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Abstract We present a non-data-aided recursive digital phase recovery algorithm for mQAM optical
systems, which uses a priori information about the laser phase noise, and has very low computational
complexity. Experimental validation shows extremely high robustness against cycle-slips.

Introduction

Modern coherent optical systems employ digital-
domain phase noise compensation. For the
16QAM modulation format, the blind phase
search (BPS) algorithm, proposed in' has be-
come a reference due to its all-feedforward hard-
ware efficient implementation and superior perfor-
mance. However, BPS suffers from high compu-
tational complexity, because it executes several
phase tests in parallel. Additionally, non-data-
aided phase search algorithms suffer from cycle
slips, where the received signal is rotated by mul-
tiples of 90°, causing error bursts.

One way to cope with cycle slips is by using
differential coding, which results in error duplica-
tion=. Several works, e.g.”", propose the use of
pilot symbols, where the main drawback is re-
duced spectral efficiency. Some works, e.g.”,
treat cycle slips within the decoder block. In°, a
cycle slip detection and correction scheme was
proposed as an add-on to a generic phase search
algorithm.

In this paper, we propose and experimentally
validate a recursive probability-weighted blind
phase search algorithm (RW-BPS). As in BPS,
RW-BPS tests several carrier phases in parallel
over a noise averaging window. However, RW-
BPS uses previously estimated values and tests
incremental phases over a much smaller range
that has non-negligible probability of occurrence.
This approach allows the algorithm to maintain
high precision even for a small number of test
phases. Another feature of RW-BPS is that the
decision error values are weighted by the a priori
distribution of the corresponding phase shifts, sig-
nificantly reducing, or even eliminating, cycle slip
occurrences.

Recursive weighted blind phase search
The operation principle of RW-BPS is illustrated in
Fig. 1. First, incremental phase intervals are set
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_Fig._1: Operation principle of RW-BPS: (a) phase interval
distribution; (b) block diagram.

according to the laser parameters, symbol rate,
and ASIC clock rate. Assuming perfect frequency
offset compensation, incremental phase rotations
are modeled as i.i.d. Gaussian random variables

A¢p ~ N(0,2nAvTy), where Av is the sum of
carrier and local oscillator linewidths, and T is
the symbol period. In this work, we set the non-
negligible probability interval to 40 = 427 AvTy
(which accounts for over 99.99% of A¢ occur-
rences), and estimate A¢ within this interval. The
40 interval is divided into B evenly-spaced test
phases, where each decision region is assigned a
probability according to A¢ distribution. Fig. 1(a)
illustrates this concept. The RW-BPS block dia-
gram is shown in Fig. 1(b). An N-symbol vector
[Yk—N/25- > Yks - - - Ypt-N/2), Where N is the size of
noise rejection window, is fed in parallel to B test
blocks, which apply the rotations ¢;_1 + Ay, b =
1,...,B. Each block estimates the transmitted
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Fig. 2: Experimental setup.

symbol, yielding B estimates, for which minimum-
distance errors, €1, ..., eg, are computed. These
errors are then divided by the corresponding a
priori probabilities p1,...,pp of A¢y, yielding the
probability-weighted errors eV, ..., 2. Finally,
o1, is estimated as the value of ¢_; + A¢, that
minimizes efV.

One practical consideration is that transmission
symbol rates in optical systems are usually higher
than ASIC clock rates. Therefore, for implemen-
tation feasibility, the number of parallel processing
paths, L, must be taken into account. L defines
the earliest possible result, ¢;_r, available at the
time of ¢, computation®, modifying the phase ro-
tation probability: A¢ ~ N(0,2rAvT,L), thus li-
miting algorithm performance.

Experimental validation

The experimental setup is depicted in Fig. 2.
At the transmit-side, a 92-GSa/s arbitrary wave-
form generator (AWG, 32-GHz bandwidth, 8-bit
resolution), with two enabled RF outputs, cor-
responding to the in-phase (l) and quadrature
(Q) components of a single polarization 16QAM
Nyquist signal (raised cosine, roll-off 0.2) from
pre-programed digital samples. The two RF out-
puts drive a 35-GHz InP dual-polarization 1Q
modulator (DP-IQM) that modulates a 100-kHz
linewidth external cavity laser (ECL). Thus, the
output of DP-IQM consists of a 16QAM signal in
one polarization (for reference, H-pol), and an un-
modulated carrier in the orthogonal polarization
(V-pol). Amplified spontaneous emission (ASE),
generated by a pair of cascaded EDFAs with a
100-GHz optical filtering between the stages, is
controlled by a variable optical attenuator (VOA).
A polarization beam splitter (PBS1) eliminates the
noise in V-pol. Next, the signal and ASE noise are
combined in a 3-dB coupler, filtered by a 50-GHz
optical filter, and detected with an integrated 25-
GHz polarization diversity coherent receiver (ECL
local oscillator, 100-kHz linewidth). An 80-GSa/s
real-time oscilloscope (33-GHz bandwidth, 8-bit
resolution) samples and stores the four signal tri-

butaries for offline post-processing.

Before measurements, two polarization con-
trollers (Pol Ctrl1 and Pol Ctrl2) and additional po-
larization beam splitter (PBS2) were used to align
signal and noise states of polarization, so that the
noise is only loaded onto the 16QAM signal in
H-pol, while the unmodulated carrier in V-pol re-
mains noise-free. PBS2 was later removed from
the setup for data acquisition. Additional polar-
ization controller (Pol CtrI3) was used to align the
noisy signal and the unimpaired carrier to the re-
ceiver axes.

Carrier phase noise was extracted from the V-
pol by first compensating for the frequency off-
set between the carrier and the local oscilla-
tor, and then applying narrowband filtering (10%"-
order 3-MHz Gaussian). The 16QAM signal was
processed by a chain of DSP algorithms, inclu-
ding Gram-Schmidt orthonormalization, dynamic
equalization (DE), carrier frequency offset and
phase noise compensation. For DE we used non-
data-aided radius-directed adaptive equalizer.

We use the Q factor as the signal quality metric,
estimating it directly from the DE output prior to
phase search:

Q[dB] = 1010g10< NEL |5 2) P
> n=1 (ynl = [snl)

where y,, is the vector of constellation points after
DE, and s, is the vector of transmitted symbols.
A —3 dB factor accounts for computing the er-
rors of absolute values rather than bi-dimensional
vectors. This strategy avoids inaccuracies due
to constellation distortion by phase search algo-
rithms at low SNR.

We evaluate the performance of RW-BPS and
common BPS by comparing the estimated phase
noise with the phase noise extracted from V-pol
using mean square error (MSE) after aligning the
phases to a common reference as a performance
metric. Parameter values are listed in Tab. 1.

Fig. 3 shows the obtained results. Each co-
lumn of the figure corresponds to a different sym-
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Fig. 3: Experimental results: (a-c) Phase MSE vs. estimator window size; (d-f) Phase error vs. symbol index, at different symbol
rates. (a,d) 10 GBd @ BER=3.3x10~3, (b,e) 20 GBd @ BER=3.0x10~3, (c,f) 30 GBd @ BER=1.2x10~2

Tab. 1: BPS and RW-BPS parameters

window size, N

6
4564

test phases, B

6
20

RW-BPS
BPS

bol rate, R, namely, 10, 20 and 30 GBd, with sig-
nal qualities around hard and soft decision FEC
thresholds: Q = 15.36 dB (BER =~ 3.3x1073),
15.45 dB (BER ~ 3.0x107?), and 13.58 dB (BER
~ 1.2x1072). The delays L for RW-BPS were
computed as: L = [Rs/Rcik| = 8, 15, and 22
symbols for 10, 20, and 30 GBd, where the ASIC
clock rate Rk = 1.4 GHz.

The figures in the upper row (Figs. 3(a-c)) show
phase MSE as a function of BPS window size.
Note that high MSE is related to cycle slips, as il-
lustrated by Figs. 3(d-f). The figures also show
computational complexity gain, with correspon-
ding axes on the right-hand-side, computed as
(N.B)gps/(N.B)rw-ps- Lower row figures (Figs.
3(d-f)) show phase errors for selected window
sizes of BPS. The =7/2 rad jumps in the error
traces correspond to cycle slips.

RW-BPS (VN = 6, B = 6) did not present cy-
cle slips in any of the tested scenarios. For BPS,
as expected, cycle slip occurrences were reduced
with the window size. Comparing at the mini-
mum window sizes where no cycle slips are ob-
served, Figs. 3(a-c) show that for 10-, 20- and 30-
GBd signals, RW-BPS has a factor 15.5, 22.2 and
28.2 less computational complexity than standard
BPS. This shows, that even when taking into ac-
count the increased feedback delay due to low

ASIC clock speed, our proposed RW-BPS algo-
rithm can significantly reduce the required com-
plexity needed to avoid cycle slips, by accoun-
ting for the constraints of symbol-to-symbol phase
drift.

Conclusions

We have introduced a low computational com-
plexity recursive blind phase search algorithm
that uses a priori distribution of incremental
phase rotation. Experimental results showed ro-
bustness against cycle slips.
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