform [21], [23],
[37] or a digital finite impulse response (FIR) filter [19], [35].
Therefore, this theory implies that to demultiplex an OFDM
signal without any CP requires the entire OFDM channel to be
captured by the demultiplexer. Since AO-OFDM signals usu-
ally have much greater bandwidths than the coherent receiver,
digital demultiplexing of AO-OFDM signals without a CP is
impossible.

Experimental demonstrations of AO-OFDM have predomi-
nantly used ‘odd-and-even channels’ [7], [36], [38]. This method
involves generating two different data streams to make adjacent
channels different in an attempt to obtain an indication of ICI
in a realistic scenario, where all subcarriers carry different data.
However, recent experimental demonstrations have shown that
‘odd-and-even channels’ produce unrealistically good results,
especially in cases where no CP is used, because the adjacent
subcarriers produce the same interference [39], [40].

In order to produce results indicative of a installed system,
which would obviously carry different data on each subcarrier,
we have recently demonstrated AO-OFDM with four decorre-
lated subcarriers [8], [18]. In this system, the neighbors on either
side are different and therefore should estimate performance
accurately. These experiments suggested that using four-times
oversampling at the receiver was sufficient to demultiplex an
AO-OFDM super-channel without a CP [8], which is consistent
with previous observations [38]. However, numerical simula-
tion results of our system with independent data on all sub-
carriers were several dB worse than the experimental results,
suggesting that even four decorrelated subcarriers is insufficient
to generate realistic results. This finding suggests that numer-
ous experimental demonstrations performed using two or four
decorrelated subcarriers, including some of our own, would be
unrepeatable if all subcarriers contained independent data.

To systematically investigate this, three seven-subcarrier sys-
tems with different degrees of decorrelation between the sub-
carriers were simulated. Each system was simulated with no CP
and a 10% CP. The center subcarrier was detected with a co-
herent receiver followed by FIR filtering, which demultiplexed
and equalized the center subcarrier. The sampling rate of the
receiver was varied; the bandwidth of the receiver was set to
be the Nyquist bandwidth of the receiver’s sampling rate. The
system performance plotted against the oversampling ratio is
shown in Fig. 4.

Fig. 4 illustrates that systems without a CP produce near
perfect results if the oversampling ratio is equal or greater
than the number of decorrelated channels. This confirms the

Fig. 4. Q versus oversampling ratio for different amounts of decorrelation.

conclusion of [39] that AO-OFDM systems demonstrations can
produce unrealistic results. In addition, it shows that using four
decorrelated channels is still insufficient to accurately indicate
performance, and suggests that fully decorrelated subcarriers
are necessary. For perfect digital demultiplexing without any
CP, the entire AO-OFDM super-channel must be captured by
a single coherent receiver, which is unrealistic in most cases.
In contrast, if a 10% CP is added, the degree of decorrelation
becomes unimportant and the performance becomes dominated
by the sampling rate of the receiver. Therefore, using multiple
copies of a few decorrelated subcarriers is acceptable in labora-
tory demonstrations only if a CP is used.

IV. EXPERIMENTAL SETUP

Fig. 5 shows the experimental setup. A 10.0 GHz MLL,
locked to an external RF-clock, provides 2-ps pulses. The out-
put of the MLL is then amplified and spectrally broadened us-
ing self-phase modulation in 300 m of highly nonlinear fibre
(HNLF). A Finisar Waveshaper [41] selects and flattens 3 THz
of the spectrum and partly compensates for the spectral phase
accumulated inside the HNLF, compressing the pulses back to
about 2 ps. The pulses were then QPSK modulated by a complex
optical modulator (CMZM), driven with 2 × 10-Gb/s signals
from the two independent output ports of a bit-error rate tester.
A polarization multiplexed (PM) signal was generated with a
PM emulator with a 1-m delay together with a variable delay
line line, adjusted to exactly 50-symbols delay. The PM signal
was split into 4 paths; each path was decorrelated by an integer
number of symbols, using lengths of fibre differing by ∼2 m in
length, and then fed into the four inputs of a 4-port LCoS-based
WSS (Finisar). Each port k is programmed with a filter with a
transfer function given by:

Hk (f) =
N/2∑

j=−N/2

ij sinc
(

f − fk
0 − jMfR (1 + CP )

fR

)
(1)

Where N is the number of subcarriers, fR is the baud rate, CP
is the cyclic prefix fraction, M is the order of the discrete Fourier
transform (DFT) of the filter and fk

0 = f0 − kfR (1 + CP ) is
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(a) (b) (c)

Fig. 5. Experimental setup. ML: mode-locked, HNLF: highly nonlinear fibre, PRBS: pseudo-random bit sequence, I/Q: complex Mach–Zehnder modulator,
EDFA: Erbium-doped fibre amplifier, WSS: wavelength selective switch, OIFT: optical inverse Fourier transform, SPS: Finisar Waveshaper spectral pulse-shaper,
PDM: polarization multiplexing emulator.

(a) (b)

(c)

Fig. 6. (a)–(c) Measured optical spectra at the positions indicated in Fig. 5.

the center frequency of the kth port. Here we use values of N =
63, fR = 10 GHz, CP = 0.1 and M = 4. Therefore, every port
performs the equivalent of a 4-tap DFT with a 10% CP. The WSS
simultaneously filters and combines the four inputs to create a
2.8 THz wide optical OFDM super-channel of 252 subcarriers
carrying 10.08 Tb/s.

Fig. 6(a)–(c) show the optical spectrum of the broadened
but unflattened MLL spectrum, the spectrum of the modu-
lated pulses and the spectrum of the OFDM super-channel
respectively.

It should be noted that due to the limited number of input
ports on the WSS, the OIFT was programmed to perform the
equivalent of a 4-tap DFT function, i.e. every fourth channel
carries the same data. This technique is similar to interleaving
of odd and even channels employed by previous experiments;
however, it uses four decorrelated subcarriers. As shown in
Section III, the linear performance of systems with a CP
with two or four decorrelated subcarriers is identical to using

(b)

(a)

Fig. 7. Measured insertion loss of the OIFT filter ports (port 1: red, port 2:
yellow, port 3: green, port 4: blue) for the generation of the 252 channel, 10.2 Tb/s
OFDM superchannel. (a) Full spectrum, (b) Enlargement around 192.5 THz.

fully decorrelated subcarriers. Four decorrelated channels will
produce more indicative results than two decorrelated subcarri-
ers in the fiber nonlinearity limited region [39].

The transfer function of the WSS-based OIFT filter was mea-
sured using an optical vector analyser (Luna OVA 5000) and
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is depicted in Fig. 7(a) and (b) for the full signal band and a
400 GHz wide section of the signal band respectively.

After generation, the OFDM superchannel was amplified and
fed into an optical recirculating loop comprising a 69.2-km span
of SMF, one EDFA, a 73.7 km span, a second EDFA and then a
Waveshaper to compensate for the gain tilt of the non-flattened
EDFAs. To achieve a flat EDFA gain, some spectral compo-
nents had to be attenuated by up to 11 dB by the Waveshaper.
The signal was received after six recirculations, that is after
857.4 km. At the receiver, another 4-port WSS was used to split
the signal up into 66-GHz bands spaced 33 GHz apart; each
frequency was directed to two output ports to create the spectral
overlap required. A coherent receiver, with an external cavity
laser as a local oscillator, was used to down-convert the optical
signal and a 4 × 80 GS/s, 32 GHz real-time digital sampling
oscilloscope (DSO) digitized the signal for offline signal pro-
cessing. The signal was down-sampled to 60 GS/s before CD
compensation was performed. The subcarriers were then demul-
tiplexed using a 25-tap 1/6-spaced TD-equalizer (TDE) which
also compensated for polarization mode dispersion (PMD) and
residual CD. Using six-times oversampling allows three subcar-
riers to be demultiplexed simultaneously without penalty, after
shared CD compensation, giving a net oversampling ratio of
two-times. It should be noted that the 80 GS/s DSO enables up
to five subcarriers to be demultiplexed, further decreasing the
net oversampling ratio. However, in our system, the first and
fifth subcarriers carry the same data, which is frequency diver-
sity that would give a 3-dB sensitivity improvement relative to
independent data transmission, unrealistically improving per-
formance. To avoid gaining this advantage, we down-sampled
the data to 60 GS/s. The subcarriers were demultiplexed and
equalized using a FS-TDE. Each subcarrier was selected by ini-
tializing the taps to be matched to the desired subcarrier; no
pre-filtering was used. Finally, Viterbi-Viterbi phase recovery is
used for carrier phase recovery.

V. EXPERIMENTAL RESULTS

The Q-values of all subcarriers after 857.4 km transmission
are shown in Fig. 8(a). All subcarriers exhibit a Q > 8.8 dB,
which corresponds to the hard FEC limit of 3.0 × 10−3 . It is
evident that the subcarriers at the edge of the band are compro-
mised. While the subcarriers at the center of the band mostly
have Qs greater than 12 dB, the 5-10 outermost subcarriers at
either end of the superchannel have significantly lower Qs. This
can be attributed to the non-flat gain-shape of our EDFAs; the
gain provided by our EDFAs was much lower at the edges of
the OFDM signal compared with at the center of the signal,
reducing the OSNR at the edges. Fig. 8(b), shows the Q of
selected subcarriers as a function of transmission distance, se-
lected by setting the number of recirculations of the loop before
detection. The chosen subcarriers were the tenth in from either
edge and two middle subcarriers. All subcarriers are error free
even after nine recirculations corresponding to a propagation
of 1286 km. It is therefore safe to assume that the transmission
distance could be improved further by upgrading the experiment
with gain-flattened EDFAs.

(a)

(b)

Fig. 8. (a) Received Q for all subcarrier of the 10.2 Tb/s OFDM signal
after transmission over 857.4 km (blue circles) X-polarization, (red squares)
Y-polarization. (b) Q as a function of transmission distances for four subcar-
riers, two are at a position ten from the either edge of the superchannel (red
squares and blue circles), and two are from the middle of the signal band (green
diamonds and magenta triangles).

VI. CONCLUSION

We have demonstrated a reconfigurable optical OFDM mul-
tiplexer based on implementing an optical inverse Fourier trans-
form inside an LCoS-based WSS, thus performing the equiv-
alent operation as electronic OFDM signal generation in the
optical domain. Furthermore, our device is capable of generat-
ing a CP for ICI reduction all-optically. This technique enables
DAC-free generation of extremely broadband optical super-
channels in existing optical networks, which could increase both
transmission capacity and energy efficiency. Furthermore, be-
cause the subcarrier wavelengths are determined only by repro-
gramming the WSS, the channel bandwidth and wavelength can
be easily adjusted to respond to variable bandwidth demands
and the availability of unused spectrum. Our method therefore
greatly increases system flexibility and would be ideal for tech-
niques such as elastic networking.

We have experimentally demonstrated our transmitter by cre-
ating a 10.08-Tb/s AO-OFDM signal with a 10% CP using
a single MLL and WSS. We avoided obtaining an unfair ad-
vantage from having correlated channels by using four decor-
related channels and a CP. At the receiver end, another WSS
was programmed to be an overlapping demultiplexer, which
enables all subcarriers to be simultaneously equalized and de-
multiplexed at a net oversampling ratio of two. All subcarriers
of the 252 × 40-Gbps super-channel were above the hard FEC
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limit of 3.0 × 10−3 after 857.4 km transmission. The spectral
efficiency was 3.6 bits/s/Hz (not accounting for FEC).
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