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Instabilities and Nonlinear L- I Characteris tics 
in Complex-Coupled DFB Lasers with 

Antiphase Gain and Index Gratings 
Bjorn Jonsson, Arthur James Lowery, Senior Member, IEEE, Henning Olesen, and Bjame Tromborg, Member, IEEE 

Abstruct- Complex-coupled DFB lasers can be designed to 
provide large bandwidths and low chirp by adjusting the strength 
and phase of their index and gain gratings. In this paper we 
develop a self-consistent method of calculating the coupling co- 
efficient of complex-coupled DFB lasers with a corrugated active 
region. Basic geometrical and structural parameters are used as 
inputs to the model. We show that antiphase coupling implies 
lasing on the short-wavelength side of the Bragg wavelength 
which in turn leads to instabilities and/or nonlinearities in the 
light-current characteristic. The critical output power for onset 
of instabilities is typically in the order of a few milliwatts. Time- 
domain simulations are used to assess the potential effects of 
these instabilities on optical communication systems. We find that 
transitions from a state of equal output powers from the facets 
to a state of dramatically different output powers occur within 
a few nanoseconds of turn-on. The origin of these instabilities 
is explained using a simple physical model and possible ways of 
increasing the critical power for instabilities are discussed. For 
example, we clearly show that the critical power for instability 
increases when the carrier lifetime is decreased. 

1. INTRODUCTION 

ISTRIBUTED feedback (DFB) semiconductor lasers D have a built-in periodic longitudinal variation of the 
refractive index andor the net optical gain. This modulation 
produces a coupling between the forward- and backward- 
traveling optical waves, providing the feedback mechanism 
for lasing with a wavelength determined by the period of 
the modulation. It is well-known that index-coupled DFB 
lasers with antireflection coated facets have two degenerate 
modes, unless the waveguide contains a perturbation, such 
as a phase-shift or a taper. As was shown by Kogelnik and 
Shank [l], DFB lasers with pure gain coupling prefer a single 
mode of oscillation. A very high side mode suppression 
ratio (SMSR) can be achieved in gain-coupled or complex- 
coupled DFB lasers, and this is one of the main reasons for 
the current interest in these devices [2]-[14]. Furthermore, 
numerical studies of complex-coupled lasers have shown that 
by adjusting the ratio and phase of the gain and index gratings 
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to give “antiphase” coupling, chirp can be reduced [4], [6] 
and the modulation bandwidth can be improved [ 151, [ 161. 

Schatz 1171 found that conventional index-coupled DFB 
lasers lasing at the short-wavelength side of the Bragg wave- 
length have the potential of becoming unstable when biased 
above some critical output power. He also showed that these 
instabilities cannot occur when the laser is operated on the 
long-wavelength side and that the instabilities become increas- 
ingly pronounced as the lasing mode is pushed away from 
the Bragg wavelength toward the short-wavelength side, for 
example by changing the magnitude of a discrete phase shift. A 
simple threshold analysis was given in [ 171 to estimate the crit- 
ical output power above which instabilities occur. Instabilities 
in conventional index-coupled DFB lasers were also studied 
extensively by Olesen et al. [18]-[20]. We have previously 
found [2 11 that complex-coupled DFB lasers with antiphase 
coupling show a qualitatively similar type of instability to that 
reported in [17]. Lowery and Novak [ l l ]  as well as Zhang 
and Carroll [ 161 have recently performed above-threshold 
calculations of the dynamic properties of complex-coupled 
lasers, but unstable behavior was not addressed. 

In this paper, a detailed analysis of DFB lasers with a com- 
plex coupling coefficient is presented. Above-threshold sta- 
bility is studied using two different computer simulation pro- 
grams: a semianalytic model based on the traveling-wave ap- 
proach [22], and a large-signal analysis with the transmission- 
line laser model (TLLM) [ 111. Previously, these models have 
been used to simulate index-coupled [19], [20], [23] and 
complex-coupled lasers [6], [11], [15], 1211, 1241, and the com- 
bined features of the two models yield detailed information 
about the laser’s behavior. 

We show that complex-coupled DFB lasers optimized for 
high bandwidth and low chirp, using antiphase coupling, will 
oscillate on the short wavelength side of the Bragg wavelength. 
Due to this fact, such lasers will be susceptible to instabilities 
and nonlinear behavior 1191, [21]. This is unfortunate as we 
shall show that for some grating geometries the laser may 
become unstable at a critical output power of only a few 
milliwatts. The dynamics of such unstable lasers are simulated 
and the output powers at the two facets are found to deviate 
from each other after a few nanoseconds. In order to identify 
laser designs less susceptible to instabilities, we extend our 
analysis to lasers with various corrugation geometries of the 
active region, and show that the critical output power can be 
increased by altering the modulation depth and duty cycle of 
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Fig. 1. Grating structure in a complex-coupled DFB laser. 

the gain grating. We also develop a simple physical model 
of the instability mechanism, and use this model to identify 
methods of increasing the critical output power. Spontaneous 
recombination is an important damping mechanism and we 
find that the critical power is inversely proportional to the 
carrier lifetime. 

The paper is organized as follows. In Section I1 the theo- 
retical background for the self-consistent calculation of the 
complex coupling coefficient as a function of the grating 
geometry is presented. Section I11 gives a brief description 
of the two numerical methods. In Section IV, results for the 
dependence of the complex coupling coefficient on the grating 
geometry, below and at threshold, are presented. In Section 
V, operation above threshold is investigated. In particular, 
unstable regions are analyzed and the time-domain behavior 
of such lasers is simulated. The origin of these instabilities 
and possible ways of increasing the critical output power are 
discussed in Section VI. Finally, our results are summarized 
in Section VII. 

11. THEORY 

Complex coupling can be realized by incorporating a pe- 
riodic modulation of the active region itself, or by having 
separate grating layers to provide loss or index coupling. 
A typical multilayer laser structure is outlined in Fig. 1. 
The longitudinal coordinate is denoted by z .  and h is the 
grating period. The active region provides gain coupling with 
some parasitic index coupling. The index grating allows the 
amount of index coupling to be independently controlled. In 
the following, we only use the longitudinal dependence z 
explicitly to denote variations within one grating period. It 
is implicitly assumed that all variables are allowed to vary 
slowly with x (over several grating periods). 

A. Arbitrary Grating Geometry 

verse mode is taken as 
The complex wavenumber, k ,  for the fundamental trans- 

(1) 

where 9 and a, are the local values of the modal gain 
and internal absorption. The (real) propagation constant is 
expressed as 

j 
k ( z )  = P(2 )  + 5 [ds) - %(Z)l  

where neff is the waveguide effective index, and X is the lasing 
wavelength. The periodic structure of Fig. 1 can be represented 
by periodic perturbations of the waveguide effective index, the 
modal gain and the internal absorption. The standard technique 
is to expand this perturbation in a Fourier series and to retain 
only the first-order terms 

where n e E  0 .  go. and a z o  denote the average values over 
one grating period; An,,, Ag, and Aa, are the peak-to-peak 
deviations within one grating period; 'p, is a phase offset of the 
corrugation relative to the left end-facet ( z  = 0). The detailed 
geometry is represented by the Fourier coefficients A,, A,, 
and AL for the index-, gain-, and loss-gratings, respectively. 
Note that using the explicit forms (3a)-(3c) implies that 
the three types of gratings cannot have an arbitrary phase 
relationship. They must either be in-phase or in antiphase with 
each other, which will be the case for all practical geometries. 
It is important to realize that a variation of, for example, 
the active region parameters affects the refractive index and 
the absorption as well as the gain. All three of the modal 
parameters ( n , ~ ,  g. and a,) depend on the material parameters 
of all transverse layers within the intensity profile and, in 
addition, may depend on the injected carrier density. 

Inserting (3a)-(3c) in (1) and collecting the slowly- 
varying and first-order terms, the perturbation of the complex 
wavenumber is given as 

(4) 

where is the slowly varying part of the wavenumber. We 
have here introduced the complex coupling coefficient K ,  and 
in the presence of all three perturbations the general expression 
for K is 

(5) 7 l  li 
x 4 K = - A, An,, + - (A, Ag - AL Aai).  

The real part of the coupling coefficient (the index coupling) 
is determined completely by the variation in the waveguide 
effective index, while the imaginary part (the gain or loss 
coupling) is determined by the gain and loss gratings. 

The above formalism is generally applicable to DFB laser 
structures with complex coupling, but to proceed one has to 
distinguish between various laser geometries. There are at least 
three major categories of complex-coupled DFB lasers: 

devices with a corrugated active region to provide 
gain coupling [25]; 
devices with a homogeneous active region and a 
separate grating layer to provide a carrier-dependent 
gain or loss coupling [3], [12], [14], [26]; 
devices with a homogeneous active region and a 

I) 

11) 

111) - - 
separate grating layer providing a carrier-independent 
loss coupling [13], [27]. (2) 
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All three types may have an optional index-compensating 
grating layer to adjust the index coupling coefficient. 

For both Type I and Type I1 lasers, carrier dynamics are 
essential to describe the device behavior. Type I devices 
only require one population of carriers in the active region 
(neglecting quantum well effects such as carrier transport and 
carrier capture), that is, the carrier density is assumed to be 
constant in the transverse direction. Type I1 devices have two 
populations of carriers in the active region and the grating 
region, and rate equations describing their interaction must be 
set up. The carrier density dependence of gain or loss in the 
grating region must also be described. For Type I11 devices, 
the carrier dynamics in the active region are still important, 
but the coupling coefficient can be assumed to be independent 
of the carrier density. In this work we concentrate on Type 
I devices. 

The waveguide effective index and the material gain vary 
with the carrier density in the active region, and the detailed 
variation within one grating period is described by the confine- 
ment factor l?,(z). We assume that the waveguiding effect is 
governed by a separate confinement region in which the active 
region is embedded. This means that the transverse mode 
profile is assumed to be constant, regardless of the variations 
in index and gain within a grating period and changes in carrier 
density. The variation of r , (z)  will therefore simply be given 
by the variation of the active region thickness. Hence 

where a,  and a,  are the material losses in the active and 
cladding layers, respectively. The material gain is taken as 
gm(N)  = a ( N  - No), where No is the transparency carrier 
density and a is the linear material gain coefficient. Further- 
more, the waveguide effective index, n , ~ ,  ref, is assumed to 
be known at some reference carrier density, Nref, and the 
differential refractive index is denoted d n / d N .  The values to 
be used for An,ff, Ag, and Aai in (5) are simply taken as 
the peak-to-peak values of the quantities in (6a)-(6c). 

B. Rectangular Grating 

To simplify the expressions further we shall only consider 
rectangular gratings with a duty cycle of y, where 0 < y < 1. 
From the schematic close-up of one grating period in Fig. 2 
we write the confinement factor in the active region as 

(7) 
R e g i o n l ( O < z < y h )  
Region 2 (y A < z < A) 

where F a ,  and ra, are the transverse confinement factors in 
each of the two regions. Furthermore, since we have a rect- 
angular grating, we assume that the three Fourier components 
are equal: 

Region 1 Region 2 
t 

i 11! i 1 

Index grating "I 

Fig. 2. 
laser with a rectangular grating profile and index grating compensation. 

Close-up of the refractive index profile for a complex-coupled DFB 

Expressions for the index coupling coefficient, ~ i ,  and gain 
coupling coefficient, K ~ ,  can be obtained from (5): 

2 
K .  - - sin (7ry) 

" A  

where we have denoted the waveguide effective index differ- 
ence between regions 1 and 2 ("the built-in effective index 
step") as Aneff,,,f and have used AI', for the confinement 
factor difference (i.e., AI', = ra, - ra, 2 ) .  The waveguide 
effective index can be calculated by standard methods, if 
the dimensions and compositions of the epitaxial layers are 
specified. However, for simplicity, we have assumed that 
An,,, ref is explicitly known at the reference carrier density. 

Equations (9a) and (9b) give the fundamental relationship 
between the coupling coefficient and the structure of the 
grating layers. These equations are valid below and above 
threshold, and the sign of both coupling coefficients can be 
negative. Opposite signs of ~i and K~ imply that the phase of 
the index grating is shifted by 7r relative to the gain grating; 
this is an "antiphase" grating. Equal signs imply an "in-phase'' 
grating [4]. 

The modulation depth of the corrugated active region is 
defined as 

(10) 

where d a ,  1 and d a , 2  are the thicknesses of each region. 
A modulation depth of zero corresponds to a purely index- 
coupled DFB laser ( K ~  = 0), while 100% modulation depth 
denotes a complex-coupled DFB laser with an on-off gain 
grating (i,e., d a , 2  = 0). The average thickness of the active 
region is related to the duty cycle of the grating by 

da,  1 - da,  2 

da ,  1 + d a ,  2 
m =  

d , g = y d a , i  + ( 1 - y ) d a , 2 .  (1 1) 

2 A,  = A,  = AL = - sin (7ry). 
7r 

Similarly, the average confinement factor for the active region 
(8) - is r = y r a , l  + (I - ~ ) r ~ , ~ .  
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C. The Carrier Density Rate Equation 

Since we are dealing with a nonuniform active region. it 
is essential to specify precisely how the carrier injection is 
treated, as this seems to have given rise to some confusion in 
the literature. 

A key assumption in our work is that carriers cannot bypass 
the active region, hence the injection efficiency into the active 
region is always set to 100%. Furthermore, the injected carriers 
are assumed to be evenly distributed over the total active 

111. NUMERICAL APPROACH 

We have used two different computer models to simulate 
the behavior of complex-coupled DFB lasers; the traveling 
wave method (TWM) and the transmission-line laser model 
(TLLM). Both models can calculate the stationary distributions 
under given bias conditions, including longitudinal spatial 
holebuming and full details about the longitudinal variations 
in the laser cavity. 

volume within a grating period, and an average carrier density 
is calculated. Spatial holeburning effects are included in the 
usual way by allowing the average camer density to vary 
slowly along the cavity. 

The laser is assumed to have a single electrode extending 
over the total laser chip length, L. If the active region width 
is denoted by w, the average cross-sectional area of the active 
region is A, = w Neglecting any noise terms, the rate 
equation for the carrier density becomes 

where I is the bias current, e is the electron charge, R,, is the 
spontaneous recombination rate, RSt, 0 is the usual stimulated 
recombination rate, and R,t,g is the extra contribution to the 
stimulated recombination rate due to the standing-wave effect 
[22], [28]. The traveling waves propagating in the positive and 
negative directions are denoted ut and U -  respectively. Thus 

(134 R s p ( N )  = AN + B N 2  + C N 3  

. [ e f j p g u f ( u - ) *  + c.c.] (13c) 

where A, B, and C are the usual recombination coefficients, c 
is the light velocity in vacuum, E O  is the vacuum permittivity, 
and hw is the photon energy. 

The photon density, S ,  and the output powers from the left 
and right facets, PL and PR, are related to U+ and U -  by the 
following expressions [22] 

(14b) 
( 1 4 ~ )  

2 PL ==2EOCRef f ,0 (1  - Rl)lu-(z = 0)l 
PR = 2 EO cneff,O (1 - R ~ ) ~ u + ( z  = L)I2 

where Aph = Ac/F is the average cross-sectional area of 
the transverse photon distribution, n, is the group refractive 
index, and RI and Rz are the reflectivities of the left and 
right facets, respectively. 

Using the detailed expressions (9a), (9b), (13b), and (13c), 
steady-state and time-domain properties can be obtained by 
solving for the fields (U+ and U - )  in the usual coupled wave 
equations [ 1 1 ] , [22]. 

A. The traveling-Wave Method (TWM) 
The traveling-wave method is a semianalytical technique, 

which can be used to simulate a large variety of advanced 
laser structures, including multisection and multielectrode con- 
figurations. Details of the method are given in [22], which 
also includes the analytic expressions that are required for 
treatment of gain-coupled devices. The stationary distributions 
of the photon and carrier densities are obtained by numerical 
integration of the coupled wave equations with boundary con- 
ditions, simultaneously solving the rate equation for the local 
carrier density at any position along the cavity. There may be 
many stationary solutions (modes) but there are usually only 
a few (if any) that can represent lasing modes. As discussed 
in detail in [19], a mode can be dominanthondominant and 
stable/unstable. This classifies the modes into four groups, one 
for each combination, and the potential lasing modes belong to 
the group of dominant and stable modes. This rule only applies 
if the frequency spacings between the modes are substantially 
larger than the inverse carrier lifetime, but that will generally 
be fulfilled for laser cavity lengths below say 5 mm. 

In order to decide whether a mode is dominant or not, we 
solve the coupled wave equations for complex frequencies and 
a fixed carrier distribution given by the mode. It is called 
dominant if all solutions (except that for the mode itself) lie 
in the upper half of the complex frequency plane [19]. Each 
of these solutions corresponds to a side mode, with side mode 
suppression ratio proportional to the imaginary part of the 
frequency [29]. The stability of a mode is determined from 
a small-signal analysis, where the induced perturbations of 
the relative amplitude and the phase of the output field from 
the facets are calculated by the use of Green's functions. The 
small-signal analysis results in a stability parameter, the sign 
of which indicates whether the mode is stable with respect to 
small-scale fluctuations [22]. 

The time domain characteristics can be investigated with, 
for example, the TLLM. A time-domain simulation of the laser 
equation (including noise terms) will usually show a transition 
to a dominant and stable mode, independently of the initial 
conditions [20]. If there are no modes which are both dominant 
and stable, the time-domain solution will be nonstationary, 
for example pulsating or chaotic, and the spectrum will be 
multimoded. 

The semianalytic nature of the TWM allows a quick and 
easy mapping of laser behavior over a wide range of operating 
conditions, and stable and unstable regions of operation can 
easily be identified. Several additional characteristics can be 
obtained as output from a simulation, for example the lasing 
mode position relative to the Bragg wavelength, the local 
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Grating duty cycle 

Grating period 

Reflectivity of end facets 

Initial grating phase 

Laser chip length 

Active region width 

Differential refractive index 

Linear material gain coefficient 

Linewidth enhancement factor 

Nonlinear gain coefficient 

Transparency carrier density 

Reference carrier density 

Waveguide effective index 

Waveguide group refractive index 

Linear recombination coefficient 

Bimolecular recombination coefficient 

Anger recombination coefficient 

Population inversion parameter 

843 

I 
A 

RI, Rz 

% 

L 

w 

dnjdN -3.454 x m3 

a 7.0 x m2 

a 4.0 

E 3 x m3 

No 1.5 x m-' 

ni.r 0.0 m-3 

n.f f ,..f 3.2 

ng 3.75 

A 

B 

C 

ndp 

modulation responses [30], [31], and the grating filter functions 
1321. 

Parameter 

Active region thickness (reg. 1) 

Active region thickness (reg. 2) 

Built-in effective index step 

Confinement factor, active layer (reg. 1) 

Confinement factor, active layer (reg. 2) 

Material absorption, active region 

Material absorption, cladding layers 

B. The Transmission-Line Laser Model (TLLM) 

The transmission-line laser model is a large-signal time- 
domain model [33]. The optical wave-guide is modeled by a 
transmission-line divided into sections, where each section rep- 
resents a longitudinal slice of the device. Scattering matrices 
within each section model the optical properties of that section 
by modifying the optical traveling fields as they propagate 
from section to section at each iteration. After scattering, the 
fields are passed to adjacent sections via lossless transmission 
lines representing the optical propagation delays along the 
cavity so that they arrive for the next iteration. The output 
of the model is a time-series of optical field samples from 
which the optical spectrum may be obtained using Fourier 
transforms. Alternatively, the output field may be squared and 
averaged to find the power waveform. The model is very 
efficient for calculating laser dynamics over a wide spectral 
bandwidth because the optical field is not restricted to a 
specific modal expansion. For the same reason, the depletion 
of the carrier density by stimulated emission is also calculated 
for all spectral components of the field. The model includes 
random noise generators to represent spontaneous emission. 

As shown in [ll], special care has to be taken when 
applying the TLLM to gain-coupled lasers as the overlap of 
the standing wave within the cavity and the gain grating has to 
be calculated. The gain coupling is represented by scattering 
at the center of the model sections, which can be thought 
of as being due to a conductance across the transmission 
lines. The index coupling is represented by scattering at the 
section boundaries. The 90" phase difference between the 
two coupling mechanisms is in effect represented by the 
propagation delays of the transmission lines. To minimize 
computation time, only 21 sections are used to model the 
hundreds of grating periods of the real laser. This is acceptable, 
as the coupling of the laser's grating is represented by a 
harmonic of the model grating, and the carrier density varies 
slowly along the cavity. 

Symbol A B C D Unit 

60 - 1  80 80 * 
d,,2 0 0 * 0  

An.jf,,.f 0.01 * 0.01 0.00831 

r.,, 0.122 0.122 * 0.07 

r.,z 0.0 0.0 * 0.0 -1 
a. 2000 2000 2000 2000 m-1 

a. 2000 2000 2000 2000 It-' 

IV. RESULTS 

To illustrate the longitudinal variations of the index- and 
gain coupling coefficients above threshold, we performed a 
calculation for a laser with the parameter values given in Table 
I and grating parameters according to Column A of Table 11. 
These correspond to a typical 300 pm long DFB laser with 
a homogeneous grating structure. The laser has a threshold 
current of approximately 13 mA and the coupling strength, 
In\ L,  (at threshold) is 1.5. 

Fig. 3 shows that the coupling coefficient is homogeneous 
when operated close to threshold, but as the bias current 
is increased the coupling coefficient becomes increasingly 
nonuniform along the cavity. This variation of the coupling 
coefficient is consistent with the calculated variation of the 
carrier density N ,  cf., (9a) and (9b). At 50 mA the carrier 
density varies between 2.83 x mP3 and 3.40 x loz4 
m-3, a range which can be considered as typical with the 

TABLE I 
PARAMETER VALUES USED IN THE CALCULATIONS (UNLESS STATED OTHERWISE) 

Parameter 1 Snnbol I Valne 1 Unit 

given amount of coupling. The example serves to demonstrate 
that DFB lasers with index and gain coupling are not free 
of spatial holeburning and, as a consequence, the effective 
feedback of the optical field will depend on the bias conditions 
and the longitudinal position. It is therefore evident that 
a complex-coupled DFB laser cannot be characterized by 
a spatially independent coupling coefficient when operated 
above threshold. 

A. Below Threshold 

Fig. 4 gives a useful insight into the behavior of this type of 
complex-coupled DFB laser. It shows the locus curve for the 
complex coupling coefficient at threshold and also illustrates 
the change of the coupling coefficient as the carrier density is 
increased towards threshold (note the different scaling of the 
axes). Here the grating parameters in Column B of Table I1 
were used. The horizontal line in the lower right part of Fig. 4 
represents the case when there are no carriers injected into the 
active region (i.e., gm = -a No). The left end of the line is for 
zero built-in index step (An,,,,,f = 0), while a large index 
step i s  assumed at the right end ( A T L ~ R , ~ ~ ~  = 0.022). Going 
from left to right along the locus curve, each marked point 
corresponds to a change of the built-in index-step of 0.001. 

As the bias current is increased the K-value will change 
along the direction indicated by the arrows. The rate of change 
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(b) 

Fig. 3. Three-dimensional plots of (a) the index and (b) gain coupling 
coefficients as a function of the position and bias current in the region near 
threshold (1,h = 13mA). 

is obtained from (9a) and (9b) as 

dtc. ar, - - u - - - ( j - a ) s i n ( ~ y )  - 

dN 2 T  
where a is the linewidth enhancement factor [34]. 

At some bias point the roundtrip gain will equal unity 
and the laser reaches threshold. The threshold condition is 

I \\ Threshold 

t h  \ 

-40 l W  1 An=0.022 1 

Fig. 4. Locus curves for the complex coupling coefficient when no carriers 
are injected (horizontal line) and at threshold (bell curve). The left and 
right ends of the locus curves correspond to built-in effective index steps 
of ~ L I J ~ E  ref = 0.0 and An,ff, lef = 0.022, respectively. 

illustrated with the upper curve in Fig. 4. This curve is 
symmetrical with respect to the line n, = 0. It can be seen 
that a small built-in effective index step results in antiphase 
operation of the laser (opposite signs of the real and imaginary 
parts of K) ,  while a strong index grating results in in-phase 
operation at threshold. The actual shape of the threshold curve 
depends on the grating geometry, but the qualitative shape can 
easily be understood. For strong index coupling (positive or 
negative) a low threshold carrier density is expected, and this 
in turn results in a low threshold gain and a low gain coupling 
coefficient [cf. (9b)l. This is independent of the sign of the 
index coupling, so the curve has an even symmetry. On the 
other hand, when the index coupling is small, the feedback 
into the laser will have to be provided by the gain coupling. 
The gain coupling is proportional to the material gain, so that 
the threshold carrier density will have to be greater for small 
index coupling. 

The maximum value of the gain coupling coefficient de- 
pends on the gain-grating thickness, duty-cycle, and the ma- 
terial gain, but with reasonable values of these parameters, ng 
cannot be made very large. Typically a maximum value of 
K,L E 1 will be obtained. A critical range for the built- 
in index step is where the tangent of the threshold curve 
has a slope of - l / c y ,  cf. (15). Here a small change the in 
built-in index step will result in a large change in threshold 
gain, hence the strengths of the gain and index coupling. 
Furthermore, a small change in the carrier density caused 
by, for example, nonlinear gain, will cause a large change 
in coupling coefficients. We find that lasers designed in this 
region have a very poor slope efficiency close to threshold. 

B. At Threshold 
Fig. 5 shows the influence of the modulation depth of 

the active region on the index and gain coupling coeffi- 
cients at threshold, for three values of the average active 
region thickness. The built-in effective index step is fixed at 
A n , E .  ref = 0.01 (Column C of Table 11). For deep modulation 
(m > 0.5), the gain coupling coefficient only varies slowly and 
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Modulation depth, m [YO] 
Fig. 5.  Index and gain coupling coefficients at threshold versus active region 
modulation depth, m, for active region thicknesses, davg, of 40, 50, and 60 
nm. 

antiphase coupling is obtained. Fig. 6 shows the corresponding 
magnitude of the coupling strength. The coupling is at a 
minimum when the laser is purely gain-coupled. For on-off 
gratings (m = 100%) we obtain IKIL = 2.7 for a thick active 
region (daVg = 60 nm) and l ~ l L  = 1.5 for davg = 40 nm. 

Fig. 7 shows the variation of the lasing wavelength, Xth, 

and the Bragg wavelength, X g ,  at threshold as a function of 
the index coupling coefficient, 6,. The parameters are as for 
Fig. 4 (i.e., parameters according to Column B of Table 11). 
As expected 111, the laser oscillates at the Bragg wavelength 
for pure gain coupling (6% = 0). The two extremes of the 
index coupling coefficient in Fig. 7 correspond to index steps 
of An,,,,,f = 0.0 and An,R,rrf = 0.019. For the antiphase 
case (i.e., /s6 < 0) the lasing wavelength is located on the 
short-wavelength side of the Bragg wavelength, while for 
in-phase operation the lasing wavelength is located on the 
long-wavelength side. Hence, the grating geometry andor 
material parameters can tune the laser over a large portion 
of the stop-band [ l l ] .  

v. UNSTABLE REGIONS AND ASYMMETRIC DEVICES 

Fig. 8 illustrates the above-threshold behavior of a typical 
complex-coupled antiphase laser. The laser structure parame- 
ters are in Table 11 and the grating structure are as in Column 
D of Table I1 which represents an on-off modulated active 
region. The threshold parameters are Ith = 26 mA and IC. = 
(-38 + ,725) cm-l . The output power from the left end-facet 
versus the bias current was obtained using the TWM. Close to 
threshold the laser oscillates in a stable and symmetrical mode. 
However, at a bias current of approximately 57 mA (10 mW 
of output power) two stable but asymmetric modes appear, 
and the symmetrical mode becomes unstable [19]. The two 

0.0 I ' I ' I ' I '  
0 20 40 60 80 100 

Modulation depth, m [YO] 
Fig. 6. Coupling strength, I K I L ,  at threshold versus active region mod- 
ulation depth, m, for active region thicknesses, ddVg, of 40, 50, and 60 
nm. 

1553.0 

1548.0 ' , I ' I  I 
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Index coupling coefficient, K,  [cm-'1 

Fig. 7. 
a function of the index coupling coefficient, K ~ .  

Lasing wavelength, & h ,  and Bragg wavelength, AB, at threshold as 

asymmetric modes have the same optical frequency, but the 
longitudinal distributions of the carrier and photon densities 
are mirror images of one another. Hence, the output powers 
from the two facets are reversed. This suggests that first the 
laser will turn on to a stable mode, but when operated at an 
output power higher than 10 mW this initial mode will become 
unstable and the laser will instead switch to an asymmetric 
mode. The asymmetric mode becomes nondominant for a bias 
current above 72 mA. 

Fig. 9 shows output power waveforms from both facets and 
time-resolved frequency obtained using the TLLM. The bias 
current of the laser is taken through the following sequence: 
30 mA for 15 ns, 70 mA for 15 ns, and finally 80 mA for 15 
ns. When biased at 30 mA, the laser settles at a power of 1 
mW with equal output from both facets after a very short turn- 
on transient. This is in the symmetrical regime, and the carrier 
density is longitudinally symmetrical. Going to 70 mA, the 
power initially increases to 14.2 mW corresponding to point A 
in Fig. 8. However, the output powers from the two facets soon 
start to diverge, and in steady state the output powers end up 
being 16.7 mW and 2.7 mW. This corresponds to a transition 
from point A to either B or C, according to the vertical arrows 
in Fig. 8. These powers are in good agreement with Fig. 8. 
The modal frequency, obtained using Fourier transforms with 
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Fig. 8. Light-current characteristic of a symmetrical complex-coupled DFB 
laser with antiphase coupling. Stable and unstable modes are indicated in the 
Figure. The uoints “A,” “B,” and “C” refer to the time-domain simulation 
of Fig. 9. 
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Fig. 9. Large-signal time domain simulation of the output power and 
instantaneous frequency for the laser in Fig. 8. Labels “(a)” and “(b)” indicate 
the output powers from the left and right facet and “(c)” is the instantaneous 
frequency. 

a sliding time-window and then finding the peak frequency 
of the spectra, increases after an initial decrease. When the 
current is increased to 80 mA the asymmetry increases further 
and the modal frequency also increases. The corresponding 
carrier density profiles for the operating points A and B in 
Fig. 8 are illustrated in Fig. 10. A very large nonuniformity is 
observed for the asymmetric (stable) mode. The asymmetry in 
the power occurs in a random direction depending on the seed 
of the random noise generators which represent spontaneous 
emission in the TLLM. Thus, in practice, there would be a 
large uncertainty in the output power if such a laser were to 
be used in a digital transmission system. That is, the laser 
could turn on to point A and then move to either point B or C. 
This can be avoided by operating the laser below the critical 
power for instability. 

Ideally, the critical power should be as high as possible 
when designing a laser. Using the TWM, we have mapped 
out regions where the laser is unstable when the modulation 
depth of the active region is varied. In Fig. 11 the grey-shaded 
area represents unstable operation and the lines indicate the 

U k 3.01 

0 50 100 150 200 250 300 

Longitudinal position [pm] 
Fig. 10. Carrier density profile for unstable (dotted line) and stable (solid 
line) modes at 70 mA. The curves correspond to operation at points “A” and 
“B“ in Fig. 8. 

critical power (i.e., the location of the pitchfork bifurcation in 
Fig. 8). The calculations were made with grating parameters 
as in Column C of Table 11. It is seen by comparing Figs. 
5 and 11 that these modal instabilities all occur for laser 
configurations with antiphase gain and index coupling. No 
instabilities were found for in-phase coupling. The critical 
power for instabilities can be increased by decreasing the 
modulation depth or average thickness of the active region, 
but instabilities cannot be eliminated if the laser geometry 
inherently leads to antiphase coupling. In Fig. 11 we have 
also indicated the critical powers for the cases where the 
modulation depth leads to a coupling ratio of - 1 .S for a given 
thickness or duty cycle (dots). This ratio has been claimed to 
be the optimum value for high bandwidth and low chirp [4], 
[6], [15], [16]. It appears that when maintaining the coupling 
ratio, the critical power for instability cannot be changed 
dramatically by altering the average thickness of the active 
region, whereas reducing the duty cycle from SO% to 25% 
doubles the critical power. Reducing the duty cycle reduces 
the modulation bandwidth from 7.6 GHz to 6.3 GHz at S mW 
output power, possibly because the enhancement of differential 
gain, which gives the high bandwidth at this coupling ratio, 
relies on the dependence of index coupling on carrier density 

As mentioned above, the mode is nondominant for a bias 
current above 72 mA. This suggests that the dramatic increase 
in noise of the power traces in Fig. 9 is due to the laser being 
multimoded. A spectrum of the laser when operated at a dc 
bias current of 90 mA is shown in Fig. 12. This shows the 
growth of a side mode and a poor side mode suppression 
ratio. When the current was increased to 100 mA, the side 
mode suppression ratio reduced to almost zero dB, and the 
spectral peaks became broadened with many side bands spaced 
at around the laser relaxation oscillation frequency. In uniform 
DFB lasers, a strong side mode can reduce the excessive 
carrier density and thus is transitory, which leads to self- 
pulsations [35].  Self-pulsations were, however, not observed 
in this example. 

141. 
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Fig. 13. 
when the reflectivities of the left and right end facets are RI = 1.0 x 
and RZ = 1.0 x lop3,  respectively. 

Output power from the end facets as a function of the bias current 
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Fig 11 Regions of unstable operation (grey area) for an antiphase com- 
plex-coupled DFB laser as a function of the active region modulation depth 
(a) Grating duty cycle of y = 50% for three thicknesses, and (b) average 
thickness d = 40 nm for three duty cycles Points indicate cntical powers 
for the particular geometries (thickness, duty cycle) which yield a coupling 
ratio, n,/ng of -1 5 (at threshold) 

now splits up into two parts (dotted curves) for the left and 
right end facets and a new stable mode will appear for bias 
currents above 63 d. Our calculations show 
that the stable modes of an asymmetric laser (with RI < &) 
will both become nondominant shortly after the appearance of 
the new In the shown in Fig. 13, a poor SMSR 
is obtained for operation above 70 mA. 

$ le-14 
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Fig. 12. 
at a dc bias of 90 mA. 

Spectrum for the laser in Fig. 8 in the steady state, when operated 

By relaxing the symmetry requirement it might be possible 
to eliminate the instabilities. Indeed, it would be impossible 
to fabricate a perfectly symmetrical device. We analyzed a 
device with a left end-facet reflectivity at RI = 1 .O x (as 
stated in Table I) and a variable right end-facet reflectivity, Rz. 
We found that even though the perject longitudinal symmetry 
is broken, the laser still shows a behavior similar to that 
depicted in Fig. 8 [IS]. The output power when the right end- 
facet reflectivity R2 is increased to 1.0 x lop3 (parameters 
according to Column D of Table 11) is shown in Fig. 13. For 
a bias current above 50 mA the output power from the left 
end-facet will start to decrease (lower dashed curve), and the 
laser operation will resemble that in Fig. 8. The unstable mode 

VI. PHYSICAL MODEL 

It is useful to try to obtain a simple physical understanding 
of the processes behind instabilities so that the laser can be 
modified to increase the critical power for instabilities. 

The relaxation oscillation frequency and damping rate are 
fundamental quantities for semiconductor lasers. The damping 
rate at any point along the laser usually has two contributions, 
an almost constant term due to spontaneous recombination and 
a term which increases with the photon density. Schatz [17] 
studied the case of a perfectly symmetrical cavity, in which an 
asymmetric perturbation of the carrier density was deliberately 
introduced between the left and right halves of the cavity. 
Neglecting detailed spatial holebuming effects, the following 
rate equation for the time evolution of a small asymmetric 
perturbation A N  was derived [(lo) of [17] converted to our 
notation): 

- A N = -  d (y; - + v,S [i + 29 dN 
d t  

Here, A N  is the change of the carrier density relative to 
the symmetrical case, C1 is a longitudinal fill factor giving 
the fraction of the total photon number contained in the left 
half of the cavity, vg = c/nS is the group velocity, and 
dg,/dN is the differential gain (in this case equal to the 
linear material gain coefficient a). The first two terms are the 
usual contributions to the damping rate as discussed above, 
which tend to damp out the perturbation. The third term 
represents the change of the fill factor with carrier density. 
This change is due to the carrier density dependence of the 
grating characteristics (transmittance and reflectance). We shall 
argue that for lasers oscillating on the short wavelength side 
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of the Bragg wavelength the third term is negative (i.e., 
dCl/dN < O), which can make the damping rate negative 
above a critical output power. This means that perturbations 
will be amplified rather than attenuated, thereby favoring the 
transition to the asymmetric state. 

To assess the carrier density dependence of the fill factor, we 
consider the example of Fig. 8 for a bias current of 70 mA and 
calculate the reflectances of the two ends of the laser seen from 
a reference plane in the center. Fig. 14 shows the magnitude 
of the reflectances TL and T R  for the left and the right half 
of the cavity and the total roundtrip gain ) T L T R ] ,  when the 
laser is driven with a nonuniform (uniform) current to give an 
asymmetric (symmetrical) carrier density. The mode and side 
mode positions are shown as circles (nonuniform injection) 
and crosses (uniform injection) on the top curve, the mode 
being the one with a roundtrip gain of unity. The asymmetric 
and the symmetrical drive currents give almost the same lasing 
wavelengths. However, the left end has a significantly higher 
carrier density than the right end for the asymmetric drive 
current. This explains the increase in left reflectance and 
the shift of its maximum toward shorter wavelengths. The 
latter follows from the decrease in the Bragg wavelength with 
increasing carrier density. Conversely, the right reflectance 
is decreased and shifted toward longer wavelengths. As a 
result, we see a substantially larger difference in the left and 
right reflectances on the short wavelength side. The higher 
reflectance of the left hand section will reduce the penetration 
of the laser field into this section. The reduced stimulated 
emission allows the carrier density and hence the reflectance 
to increase further. This is a positive feedback situation which 
will drive the carrier density toward a stable point where the 
reflectance is high and the stimulated emission rate low, so 
that the gain of the positive feedback becomes zero in the 
steady state. 

Equation (16) suggests that the critical power for instability 
can be increased if the spontaneous recombination rate is 
increased. To test this we altered the spontaneous carrier 
lifetime, [dR,,/dN]-', and calculated the critical power for 
instability. For this purpose only, the A- and C-coefficients 
were set to zero, and the B-coefficient was varied, cf. (13a). 
Hence, the spontaneous carrier lifetime is equal to 1 / ( 2 B N )  ~ 

where N is taken at threshold. For a spontaneous carrier 
lifetime of 0.52 ns we obtained a critical power of 6.3 mW, and 
for a lifetime of 0.21 ns we obtained 16.0 mW. The relaxation 
resonance frequency remained nearly unchanged at 7.6 and 7.7 
GHz, respectively, for output powers of 5 mW. The product of 
the critical power and the carrier lifetime is almost constant. 
That is, there appears to be a critical energy for instability. 
Thus, the carrier lifetime could be decreased (by implantation 
with impurities, for example) to improve the laser's output 
power before instability. However, the cost is an increased 
threshold current. 

VII. CONCLUSION 
We have presented a generalized analysis of complex- 

coupled DFB lasers which gives the coupling coefficients in 
terms of the mating geometry and basic material Darameters. 

1546 1548 1550 1552 
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0.0- 
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Wavelength [nm] 
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Fig. 14. Reflectance curves (filter functions) for the laser of Fig. 8 with 
uniform and slightly nonuniform injection. The total current is 70 mA in both 
cases, and in the asymmetric case the right current is 0.8 mA greater than the 
left current. (a) Roundtrip gain ( I r ~ r n l )  and mode positions. Solid curve and 
crosses: uniform injection, dashed curve and circles: nonuniform injection. (b) 
Reflectance curves ( 1 ~ ~ 1  and IrnI) of the left and right halves of the cavity 
seen from the reference plane. For uniform injection the cavity is symmetric 
and the curves coincide. 

We have shown that two independently derived models give 
excellent agreement for complex-coupled DFB lasers. 

Our analysis shows that lasing on the short-wavelength side 
of the Bragg wavelength can lead to instabilities in complex- 
coupled DFB lasers. The fact that some lasers may turn on 
in a (nearly) symmetrical mode and subsequently switch to 
a mode of highllow or lowkigh power from the two facets 
can lead to undesirable behavior in an optical communication 
system, because the power and the wavelength are not well 
defined. Similar instabilities in index-coupled DFB lasers have 
been shown previously. In particular, we conclude that a 
complex-coupled laser optimized for maximum modulation 
bandwidth (i.e., with a coupling ratio of K ~ / K ~  rv -1.5) 
may become unstable at an output power of less than 10 
mW. In addition, for nonsymmetrical cavities, operation on the 
short wavelength side of the Bragg wavelength may lead to 
highly distorted light-current characteristics and poor SMSR 
at moderate output power. 

We have shown that the duty cycle of the active region 
grating can be reduced to increase the critical power for 
instability, but with a reduction in modulation bandwidth. 
However, it appears that all antiphase lasers are bound to 
become unstable at a finite power. A simple explanation for 
the instabilities highlights the importance of spontaneous re- 
combination in preventing instabilities at low powers, but other 
damping mechanisms might also have a positive influence. The 
critical power for instability is inversely proportional to the 

U -., carrier lifetime, which is in broad agreement with a previous 
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analysis Of index-coupled DFB lasers 1171. Interestingly, the 1191 H. Olesen, B. Tromborg, X. Pan, and H. E. Lassen, “Stability and - _  . .  

modulation bandwidth for a given power is not reduced by 
this method of increasing the critical power for instability. 

dynamic properties of multi-electrode lasers using a Green’s function 
approach,” IEEE J. Quantum Electron., vol. 29, pp. 2282-2301, Aug. 
1993. 

In conclusion, although the critical power for instability 
can be increased while keeping a high modulation bandwidth 
by appropriate design, antiphase lasers with an optimized 
coupling ratio for high bandwidth and low chirp will always 

coupled DFB lasers are stable, but they do not have the same 
bandwidth enhancement mechanism. 

[20] A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter- 
wave-shifted DFB semiconductor lasers,” Electron. Lett., vol. 30, pp. 
965-967, June 1994. 

pi] A. J. Lowery, B. Jonsson, H. Olesen, and D. NOVA, “Mode instabilities 
in complex-coupled DFB semiconductor lasers,’’ Electron. Lett., vol. 
31, pp. 4 0 4 1 ,  Jan. 1995. 

[22] B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis 
of semiconductor lasers: Modulation responses, mode stability and 
quantum mechanical treatment of noise spectra,” IEEE J. Quantum 

at Some power’ “Owever, in-phase 
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