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Analytical Characterization of SOA-Based
Optical Pulse Delay Discriminator
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Abstract—Semiconductor optical amplifier (SOA)-based optical
timing extraction and clock-recovery schemes offer compact size,
low operating power, and added possibility for integration into
an all-optical circuitry. In this paper, we analyze a device that
could measure the relative delay between counterpropagating
pulses incident on an SOA. Unlike previous designs based on
differential photodiodes, our optical pulse delay discriminator
(OPDD) uses the voltage difference between two contacts on the
SOA. We therefore eliminate the two photodiodes and two optical
couplers, making integration far easier. After giving a qualitative
description of the operation of the proposed design, we carry
out a comprehensive analytical analysis of the operation of the
device performance. At each stage, we demonstrate the accuracy
of the derived approximate formulas. An analytical expression
for the transient response of OPDD shows it to be exponential
with a time constant set by the carrier-recovery lifetime. We show
that it is possible to reliably measure the incident delay between
counterpropagating, periodic pulse trains by measuring the mean
value (or low-pass-filtered value) of the induced voltage difference.
Our analysis shows the OPDD has excellent linearity.

Index Terms—Clock recovery, integrated optoelectronic cir-
cuits, photonic circuits, semiconductor optical amplifiers (SOAs).

I. INTRODUCTION

THE comparison of phase and timing of modulated optical
waveforms is critical to the design of all-optical clocks

using phase-locked loops [1]. Optical timing extraction and
clock recovery [2]–[5] play a significant role in applications
such as demultiplexing [6] and 3R (reamplification, reshaping,
and retiming) regeneration [7], [8]. Semiconductor optical am-
plifier (SOA)-based schemes ([2], [4], [7]) have attracted much
interest because of their compact size, low operating power,
and added possibility for integration into an all-optical circuitry.
The operation principles rely on nonlinear gain saturation and
cross-gain modulation. [7], [9], [10].

Short picosecond pulse propagation in SOAs has been widely
studied for applications in optical communications systems
[9], [10]. Even though the main motive for such studies was to
investigate the amplification properties of SOAs, it is clear that
SOAs play a major role in optical signal processing [11], [12].
The effectiveness of SOAs in all-optical integrated circuitry
results from their high-gain coefficients and low saturation
power [9], [10].

In 2002, Awad et al. [7] demonstrated that by simply com-
paring the time-averaged output powers at the ends of an SOA,
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it is possible to measure the relative delay between pulses.
Awad et al. [7] used couplers and photodiodes to detect the
powers of the counterpropagating waves exiting the SOA as
shown in Fig. 1. The photocurrents are fed into a low-speed
differential amplifier to obtain a signal proportional to the
relative timing of the pulses.

In this paper, we use the detection properties of an SOA’s
contact voltage [15], [16] to measure the relative delay between
two pulse trains. This again relies on cross-gain modulation,
but in our device, the longitudinal dependence of the gain also
becomes important. The difference in the contact voltages at
the ends of the SOA indicates which pulse traverses the SOA
first. This is because the first pulse will receive the most gain,
substantially reducing the carrier density by gain saturation at
the end from which it exits. The second pulse will receive less
gain, and so will reduce the carrier density at the end from
which it exits. The contact voltages are dependent on the local
carrier density, and therefore indicate which pulse was first.
Furthermore, because the gain recovers between the pulses,
closely spaced pulses will cause a greater voltage difference.

This scheme was proposed and tested numerically in [4]; this
paper develops expressions to confirm the simulations. These
expressions give fresh insight into the operation of the optical
pulse delay discriminator (OPDD). In Section II, we derive
approximate expressions for the longitudinal carrier-density
profile evolution and the related optical-gain response for three
different cases of interest: Section II-A derives the response to
a single pulse; Section II-B covers two identical counterprop-
agating pulses; and Section II-C extends the derivation to two
counterpropagating periodic pulse trains. In each of these cases,
we demonstrate the accuracy and validity of the derivations
using numerical calculations. In Section III, we introduce quan-
titative expressions to compare the OPDD scheme and Awad’s
scheme. In Section III-A, we derive explicit expressions for
the transient response and show that it is exponential with a
time constant given by the carrier-recovery lifetime of SOAs.
In Section III-B, we demonstrate the linearity of the OPDD and
derive an approximate analytical expression to characterize the
linear region. Based on these observations, we give guidelines
for designing OPDDs in Section IV. We conclude this paper
in Section V.

II. APPROXIMATE ANALYTICAL CHARACTERIZATION

OF RESPONSE OF SOA TO SHORT PULSES

In this section, we develop approximate analytical results to
characterize the response of SOA when it is fed by a single short
optical pulse, two identical counterpropagating pulses, and two
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Fig. 1. Schematic diagram of the proposed pulse delay discriminator based on Lowery et al. [4] and the photocurrent-difference-based pulse discriminator of
Awad et al. [7].

counterpropagating identical optical pulse trains. To make the
system analytically tractable, we limit our analysis to a three-
section device with very short end contacts, subject to pulses
significantly narrower than the carrier-recovery lifetime.

A. Response to a Single Short Pulse

Suppose HTw
(t) is the intensity profile of an optical pulse

with arbitrary shape but with a full-width at half-maximum
(FWHM) of Tw and energy Eg . The latter assumption implies

Eg = A

+∞∫
−∞

HTw
(t)dt (1)

where A is the cross-sectional area of the SOA active region.
We also assume that the carrier lifetime τe of the semiconductor
medium is much greater than the FWHM of the optical pulse
(i.e., τe � Tw). The dynamic response of the SOA is given by
[9], [13]

∂

∂z
I(z, t) +

1
vg

∂

∂t
I(z, t) = g(z, t)I(z, t) − αI(z, t) (2)

∂

∂t
N(z, t) =℘(z) − N(z, t)

τe
− g(z, t)

λI(z, t)
hc

(3)

where t is time, z is distance along the SOA measured from
the left facet, I(z, t) is the intensity of the optical signal along
the SOA, N(z, t) is the carrier density along the SOA, α is the
loss coefficient, Γ is the mode confinement factor, a is the
differential gain coefficient, g(z, t) = Γa(N(z, t) − N0), ℘(z)
is the current-injection density along the SOA, λ is the mean op-
erating wavelength, c is the speed of light in vacuum, and h is
the Plank’s constant. To make subsequent analysis easier, we
change our analysis reference frame to a moving coordinate
system that moves with the forward-propagating pulse

ξ = z; τ = t − z

vg
. (4)

These transformations give the following two differential oper-
ators for time and spatial partial derivatives

∂

∂z
=

∂

∂ξ
− 1

vg

∂

∂τ
;

∂

∂t
=

∂

∂τ
. (5)

Substitution of (4) and (5) into (2) and (3) result in the following
coordinate-transformed equations:

∂

∂ξ
I(ξ, τ) = g(ξ, τ)I(ξ, τ) − αI(ξ, τ) (6)

∂

∂τ
N(ξ, τ) =℘(ξ) − N(ξ, τ)

τe
− g(ξ, τ)

λI(ξ, τ)
hc

. (7)

To solve these equations when an intense short pulse is input
to the SOA, we use the approach suggested by Siegman [14].
In his analysis of two-level amplifying systems, he used the
assumption that the stimulated-emission-induced carrier deple-
tion due to a short pulse (i.e., a pulse with FWHM pulsewidth
much smaller than carrier lifetime) can be considered instanta-
neous. Just after the stimulated emission-induced carrier deple-
tion, carriers will replenish themselves to the initial steady-state
population through carrier injection, with a carrier-recovery
lifetime τ . Applying this idea to an SOA, during the stimulated
emission process, we derive from (7)

∂

∂τ
g(ξ, τ) = −g(ξ, τ)

ΓλaI(ξ, τ)
hc

. (8)

Similar to the analysis of SOAs by Agrawal et al. [9], we try
to construct a differential equation for the modal gain evolu-
tion along the amplifier. However, unlike the analysis in [9],
we do not assume that the attenuation coefficient of an SOA
is negligible. Therefore, our analysis is more general than
previous results.

We can solve (6) to get the following exact solution:

I(ξ, τ) = HTw
(τ)G(ξ, τ) (9)

where the total gain G(ξ, τ) along the amplifier is given by

G(ξ, τ) = exp


−αξ +

ξ∫
0

g(ξ, τ)dξ


 . (10)
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It is easy show from (10) that

1
G(ξ, τ)

∂

∂τ
G(ξ, τ) =

∂

∂τ

ξ∫
0

g(ξ, τ)dξ. (11)

We now integrate (8) with respect to ξ and substitute (11) to get

1
G(ξ, τ)

∂

∂τ
G(ξ, τ) = −Γλa

hc

ξ∫
0

g(ξ, τ)I(ξ, τ)dξ (12)

after substituting (6) and (9) into (12), we get

∂

∂τ
ln (G(ξ, τ)) = −Γλa

hc
HTw

(τ) (G(ξ, τ) − 1)

−Γλa

hc
α

ξ∫
0

I(ξ, τ)dξ. (13)

To evaluate the integral of the intensity along the SOA [see last
term in (13)], momentarily we make the assumption (which will
be relaxed later) that the differential gain is uniform along the
SOA. This amounts to assuming that there exists a uniform gain
coefficient ḡ such that G(ξ, τ) ≈ exp(ḡξ − αξ). Therefore,
using (9) we get

ξ∫
0

I(ξ, τ)dξ ≈ HTw
(τ)

ḡ − α
(G(ξ, τ) − 1) . (14)

Substituting (14) into (13), we get

∂

∂τ
ln (G(ξ, τ)) = −ΓλaḡHTw

(τ)
hc(ḡ − α)

(G(ξ, τ) − 1) . (15)

After some algebraic manipulations, (15) becomes

∂

∂τ
ln

(
G(ξ, τ)

G(ξ, τ) − 1

)
=

Γλaḡ

hc(ḡ − α)
HTw

(τ) (16)

performing integration with respect to τ and labeling gain just
before pulse arrival as Ginit and just after its influence on stimu-
lated emission as Gfinal, we get

Gfinal(ξ) =
Ginit(ξ)

Ginit + Ginit(ξ)(1 − Ginit)
(17)

where we used following definition for Ginit:

Ginit = exp
(
− ΓλaḡEg

hc(ḡ − α)A

)
. (18)

Our main interest is to calculate the carrier density N(ξ, τ)
along the SOA. From (10), we write the carrier-density distri-
bution due to Gfinal as

ξ∫
0

Nfinal(ξ)dξ =
1
Γa

ln (Gfinal(ξ)) +
α

Γa
ξ + N0ξ. (19)

Differentiating (19) with respect to ξ and using (17), the de-
pleted carrier density Nfinal(ξ) corresponding to Gfinal(ξ) can
be written as

Nfinal(ξ) ≈ Ninit(ξ) −
(
Ninit(ξ) − N0 − α

Γa

)
(1 − Ginit)

1 − Ginit + Ginit
Ginit(ξ)

(20)

where Ninit(ξ) is the initial carrier density along the SOA
before the arrival of the optical pulse.

Now, we switch back to the laboratory coordinate system for
convenience. It is interesting to note that because ξ = z, (20) is
invariant in this original coordinate system. Referring back to
our reasoning at the beginning of this section, once the carrier
depletion has taken place, carriers in the SOA will replenish
by injection, at a rate governed by the carrier-recovery lifetime.
Thus, from (3) we get

∂

∂t
N(z, t) = ℘(z) − N(z, t)

τe
. (21)

Solving this equation with the initial conditions N(z, 0) =
Nfinal(z) gives

N(z, t) = τe℘(z) + Nfinal(z) exp
(
− t

τe

)

−τe℘(z) exp
(
− t

τe

)
. (22)

This shows that the depleted carrier density replenishes with a
time constant τe [the first two terms in the right-hand side of
(22)]. Also of interest is the evolution of modal gain given in
(10). Substituting (22) into (10), we get

G(z, t) = exp


Γaτe

z∫
0

℘(z)dz

(
1 − exp

(
− t

τe

))


× exp


−αz + Γa

z∫
0

Nfinaldz exp
(
− t

τe

)
− ΓaN0z


. (23)

This equation can be written in the following compact form
using the instantaneously depleted gain Gfinal

G(z, t) = Gref(z)
(

Gfinal(z)
Gref(z)

)exp(−t
τe

)
(24)

where

Gref(z) = exp


Γa


τe

z∫
0

℘(z)dz − N0z





 . (25)

To demonstrate the accuracy of the results derived so far, we
use numerical simulations with the parameter values given in
Table I. The numerical solutions in this and subsequent sections
were calculated by directly numerically integrating the coupled
(2) and (3) in MATLAB. Fig. 2 shows the carrier density N
against position z at elapsed times of a) 0.0, b) 100.0 ps, and
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TABLE I
PARAMETERS USED IN SIMULATIONS

Fig. 2. Carrier density N against SOA position z: a) 0.0; b) 100.0; and
c) 500.0 ps after pulse exit.

c) 500.0 ps, after a Gaussian pulse with 5.0-ps FWHM and
25.0-fJ energy has passed completely through the SOA. The
dashed lines show the numerical simulation results, and the
solid lines show the analytical solution of (22). Fig. 2 clearly
shows that (22) is a very good approximation for representing
dynamic carrier-density profile.

B. Response to Two Counterpropagating Identical Pulses

Consider two counterpropagating pulses with identical pulse
profiles, both similar to the pulse considered in the previous
section. Suppose the first pulse enters SOA from the left and,
after τ seconds, the second pulse enters SOA from the right as
shown in Fig. 3. We also assume that before the arrival of the
first pulse, the SOA is in its steady state with carrier-density and
gain profiles (see Fig. 3), as follows:

Ninit,1(z) = τe℘(z) (26)

Ginit,1(z) = exp


−αz + Γa

z∫
0

(τe℘(z) − N0) dz


 . (27)

Fig. 3. Carrier-density evolution response (at an arbitrary position along the
SOA) against time for two counterpropagating identical pulses with relative
delay τ .

When the first pulse enters from the left, the carrier density
evolves as (22), so

N1(z, t) = τe℘(z) + Nfinal,1(z) exp
(
− t

τe

)

− τe℘(z) exp
(
− t

τe

)
(28)

G1(z) = Gref(z, t)
(

Gfinal,1(z)
Gref(z)

)exp(−t
τe

)
(29)

where from (20) and (18)

Nfinal,1(z) =Ninit,1(z)

−
(
Ninit,1(z) − N0 − α

Γa

)
(1 − Ginit,1)

1 − Ginit,1 + Ginit,1
Ginit,1(z)

(30)

Gfinal,1(z) = exp


−αz + Γa

z∫
0

(Nfinal,1(z) − N0) dz



(31)

Ginit,1 = exp


−

λḡEg

hcA∫ L

0
τe℘(z)dz

L − N0 − α
Γa


 . (32)

Momentarily, just before the second pulse enters SOA at t = τ
from the right, the carrier density and gain are Ninit,2(z) = N1

(z, τ) and Ginit,2(z) = G1(z, τ), respectively. The incidence of
the second pulse depletes this recovered carrier density, giving

Nfinal,2(z) =Ninit,2(z)

−
(
Ninit,2(z) − N0 − α

Γa

)
(1 − Ginit,2)

1 − Ginit,2 + Ginit,2
Ginit,2(L−z)

(33)

Gfinal,2(z) = exp


−αz + Γa

z∫
0

(Nfinal,2(z) − N0) dz



(34)
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Fig. 4. Carrier density N = {N1} ∪ {N2}, against position z, 100 ps after
first pulse. Curve a shows the case where two counterpropagating pulses with
12.5-ps FWHM and 12.5-fJ energy are incident with a delay of 75 ps. Curve
b shows two counterpropagating pulses with 5.0-ps FWHM and 25-fJ energy
with a delay of 5 ps.

Ginit,2 = exp


−

λḡEg

hcA∫ L

0
Ninit,2(z)dz

L − N0 − α
Γa


 . (35)

Thereafter, the carrier density and the gain replenish at a carrier-
recovery rate, giving

N2(z, t) = τe℘(z) + Nfinal,2(z) exp
(
− t − τ

τe

)

− τe℘(z) exp
(
− t − τ

τe

)
(36)

G2(z, t) =Gref(z)
(

Gfinal,2(z)
Gref(z)

)exp
(

−(t−τ)
τe

)
. (37)

To demonstrate the accuracy of the results derived in this
section, we again use MATLAB simulations. Fig. 4 shows the
carrier density N = {N1} ∪ {N2} against position z, 100 ps
after the first pulse. The dashed lines (- -) show the numerical
simulation results, whereas solid lines (—) show the analytical
solution given by (28) and (36). It is clear from Fig. 4 that
regardless of pulsewidth or the delay, expressions (28) and (36)
give very good predictions of the carrier-density profiles along
the SOA and its time evolution.

C. Response to Counterpropagating Identical Pulse Trains

In practice, the OPDD will be used for characterizing relative
delay between pulses in counterpropagating pulse trains rather
than for isolated pulses. The SOA response for pulse trains
can be found by repeatedly applying the previous results for
forward-propagating pulses and backward-propagating pulses.
However, a much simpler result can be obtained by noting that
the gain, and hence, carrier density are periodic. Suppose the

gain of the SOA just before the incidence of a pulse from the
left facet is GL. Suppose τ seconds after this pulse entered
from the left, an identical pulse enters from the right. Assume
that the gain of the SOA is GR, just momentarily before the
incidence of the pulse from the right. Due to the periodicity of
the counterpropagating pulse train, these values will be seen at
TP seconds later where TP is the period of the pulse trains.
From (17), (18), and (24), we can write the following two
expressions relating GL and GR:

GR =Gref

(
GL

Gref

GL − (GL − 1)Ginit(GL)

)exp(− τ
τe

)
(38)

GL =Gref

(
GR

Gref

GR − (GR − 1)Ginit(GR)

)exp
(
−TP −τ

τe

)
(39)

where Gref and Ginit(G) are given by [cf., (18) and (25)]

Gref = exp


Γa


τe

L∫
0

℘(z)dz − N0L





 (40)

Ginit(G) = exp
(
−ΓλaEg

hcA
− ΓλaEgαL

hcA ln(G)

)
. (41)

Once the values for GL and GR are found by simultaneously
solving the transcendental (38) and (39), we can calculate the
time evolution of gain (and hence, the carrier-density profile)
using (24) and (22). The results derived in this section will be
used again in Section III-B for calculating the sensitivity of the
mean voltage difference to pulse delay.

III. OPDD PERFORMANCE

From the simple explanation given in Section I, it is unclear
whether the proposed device will exhibit sufficient linearity,
sensitivity, and speed to be useful or will be better than the
photodiode design by Awad et al. [7].

In this section, to simplify the analysis, two identical short
pulses are injected into opposite ends of the SOA, so that
they counterpropagate as in Section II-B. We use the following
simple model of heterostructure junction voltage V with carrier
density N ignoring resistive voltage drops (which will be
identical if the injection is homogeneous) [15], [17], as follows:

V = η

(
kT

q

)
ln

(
N

Ni

)
(42)

where η is the heterostructure ideality factor, k is Boltzmann’s
constant, T is the junction temperature, q is the electronic
charge, and Ni is the intrinsic carrier density [18]. Using
(42), and the results in Section II, we can write the following
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expression for the voltage difference ∆V (t) between the end
electrodes:

∆V (t) =




η kT
q ln

(
Ninit,1(L)
Ninit,1(0)

)
, t < 0 (before first pulse)

η kT
q ln

(
N1(L,t)
N1(0,t)

)
, 0 ≤ t ≤ τ (between pulses)

η kT
q ln

(
N2(L,t)
N2(0,t)

)
, τ < t (after second pulse)

(43)

where Ninit,1, N1, and N2 refer to the carrier densities at
different stages (i.e., before first pulse, between pulses, and
after second pulse) as depicted in Fig. 3. Detailed expressions
for each of the above carrier-density variables at different stages
of the depletion recovery process were given in Section II-B.

A. Transient Response

To derive the transient response, we consider two counter-
propagating pulses with identical pulse profiles similar to the
pulses considered in the previous section (refer to Fig. 3).
Suppose the first pulse enters SOA from the left and after
τ seconds, the second pulse enters from the right. We also
assume that before the arrival of the first pulse, the SOA is in
a steady state with its carrier-density and gain profiles as given
in Section II-B. After rearranging the terms of N1(z, t) in (28),
we get

N1(z, t) = Nss(z) − ∆N1(z) exp
(
− t

τe

)
(44)

where Nss(z)=Ninit,1(z) and ∆N1(z)=Nss(z)−Nfinal,1(z).
Similarly, N2(z, t) of (36) can be written as

N2(z, t) = Nss(z) − ∆N2(z) exp
(
− t − τ

τe

)
(45)

where ∆N2(z) = Nss(z) − Nfinal,2(z). Substitution of (44)
and (45) to (43) and using the relation ln(1 + x) ≈ x for small
x (i.e., x � 1) gives the time evolution of the voltage difference
between the end electrodes, as follows:

∆V (t) =




Vss, t < 0
Vss − ∆V1 exp

(
− t

τe

)
, 0 ≤ t ≤ τ

Vss − ∆V2 exp
(
− t−τ

τe

)
, τ < t

(46)

where Vss =(ηkT/q)ln(Nss(L)/Nss(0)), ∆V1 =ηkT∆N1(L)/
qNss(L), and ∆V2 = ηkT∆N2(L)/qNss(L) − ηkT∆N2(0)/
qNss(0). Equation (46) clearly shows that the time response is
exponential decay with the time constant set by the semicon-
ductor carrier lifetime τe. Note, however, that if the higher order
recombination mechanisms such as Auger [19] and bimolecular
recombination [19] are included in (3), this lifetime should be
replaced by the differential carrier-recovery lifetime [20]–[22].
It also is interesting to note that at uniform current injection,
steady-state voltage difference Vss becomes zero in (46). This
behavior is expected because at uniform injection, at steady
state, carrier density at either end of the SOA has equal values.

Fig. 5. Mean output (voltage or current) versus delay between the pulses for
two different uniform injection rates: a) ℘=1.0567×1034 s−1 · m−3 and
b) ℘ = 9.5768 × 1033 s−1 · m−3. Two counterpropagating Gaussian pulse
trains with 100-ps periods and FWHM value of 12.5 ps and energy of 15.0 fJ
were used.

B. Linearity

The linearity of the output versus time delay is important if
the device is to be used over a wide range of delays, rather than
as a part of a delay-locked loop that locks to a single value of
delay. To measure the linearity, the delay of the forward pulses
was swept and the mean output of the contacts and the pho-
todiodes calculated. We used the parameters in Table I, with
10-GHz 12.5-ps FWHM 15.0-fJ Gaussian pulse trains. Fig. 5
shows the mean output versus delay between the pulses for
two uniform injection rates: a) ℘ = 1.0567 × 1034s−1m−3 and
b) ℘ = 9.5768 × 1033s−1m−3. The solid lines in Fig. 5 repre-
sent the contact voltage values, and the dashed lines represent
Awad’s scheme under identical conditions. The 50-ps delay cor-
responds to the forward pulses lying in between the backward
pulses. The best linearity is obtained around this point. Both
schemes show similarly good linearity. Note that for photodi-
odes, a responsively of 1 A/W is assumed, with perfect coupling
from the SOA to the photodiodes. Use of 50% couplers would
reduce this current by 50%, and coupling losses to the facet
would introduce at least another 3-dB loss from the SOA to
the coupler. The input signal would also be attenuated by the
coupler and the facet coupling loss. Fig. 5 also shows that
sensitivity of both schemes improve for high injection (and
hence, high gain). This is mainly due to the extra amplification
provided by the center section of the SOA. However, sensitivity
improvement with gain will diminish with high input powers
because, for high input powers, the center section becomes gain
saturated, giving little benefit of high gain [4]. Usefully, because
of the gain saturation, long center contacts give a sensitivity
(volts per unit delay) independent of input power [4].

To investigate the influence of pulse energy on sensitivity
(i.e., the slope of the linear section in Fig. 5), the delay of the
forward pulses was swept for input pulse energies of a) 15.0 fJ
and b) 30.0 fJ, and the mean output of the contacts was calcu-
lated. In both cases, we used SOA data in Table I with 10-GHz



2784 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 9, SEPTEMBER 2005

12.5-ps Gaussian pulse trains. Fig. 5 shows the mean output
voltage versus delay between the pulses for a) 15.0 fJ and
b) 30.0 fJ. As expected, it shows the sensitivity increases with
pulse energy.

It is useful to have a simple expression for the sensitivity
(mean voltage difference per unit delay) of the contact voltage
scheme in the linear region. Because spontaneous recombina-
tion is reduced, the energy of a pulse increases most if the
amplifier is driven into saturation. Using (9) and (10), the
energy gain can be written as [9]

GE =

+∞∫
−∞

HTw
(τ)

Eg
exp


−αL +

L∫
0

g(ξ, τ)dξ


 dτ (47)

and after evaluating the integral using (16), we obtain

GE =
ln

(
Ginit−1
Gfinal−1

)
ln

(
Ginit−1
Gfinal−1

)
− ln

(
Ginit
Gfinal

) (48)

where Ginit is the SOA gain just before the arrival of the pulse,
and Gfinal is the SOA gain just after the pulse exits and is
given by (17). Now, for the counterpropagating periodic pulse
trains considered in Section II-C, using (48), we can obtain
the energy gains GEL and GER for the left and right incident
pulses, respectively:

GEL =
ln

(
GL−1
GLf−1

)
ln

(
GL−1
GLf−1

)
− ln

(
GL

GLf

) (49)

GER =
ln

(
GR−1
GRf−1

)
ln

(
GR−1
GRf−1

)
− ln

(
GR

GRf

) (50)

where the final gains GLf and GRf can be written using (17),
(38) and (39) as

GLf =
GL

Gref

GL − (GL − 1)Ginit(GL)
(51)

GRf =
GR

Gref

GR − (GR − 1)Ginit(GR)
. (52)

Now, consider the carrier-density change ∆N due to a pulse
passing below an electrode. Using the carrier-density evolution
expression (22), with input pulse shape (9), and noting the
periodicity TP of the pulse trains, we can find an approximate
expression for the time evolution of ∆N (see also [15]), as
follows:

∆N

N

∣∣∣∣
t

≈ TP

Eg
δρ(Eg)T (Eg, TP )GEHTw

(t) (53)

where the constants (with respect to delay τ ) δρ(Eg) and
T (Eg, TP ) are given by

δρ(Eg) =
(

℘τe − N0

℘τe − α
Γa

)
exp

(
− Eg

Esat
GE0

)
(54)

T (Eg, TP ) =
τeEg

TP Esat
exp

(
−TP

τe

)
. (55)

The saturation energy Esat is given by [9]

Esat =
hcA

λΓa
. (56)

The energy gain GE0 of a single pulse when the SOA is
initially in a steady state is given by [see (48)]

GE0 =
ln

(
G0−1
Gf0−1

)
ln

(
G0−1
Gf0−1

)
− ln

(
G0
Gf0

) (57)

where G0 = exp(Γaτe℘L − αL) and Gf0 given by [see (41)
and (51)]

Gf0 =
G0

Gref

G0 − (G0 − 1)Ginit(G0)
. (58)

It is interesting to note that the energy gain GE0 is for an
SOA fed with a single optical pulse and, hence, fundamentally
different from other two energy gain values GEL and GER

where the SOA is fed with identical counterpropagating
periodic pulse trains. Applying expression (53) to each
electrode and using (42), noting ln(1 + x) ≈ x for small x
(i.e., x � 1), then time averaging (53), we write the following
expression for the mean detected voltage ∆Vm:

∆Vm = η
kT

q
δρ(Eg)T (Eg, TP )(GER − GEL). (59)

Equation (59) is a very simple expression giving the slope of
the sensitivity of the mean contact voltage difference relative to
delay τ . It shows that mean voltage difference is proportional
to the energy gain difference of counterpropagating pulses

∆Vm ∝ GER − GEL. (60)

Fig. 6 plots (59) against incident delay for SOA data given in
Table I. Solid lines (—) show the curves generated by detailed
calculations whereas dotted–solid lines (− • − • −) show the
results generated by (59). Fig. 7 shows the mean output voltage
difference versus delay between the pulses for two different
input pulse energies. The exact matches confirm the accuracy
of (59).

However, it is important to look at the validity region of
(59). As our main focus was to obtain an analytical expression,
to reduce the complexity of the expression, and to make the
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Fig. 6. Mean detected voltage difference against incident delay. Curve a is
from curve b of Fig. 5, curve b is from curve a of Fig. 5, and curve c is from
curve b of Fig. 7.

Fig. 7. Mean output voltage difference versus delay between the pulses for
two different input pulse energies: a) 15.0 and b) 30.0 fJ. Two counterpropagat-
ing 10-GHz 12.5-ps Gaussian pulse trains were used.

problem tractable, we omitted some important parameters in
the formulation given in (2) and (3). Some of these omitted
parameters include the nonlinear gain-compression factor due
to carrier heating, spectral hole burning and two-photon absorp-
tion processes [10], the Bimolecular recombination [19], and
Auger processes [19]. Therefore, (59) will become inaccurate
for pulses with higher energy. Fig. 8 shows the mean detected
voltage difference against incident delay. Also, at higher pulse
energies, the linearity seen in the femtojoule pulses seems not
to hold. However, this does not limit the usability of the OPDD
because input pulse energies can be regulated using external
attenuators.

Also, in our analytical work, we ignore the effects of
amplified spontaneous emission (ASE) noise. Therefore, it is
essential to look at how this affects our analysis because ASE
cannot be avoided in a real system. We used a commercially

Fig. 8. Mean detected voltage difference against incident delay. Solid lines
(—) show the curves generated by detailed calculations for a Gaussian pulse
train with 12.5-ps FWHM and energy of 15 pJ. The dotted–solid lines
(− • − • −) show the results generated by (59) for the same pulse train. This
result clearly demonstrates that the simple formula (59) fails for high-energy
(around picojoule) pulses.

Fig. 9. Mean detected voltage difference against incident delay when ASE
is present. The solid line (—) shows curve a of Fig. 5, whereas circles (◦),
diamonds (�), and crosses (×) represent the mean differential voltage when
the spontaneous-emission coupling factor is equal to β = 1.0 × 10−6, β =
1.0 × 10−5, and β = 1.0 × 10−4, respectively.

available simulator VPIcomponentMaker Active Photonics for
detailed analysis including ASE noise.1 Some details about this
simulation can be found in [4]. The numerical algorithm used in
the simulation program in principle is similar to [23]–[25], and
hence, no further details about the implementation are given
here. Fig. 9 shows the ASE impact on the differential-voltage
curve a of Fig. 5. The ASE had a noise-equivalent bandwidth of
20.6 nm. The solid line (—) on Fig. 9 shows curve a of Fig. 5,
whereas circles (◦), diamonds (	), and crosses (×) represent

1The authors played a key role in developing VPIcomponentMaker Active
Photonics software at VPIsystems: www.vpisystems.com



2786 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 9, SEPTEMBER 2005

Fig. 10. Histogram (Counts against Differential Voltage) for the differential
voltage for delay τ = 25 ps for curve a of Fig. 5 with a spontaneous-emission
coupling factor equal to β = 1.0 × 10−5.

the mean differential voltages when the spontaneous-emission
coupling factor is equal to β = 1.0 × 10−6, β = 1.0 × 10−5,
and β = 1.0 × 10−4, respectively. This figure clearly shows
that when ASE noise is very small, our analysis provides a
very good representation of the device behavior. However, if
ASE noise is high (i.e., corresponding to β = 1.0 × 10−4), the
sensitivity decreases, and the accuracy is reduced.

To closely look at the impact of ASE on detected differential
voltage, we plotted the histogram in Fig. 10 for a pulse delay
τ = 25 ps for two counterpropagating identical pulse trains
with 100-ps periods, 15-fJ pulse energies, and FWHMs of
12.5 ps. The solid curve in Fig. 10 shows the best fitting
Gaussian with a mean = −291.0 µV (compared with 315.5 µV
without noise, an 8% decrease) and a standard deviation =
20.4 µV. It is clear from this figure that the effect of ASE on
detected differential voltage can be approximated using a
Gaussian profile and that averaging would reduce the uncer-
tainty. The change in sensitivity could be calibrated out.

IV. DESIGN GUIDELINES

The analysis in the previous section shows that increasing
the sensitivity of OPDD, while having a large linear region,
requires the following conditions.

• For a high sensitivity, the steady-state gain should be high,
to give a large energy gain difference GEL − GER of (59).
ASE will limit the maximum steady-state gain.

• The OPDD’s response is an odd function of the delay
τ and shows linear behavior around TP /2. The linearity
region around this point is bounded from either side by a
value that is dependent on the pulsewidth. Hence, it is
better to use short pulses if the range of delays is to be
large.

• High pulse energies will destroy the linearity of the
scheme.

• The linearity also depends on the relatively long carrier-
recovery lifetime (compared with the pulse period). There-
fore, the period of the pulse train must be significantly less
than the carrier-recovery lifetime.

• Even though we used point electrodes at the ends to
simplify the analysis, it is better to use electrodes with
some length because it will reduce the contact impedance.

• The transient response of the device is exponential with
a time constant set by the carrier-recovery lifetime τe.
Therefore, the system bandwidth must be set much below
this value.

• ASE will affect the sensitivity and certainty of the de-
vice response. Hence, consideration must be given to
choosing an SOA with low noise performance, and the
gain must kept within reasonable limits (i.e., maximum
around 20 dB) for best linear performance. Averaging
will reduce the uncertainty at the expense of measurement
bandwidth.

V. CONCLUSION

We have analyzed a pulse delay discriminator utilizing a
combination of cross-gain modulation, finite recovery time, and
photodetection in SOAs. Unlike previous discriminator designs
based on differential photodiodes [7], our optical pulse delay
discriminator (OPDD), eliminates the photodiodes and two
optical couplers. Therefore, the proposed method in this paper
is better suited to optoelectronic integration.

We carried out a comprehensive analytical analysis of the
operation of the device performance. At each stage, we demon-
strated the accuracy of the derived approximate formulas for
characterizing the OPDD. Analytical expressions for the tran-
sient response of OPDD were derived to demonstrate that the
response is exponential with a time constant set by the carrier-
recovery lifetime. We showed that it is possible to reliably mea-
sure the incident delay between counterpropagating periodic
pulse trains by measuring the mean value of the induced voltage
difference. Analytical and numerical evidences were provided
to establish the linearity of measured mean voltage difference
of contact electrodes and pulse delay.
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