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Abstract—A detailed model is developed for analyzing fiber
grating external cavity lasers for both static and small-signal
modulation conditions. The chip and package parasitics and
leakage current induced distortion are included. The composite
system is solved analytically in the small-signal regime using a
Volterra functional series expansion method. As an application of
the model, a thorough analysis of the appearance of nulls close to
the harmonics of the cavity resonance frequency in the noise and
modulation spectra is given. We show that the appearance of these
nulls can be explained using the interplay of amplitude and phase
coupling between laser diode and external resonant cavity. A
signal flow graph approach is introduced which identifies methods
of minimizing the nulls.

Index Terms—External cavity, fiber Bragg grating, modeling
modulation, noise, seimconductor lasers.

I. INTRODUCTION

T HE PERFORMANCE of semiconductor laser diodes
is significantly affected by the existance of intentional

[1]–[3] or unintentional [4], [5] feedback from passive external
reflectors. It has been shown experimentally that optical
feedback has a strong influence on the :

1) threshold current [3];
2) the steady state output power [1], [2], [6];
3) stimulated and noise emission spectra [7], [8];
4) linear and nonlinear dynamics of the laser [8]–[10].
Tkach and Chraplyvy [11] were one of the first groups to

carry out a detailed experimental study of the effect of external
feedback on semiconductor lasers, ranging from weak (40
dB) to strong ( 10 dB) feedback levels. Besnardet al. [12]
extended this study to include low-frequency self-pulsations,
generation of subharmonics of the modulated injection current
and splitting of peaks in the modulated spectrum close to the
external cavity resonance frequency (ECRF). These experi-
ments showed that there are five phenomenologically distinct
operating regimes, ranging from weak to strong feedback
levels. The first four regimes are for weak to moderate
feedback levels, where feedback was seen as a perturbation
on the intrinsic diode lasing field. A wealth of dynamics
ranging from RIN suppression to coherence collapse in a
chaotic state has been observed within these feedback levels
[10]. In the fifth regime, strong external feedback is used
to control the lasing medium. These studies showed that
feedback from a highly frequency-selective external cavity
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leads to stable, single mode operation. Experimentally it was
also shown that these lasers are stable over further extraneous
secondary feedback [11]. This led to the increase in research
on strong feedback external cavity (SFEC) lasers for optical
communication systems. Several SFEC frequency selective
schemes have been reported in literature, including:

1) feedback from a grating [13];
2) feedback from a high- narrow-band resonator [14];
3) the feedback from a fiber Bragg grating (BG) reflector

[15].

In this paper, a detailed analysis of a BG reflector based
SFEC laser is presented, as BG reflectors offer a natural choice
for obtaining a strong frequency-selectivity in an external
cavity. However, the generality of our theoretical analysis
means that it is applicable to any of the configurations given
above.

Due to low coupling loss, simplicity of packaging, thermal
stability and low manufacturing cost, fiber grating external
cavity (FGEC) lasers [15]–[18] have attracted much atten-
tion as sources in wavelength-division-multiplexed fiber-optic
communication systems. In 1982, Sullivanet al. [16] proposed
FGEC lasers as a means of improving the performance of
solitary FP laser diodes. A detailed experimental investigation
of the above proposal was carried out by Hammeret al. [17].
They demonstrated that FGEC lasers could maintain single
mode operation over a wide range of injection currents and
temperatures. However, due to the reduction of the small-
signal bandwidth in FGEC lasers as a result of the increase
in photon lifetime in the external cavity, these lasers were
not considered useful as directly modulated laser transmitters.
Therefore, until recently, FGEC lasers found use only in
mode-locking [19] and tunable source applications. However,
there is currently a growing amount of research in the direct
modulation of external cavity lasers for generating high-
efficiency microwave and millimeter-wave modulated light for
applications such as optical feeds and control of phased-array
radars [20] and narrow-band subscriber multiplexed (SCM)
systems [21]–[23]. The advantage of external cavity lasers over
conventional solitary lasers can be explained by noting that,
due to resonance-enhancement [23], external cavity lasers can
be modulated at frequencies much higher than the intrinsic
bandwidth of solitary laser diodes [24]–[26].

Many theoretical models for quantum noise and modulation
response of lasers with feedback have been described in the
literature. However many of these models concentrate only
on weak feedback conditions. Ferreireraet al. [8] were the
first to conduct a detailed study of both noise and modulation
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Fig. 1. Schematic diagram of FGEC laser. AR: antireflective coating; HR: high-reflective coating.

performance under strong feedback conditions. However, their
treatment underestimated the importance of including retarded
field components to represent the significant external cavity
delay. They also excluded chip and package parasitics and
nonlinear distortion effects. Recently, several other groups
have conducted research on strong feedback induced effects
such as bistability, self-pulsations and anomalous spectral
behavior including subharmonic generation and the appearance
of narrow peaks centered around the harmonics of the cavity
resonance in noise and modulation spectra [6], [7], [27]. These
studies emphasised the importance of multiple reflections
under strong feedback conditions. By considering multiple
reflections and finite-delay effects due to passive, frequency
selective feedback, Ahmedet al. [27] analyzed the spectral
splitting of the intensity modulation (IM) response close to the
ECRF. However, their theoretical study was not self consistent
as they did not solve the steady-state equations, simultaneously
satisfying gain and round-trip phase conditions. Thus, their
theoretical treatment can be taken only as a qualitative guide
for explaining the experimental results. Ahmedet al. [27] also
excluded noise and nonlinear distortion in their theoretical
work. Extending a laser model developed by Glasser [28],
Nagarajanet al. [29] developed a detailed analytical model
for explaining noise and modulation response under strong
signal feedback conditions. They used a simplified perturbation
analysis to take nonlinear distortion effects into account.
However, they ignored the effects of residual intermediate
facet reflectivity in their analysis.

In this paper, we develop a detailed model which can
characterize fiber grating external cavity (FGEC) lasers includ-
ing packaging parasitics, leakage current induced distortion
[30], and intrinsic linear and nonlinear effects resulting from
carrier–photon interactions [31]. Our approach is based on the
rate equations and is an extension of the multiple reflection,
strong feedback model given by Parket al. [32]. Following
the treatment of Rong-Qinget al. [33], multiple reflections
are handled compactly using an assumption of stationarity
of the field components. By stationarity, we imply that the
outcome is independent of the time reference. The validity
of this stationarity argument can be justified by noting that
our analysis is only restricted to periodic and nonperiodic
steady state conditions. However, the treatment of Rong-Qing
et al. [33], failed to recognize the importance of delayed
laser field amplitude and phase components after multiple
reflections and these were replaced with first order differ-
entials. By retaining the delayed laser field amplitudes and
phases after multiple reflections, we extend our analysis to
comparatively longer cavities and also retain the delay induced

interference effects, which we show to be critical in predicting
peaks and nulls. To characterize the leakage current induced
nonlinear effects associated with fabrication architecture, a
homo-junction diode-leakage-current model [30] is used. By
considering the linear and nonlinear loading effects, the linear
parasitic model is modeled as a nonlinear Volterra model [31].
Previous detailed studies by Nagarajanet al. [25], and Ahmed
et al. [27], have excluded loading effects.

This paper is organized as follows: In Section II, we present
the detailed theoretical modeling of FGEC lasers, including
parasitcs and leakage current effects. In Section III, we use
this model to analyze the resonance spectral peak splitting in
noise and modulation spectra of FGEC lasers. In this section
a signal flow graph approach is introduced to explain the
appearance of nulls in the noise spectrum and modulation
response. Section IV will summarize the results and conclude
the paper.

II. A NALYTICAL MODEL

A schematic diagram of the device under consideration is
shown in Fig. 1. It consists of a Fabry–Perot (FP) laser diode
with high reflectivity (HR) and antireflective (AR) coated
facets. The light from the AR coated facet is coupled to
the fiber Bragg grating reflector. The output power is taken
through the grating. The grating reflectivity is kept low (i.e.,
Bragg grating normalized coupling strength1) to ensure a
reasonably high output power. Fig. 2(a) shows the equivalent
circuit model for this device. The package parasitics and
leakage current models are considered in cascaded functional
form with an intrinsic composite-cavity laser model to ease
the modeling task. We develop separate Volterra functional
models [31] for each of these and cascade them to obtain the
third-order Volterrra functional model as shown in Fig. 2(b).

A. Intrinsic Composite Cavity Laser Model

Experimental studies with strong-feedback external cavity
lasers have shown that they can maintain strong, stable-
single mode operation, even under high power operation
[34]. The reason for strong, stable single-mode operation
is easily justified for external mirrors having bandwidths
narrower than the external cavity mode spacing. However,
Doerr et al. [35] have recently shown that these results hold
even for lasers with an external mirror having a bandwidth
of a few external cavity modes. They showed that mode
beating between adjacent modes transfers power between the
modes, leading to a central, dominant mode. The dynamical
aspects of this mode selection under wave mixing effects
in semiconductor amplifiers have also been investigated in



292 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 3, NO. 2, APRIL 1997

(a)

(b)

Fig. 2. (a) The equivalent circuit model representation of FGEC laser. (b) Circuit representation is modeled as Volterra functional model. Subscripts
under the transfer functions denote the Volterra functional order.

detail [36]. However, we believe that the actual mechanism
responsible for this experimentally observed strong, single
mode operation needs to be further studied in detail before
any conclusion can be reached. Considering above reasons, we
limit our study to the single mode case, however the multimode
case will be investigated in future work.

Considering the multipass, strong feedback from the grating
reflector, the following equations can be used to characterize
the temporal evolution of the lasing-dynamical system [32]:

(1)

(2)

(3)

where is the spatially averaged intensity of the lasing field,
is the phase of the lasing field and is the carrier density

in the active region. Descriptions of the other parameters
used in these equations are given in Table I. Parket al. [32]
and Ahmedet al. [27] have used similar set of equations
to describe external cavity lasers, however, we have also
incorporated the spectral profile of the gain . We have

used a Lorenzian profile for and ignored the carrier
density dependence of the gain-peak wavelength. The details
of can be found in reference [37]. The importance of
the incorporation of can be seen by noting that the side-
mode suppression ratio in FGEC lasers depends significantly
on the detuning between the peak wavelength in the gain
spectrum and the Bragg wavelength of the fiber grating [37].
As these lasers are capable of operating single mode at high
powers [34], we have introduced the modified gain saturation
term of the form . Using a quantum mechanical
density matrix approach, Agrawal [38], [39] showed that this
form of gain saturation term is more realistic compared with
the conventional form, , although it is clear that
these two forms deviate significantly from each other only
at high powers. In our model, the external cavity effects were
modeled using the lumped feedback parameter,. Considering
multipass reflections in the external cavity,can be given in
the following form [32], [33]:

(4)

where is the field reflectivity of the Bragg grating
seen by the external cavity field. can be calculated



PREMARATNE et al.: MODELING NOISE AND MODULATION PERFORMANCE OF FIBER GRATING EXTERNAL CAVITY LASERS 293

using coupled mode theory [40]. It is important to note
that (1)–(4) do not diverge as tends to zero, though the
individual definitions seem to diverge. This can be under-
stood by observing that in (1), the term

reduces to and in (2) the
term reduces to . The parameter

is the effective reflec-
tivity of the external cavity seen from the laser diode. Assume
that the longitudinal, effective–refractive index variation of the
Bragg grating is given as [41],

(5)

where is the unperturbed effective index of the fiber,
is the index-perturbation-amplitude of the fiber, is the

grating corrugation period and is the grating phase at
0. Due to this periodic corrugation, the forward-propagating
laser field is coupled to the back-propagating laser field

, though Bragg diffraction. Using coupled mode theory
[40], the inter-coupling relations between and can be
written as

(6)

(7)

where is the loss coefficient for power in Bragg grating,
is the coupling strength and is the detuning of the

incident wave frequency from Bragg condition, given by
.

This set of equations can be solved analytically to obtain
the reflectivity of the Bragg grating seen from the external
cavity; noting , we get (8), found at the
bottom of the page [41], where

and is the reflectivity of the grating to fiber
coupling interface as shown in Fig. 1. Noting that is a
complex quantity, it can be written in a polar form,

The magnitude gives the fre-
quency dependent reflectivity, while the phase induces
different delays (i.e., delay ( )) to the re-
flected field, depending on the incident frequency. This leads to
the change of effective cavity length with frequency and hence
the cavity resonance frequency. We have taken this effective
length variation of the external cavity and the carrier density
dependent variation of the solitary laser effective laser length
into account in our analysis for the accurate interpretation of
results.

Although our analysis is limited to uniform gratings, it is
interesting to consider chirped gratings as well. Chirping will
lead to the modification of amplitude and phase response of
the Bragg grating’s reflectivity. However, for typical gratings
with around 0.1-nm bandwidth, this modification can only be
expected to affect the steady state operating point because
the grating’s frequency selectivity is low compared with

the modulation frequency. It has been shown experimen-
tally that chirp improves the stability of the steady state
oscillating mode, for certain chirp-orientations [34]. However
the qualitative aspects of the modulation response is not
expected to change significantly relative to uniform gratings
with similar bandwidths for high speed modulation. This
can be understood by considering that due to small signal
modulation, the operating point on the grating is not going to
be changed significantly for a grating having a bandwidth of
the order of 0.1 nm. However this result is expected to change
for long-chirped gratings (10 cm) as the bandwidth will
become significantly small. The issues of dynamic modulation
stability become important for long gratings. Therefore the
small signal analysis given here is not adequate for the analysis
of these gratings. Work is in progress to modify the current
model to analyze these lasers with long-chirped gratings.

To analyze the above set of equations in the small signal
regime, we carry out a perturbation analysis around a steady
state oscillation mode. Steady-state solutions can be found
by solving the above equations self-consistently, considering
gain and round-trip phase conditions. However, due to the
large parametric space associated with these equations, pertur-
bation expansion around the steady-state solution introduces
unwieldy and complex expressions for further manipulation.
Therefore, to simplify the task, we introduce the notation given
in Table II. Using these axiomatic operators, and expanding
(1)–(8) around an oscillating mode, and retaining up to third-
order terms, we obtain the following set of equations:

(9)

(10)

(11)

(8)
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TABLE I
FGEC LASER PARAMETERS

TABLE II

where Langevian forces represent the
random fluctuations of intensity, phase and carrier density,
respectively [42]. The associated, quantum-mechanically cal-
culated auto- and cross-correlation relations for these forces
can be written as [42]:

(12)

(13)

(14)

where is the spontaneous emission rate into the cavity and
is the Dirac delta function. The detailed expressions of

the perturbation expansion coefficients are given in Appendix
A1. Using the harmonic-probing method [43], the Volterra
functional representation for (9)–(11) has been calculated and
is given in Appendix A2.

1) Intensity Noise:The resonance of the external cavity
also enhances the relative intensity noise (RIN) around the
desired modulation frequency, leading to reduction of the
sensitivity in the optical receiver [29]. A qualitative and
quantitative understanding of RIN performance is therefore
vital. The RIN is defined as the ratio of the mean square
intensity fluctuation to the mean intensity squared of the laser
output [29]. Using the first kernel of the Volterra functional
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expansion, the spectral density of the RIN can be written as

(15)

where matrix represents the
value of matrix evaluated at angular frequency(see
Appendix A). The behavior of this expression is studied later
for the detailed characterization of the resonance-peak spectral
splitting phenomena.

B. Modeling of Parasitics and Leakage Current

Intermodulation distortion (IMD) in semiconductor lasers
has long been recognized as a significant performance limiting
factor in subcarrier multiplexed systems [44] and is mainly
due to two effects [29]:

1) intrinsic nonlinearity in the carrier-photon interactions;
2) leakage currents and nonlinear loading of parasitics.
We modeled leakage current effects by incorporating a ho-

mojunction diode in parallel with the intrinsic laser model. Lin
et al. [30] have given a thorough account on the validity of this
model. Considering the frequency dependency of the nonlinear
leakage current model, Volterra functional representations have
been calculated and are given in Appendix B. Appendix
C gives a Volterra functional representation of the parasitic
circuit [see Fig. 2(a)] [45]. Although a linear model has been
considered for the parasitics, the appearance of second and
third order Volterra kernels can be explained by noting the
nonlinear loading of the intrinsic laser and homojunction diode
models.

C. Small-Signal IM and IMD Response of the Combined Model

The carrier density, photon density and optical field
phase exhibit complex dynamics governed by the rate
equations (9)–(11) and parasitic and leakage current model
responses. Periodical modulation leads to the synchronization
of these dynamics. Fig. 2(b) shows the equivalent Volterra
transfer-function representation of the combined model.
Using Volterrra transfer-function cascading theorems [46],
we reduce this system to an equivalent effective transfer-
function form with first, second and third-order Volterra
kernels: and respectively.
Assuming that the photon density to power conversion factor
through the fiber grating is , the IM (Intensity Modulation)
response of the combined system can be given as

(16)

where represents the modulation angular-frequency. Under
resonant modulation schemes, the dominant distortion to the
IM results from third order intermodulation products falling
within the transmission band. Quantitative measures of the
magnitude of this distortion can be obtained by calculating the
IMD relative to the carrier, Adopting the criteria used by
Nagarajanet al. [29], we can obtain the following expression

for the IMD response relative to the carrier,:

(17)

where is the average injection current, is the threshold
current, and is the modulation index.

III. RESONANCE-PEAK SPECTRAL SPLITTING (RPSS)

As an application of the developed model, we investigate
the appearance of narrow nulls close to harmonics of the
cavity resonance frequency in noise and modulation spectra of
FGEC lasers. This “Resonance-peak spectral splitting (RPSS)”
characteristic has been reported by many researchers in the
past [12], [27], [47], [48]. Satoet al. [47] and Besnardet
al. [12] suggested that the excitation of multimodes to be the
origin of these results. By carrying out detailed theoretical
and experimental investigations, Portet al. [48] argued that
complex relaxation phenomena lead to the observed splitting.
Recently, Ahmedet al. [27] conducted extensive theoretical
and experimental studies to characterize RPSS in directly
modulated grating-coupled external cavity lasers. They related
the resonance-peak splitting in IM response to the resonance-
peak splitting in RIN, and explained the RIN spectral splitting
as being due to two processes:

1) the translation of low-frequency RIN to high-frequency
RIN through beating with the high-frequency modula-
tion signal;

2) the resonant enhancement of the relaxation oscillation
magnitude.

Our analysis of RIN, however, shows that such beating
between low-frequency RIN and high-frequency modulation
does not need to be present for the appearance of RPSS.
In this section, we give conclusive evidence to show that
RPSS in noise and modulation spectra result from the complex
amplitude-phase coupling interplay between active and passive
resonant cavities.

A. IM and RIN Spectra

We use the data given in Table I for our simulations. The
steady-state light versus current (– ) characteristic is given
in Fig. 3. This has been calculated by simultaneously solving
(1)–(3) to satisfy gain and round-trip phase conditions for
the combined cavity. Because we obtain multiple solutions
corresponding to possible lasing modes, an optimization algo-
rithm is used to select the mode with the lowest threshold
gain (i.e., the lasing mode). Fig. 3 shows a predominantly
linear – characteristic with some irregularity resulting from
the mode-hopping between external cavity modes. The mode
hopping can be easily seen in the numerical solution of
(1)–(3). The oscillation frequency is a smooth function of
bias current due to the change in the refractive index of
the active section. However, if this change in frequency is
sufficiently large, the mode frequency is pulled to the next
cavity mode, which causes mode hopping. Mortonet al.
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Fig. 3. TheL–I characteristics of FGEC laser with 4-GHz external cavity.
Table I gives the data used for this simulation.

Fig. 4. Change of RPSS versus bias current. Note the splitting position
variation with bias current (4-GHz external cavity).

[19] have reported experimental results showing similar–
characteristics. Fig. 4 shows the variation of RPSS position
in the IM response for the fundamental resonance of the 4-
GHz cavity considered above. It shows that by varying the
injection level, the null can be positioned anywhere on the
resonance peak, and the null moves from one side of the
peak to the other in the vicinity of the mode hopping region.
Similar behavior has also been observed experimentally [49].
Fig. 5 shows the IM response around the 4th harmonic of
the cavity resonance frequency versus bias current. The null
is on the high-frequency side of the peak both above and
below the mode-hopping region. Similar trends have been
detected experimentally in external cavity lasers subject to
strong feedback [49]. Fig. 6 compares the spectra around four
harmonics of the cavity resonance. The null moves to lower
frequencies at higher harmonics and creates a dominant lower
frequency peak.

Detailed analyzes by Ahmedet al. [27] show that large
intermediate-facet reflectivity, poor coupling between active
and passive cavities, and a low gain suppression factor, lead
to the enhancement of RPSS. Our simulations show that, apart

Fig. 5. IM response of pseudospectral peaks around the 4th cavity resonance
harmonic. Label is bias current (4-GHz external cavity).

Fig. 6. IM response against frequency offset around cavity resonance har-
monics. Label is harmonic number.

from the above parameters, the linewidth enhancement factor
, and external cavity length have a significant effect.

Fig. 7 shows the change of the form of the spectral splitting
for external cavity lengths 3.75, 4.75, and 7.5 cm. It clearly
shows that cavity length has a direct effect on the spectral
splitting shape and depth. Later we will show that this can
be attributed to the dependence of amplitude-phase coupling
strength on the cavity length.

Studies by Ahmedet al. [27] have also shown that it is
necessary to have relatively large intermediate facet reflectivity
in the external cavity semiconductor laser (see Fig. 1: AR
coated facet intermediate facet) for the appearance of split-
ting in the external cavity resonance peaks. Our studies show
that more than 20% intermediate facet reflectivity relative to
the external cavity grating mirror peak reflectivity leads to
noticeable RPSS, under normal operating conditions. As a rule
of thumb, we classify intermediate facet reflectivity greater
than 20% of external reflectivity peak as severe-splitting-
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Fig. 7. IM response against modulation frequency offset for three cavity
lengths. Label is the external cavity length.

Fig. 8. IM response against modulation frequency. Label is the intermediate
facet reflectivity. Same characteristics were observed for�< 1 values (4-GHz
external cavity).

favoring (SSF) condition. To investigate the origin of spectral
splitting, we analyzed the RPSS versus under severe-splitting
conditions. Fig. 8 shows that when 0, RPSS does not
occur, although the laser is under severe-splitting-favoring
conditions. Similar results were observed for 0 1.
However when is sufficiently high, RPSS begins to appear.
This is clearly shown in Fig. 9 for 2.5. Fig. 10 shows
the gradual appearance of RPSS asincreases for a constant
intermediate facet reflectivity of 0.16.

To show that the spectral splitting is due to interactions
between the field amplitudes and phases in the laser and
the external cavity, we developed the signal flow diagrams
given in Fig. 11 (see [50] for details on signal flow graphs).
Fig. 11(a) shows the inter-relationship between small-signal
field amplitude, , field phase fluctuation, , and small-
signal carrier density change, , for a semiconductor laser,
without any external feedback. It shows that small fluctuations
in the carrier density leads to small fluctuations in field

Fig. 9. IM response of the FGEC laser against modulation frequency for
a fixed linewidth enhancement factor�. Label is the intermediate facet
reflectivity (4-GHz external cavity).

Fig. 10. RIN spectra against the frequency. Label is the linewidth enhance-
ment factor. Similar behavior can be seen in IM response (4-GHz external
cavity).

amplitude. However, negative feedback due to stimulated
emission modulating the carrier density tends to suppress
amplitude fluctuations, especially at frequencies lower than
the inverse of the carrier lifetime. The equilibrium position of
these forcing and suppression actions in solitary semiconductor
lasers leads to the appearance of the relaxation oscillations.
Fig. 11(a) also shows that fluctuations in field amplitude and
carrier density lead to fluctuations in phase or the appearance
of chirp in these lasers, as is well known. However, it is
interesting to note that in solitary lasers, phase fluctuations
are not coupled back to amplitude or carrier fluctuations.

Now consider the introduction of strong feedback through
an external resonator to this solitary semiconductor laser diode.
Fig. 11(b) shows that this coupling of an external resonator to
the solitary laser modifies the previously uncoupled amplitude-
phase path. It shows that the external cavity introduces both
self- and cross-coupling between amplitude and phase of
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(a)

(b)

(c)

Fig. 11. Signal flow graphs relating carrier density fluctuation�N , field
amplitude fluctuation�E and field phase fluctuation�'. (a) Signal flow
graph for solitary laser (i.e., without feedback). Note the one-way coupling to
�'. (b) Signal flow graph with strong external feedback. Note the two-way
cross coupling between�E and�'; and self-coupling in�E and�'. (c)
Equivalent form to (b).

the lasing field. This amplitude-phase coupling through the
external cavity introduce three feedback paths for any carrier
fluctuation namely

and
The equilibrium state of the fluctuations in these

feedback loops represents the appearance of splitting in the
resonance peaks of the noise and modulation spectra. This
argument clearly establishes that significant amplitude-phase
coupling is necessary for the appearance of spectral splitting.
This analysis also shows that both amplitudephase and
phase amplitude conversions need to be sustained for this
to occur [see Fig. 11(a) and (b)]. Because the solitary laser is
predominantly an amplitudephase coupling device, strong
phase amplitude coupling provided through the passive ex-
ternal cavity is necessary to sustain a significant level of
RPSS.

We also show that nonzero values of bothand are
required for the amplitude-phase coupling leading to splitting
in resonance peaks. Careful observation of Fig. 11(a) and
Fig. 11(b) show that in the small signal regime, the effect
of external feedback is to introduce two additional signal flow
loops and

to the solitary lasing configuration.
Appendix D gives the signal flow gains for the constitutive

branches of these loops and shows that the cross and self
coupling terms and depend explicitly on , and
implicitly on through the steady state oscillation frequency.
They also show that branch gains are weakly dependent on
parameters such as the nonlinear gain saturation factorand
external cavity length . Numerical results show that a low
value of and low value of leads to the reduction of
gains in the signal flow path . This
can be clearly seen in Fig. 11(c), which is a simplified, but
equivalent form of Fig. 11(b). It shows that if we eliminate
the path by making path gain negligible
(i.e., by reducing and then resonance enhancement
is introduced through the frequency dependence of the path

but the nulls disappear (see Figs. 8–10
and path gains in Appendix D). Therefore, we can clearly
identify that the path is
responsible for the null and hence the splitting. By considering
the numerator and denominator dynamics of the above path,
we obtained the following approximate expressions for the
low-side-band (LSB) peak [27] and the null
frequency positions in the IM response of the laser:

LSB, Null (18a)

with

(18b)

(18c)

(18d)

(18e)

where is the harmonic number of the external
cavity resonance peak, and is the Kronecker Delta func-
tion. Expressions for and are given in Appendix D.
The other parameters are given in Table I. Fig. 12 shows the
analytical and simulated results for null frequency versus bias
current, while similar results for the LSB peak are given in
Fig. 13. Good agreement between simulated and analytical
results were observed in both cases. Equations (18a)–(18e) also
provide an qualitative picture of the dependence of splitting
on and .

B. IMD Spectra

In this section, we show that, IMD spectra relative to carrier
C (i.e., IMD/C) exhibit complex splitting characteristics under
direct small-signal modulation. The criteria used to calculate
IMD/C is similar to the definition by Nagarajanet al. [29]
which was described in Section II-C in the context of a
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Fig. 12. Null position in resonance-peak splitting of IM response (at funda-
mental resonance harmonic). This figure shows the accuracy of the (14a)–(14e)
with simulated results.

Fig. 13. LSB peak position in resonance-peak splitting of IM response
(at fundamental resonance harmonic). This figure shows the accuracy of
(14a)–(14e) with simulated results.

Volterra function formalism. Fig. 14 shows the IMD response
for a 4-GHz FGEC laser, for the data given in Table I. It shows
the appearance of splitting close to 4 GHz, and a trend for the
enhancement of low frequency pseudopeaks as the frequency
increases to the second cavity resonance harmonic (i.e., 8
GHz). It also shows the subsidiary peaks spaced between the
cavity resonances. These subsidiary peaks have no importance
to practical resonance transmission schemes because they are
limited to narrow-band transmission around cavity resonance
peaks. Nagarajanet al. [29] have explained the appearance of
the subsidiary peaks in greater detail. Fig. 14 also shows an
enlarged view of IMD response close to 4 GHz. It shows that
RPSS appears as double nulls for the fundamental resonance.
At higher frequencies, it is clear that the lower frequency
peaks around the fundamental resonance are enhanced, while
the high frequency peak is suppressed (see enlarged view
around 8 GHz). This same trend was previously observed in
the IM and RIN spectra (see Figs. 5 and 6). Fig. 14 also shows
that as the harmonic number increases, the spectral splitting

Fig. 14. IMD/C response of FGEC laser with 4-GHz external cavity at
40.0-mA bias current.

in subsidiary peaks tends to decrease. Similar trends were
previously demonstrated for IM and RIN spectra.

IV. CONCLUSION

A detailed model for fiber grating external cavity semi-
conductor lasers has been developed. Leakage current and
parasitic effects are included in this model. To the best
of our knowledge, this model represents the first unified
study of semiconductor lasers subject to strong feedback for
steady-state and periodically modulated (small-signal) condi-
tions which includes noise and distortion effects. The compos-
ite system, consisting of external fiber grating cavity, solitary
laser diode, chip and package parasitics, and leakage current
induced nonlinearity was solved analytically in the small-
signal regime using a Volterra functional series expansion
method. We used this model to analyze the appearance of
narrow peaks close to the harmonics of the cavity resonance
frequency in the noise and modulated spectra. We showed that
experimentally observed characteristics such as a variation of
null position with dc-bias current. Our simulations showed
that the form of the modulation spectrum is dependent on
which harmonic is being used. Detailed simulations of IMD
showed that IMD spectra experience more complex splitting
patterns than the IM and RIN spectra. However as with the
IM and RIN spectra, these complex splitting characteristics
in IMD spectra reduce around higher harmonics. A detailed
explanation using signal flow graphs was given showing that
the appearance of narrow peaks and nulls close to the external
cavity resonance harmonics in the noise and modulation spec-
tra results from complex amplitude-phase coupling between
active and passive resonant cavities. We identified that both
the linewidth enhancement factor and residual facet reflectivity
need to be minimized in order to reduce these spectral splitting
phenomena, and have presented analytical formulae to quantify
their effect.

APPENDIX A

In this appendix, we outline the procedure for obtaining
Volterra kernels for composite, intrinsic laser rate equations.
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1. Perturbation Expansion Coefficients

2. Volterra Kernels for Intrinsic, Composite Laser Model

Assuming and repre-
sent the first-, second-, and third-order Volterra kernels for
carrier density under modulation, we calculate the Volterra
kernels, using perturbation expansion coefficients as follows:

(A2.1)

where represent the first, second and third
order Volterra kernels for the composite system as

(A2.2)

(A2.3)

(A2.4)

where denotes the matrix transpose operation. The linear-
system identication matrices can be written
as follows:

If the frequency dependency of can be represented as
then the higher linear, system identification

matrices can be given as

where the coefficients of

are given below:
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The driving terms can be expressed using
lower order Volterra kernels as follows:

APPENDIX B

In this appendix, we give calculated expressions for Volterra
kernels of homo-junction laser model shown in Fig. 2. The
variable definitions can be found in Table I. Defining the
following auxiliary variables:

and calculating from the following implicit
equation: we use this
quantity to define following frequency dependent quantities:

where The value of
is given in Table I with given as
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Using these expressions, we can write the following expres-
sions for Volterra kernels in leakage model (see Fig. 2):

(B1)

(B2)

(B3)

APPENDIX C

In this appendix, we give detailed expressions of Volterra
kernels for parasitic network: Variable definitions are given in
Table I (for details of model, see Fig. 2 )

(C1)

(C2)

(C3)

APPENDIX D

This appendix gives the detailed expressions for branch
gains of signal flow graphs in Fig. 11. Using the variables
defined in Table I, and using (1)–(4), we define:

and

Using the above expressions we can obtain the following
expressions for the Laplace Transform of branch gainsis
the transform domain variable):

and the equation found at the top of the page.
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